Skip to content
2000
image of Focused Insights into Liposomal Nanotherapeutics for Antimicrobial Treatment

Abstract

Addressing infectious conditions presents a formidable challenge, primarily due to the escalating issue of bacterial resistance. This, coupled with limited financial resources and stagnant antibiotic research, compounds the antibiotic crisis. Innovative strategies, including novel antibiotic development and alternative solutions, are crucial to combat microbial resistance. Nanotherapeutics offers a promising approach to enhance drug delivery systems. Integration into lipid-based nanoscale delivery systems, particularly through therapeutic substance encapsulation in liposomal carriers, significantly prolongs drug presence at infection sites. This not only reduces toxicity but also shields antibiotics from degradation. Lipidic carriers, particularly liposomes, exhibit remarkable specificity in targeting infectious cells. This holds great promise in combating antimicrobial resistance and potentially transforming treatment for multi-drug resistant infections. Leveraging liposomal carriers may lead to breakthroughs in addressing drug-resistant bacterial infections. This review emphasizes the potential of antimicrobial-loaded liposomes as a novel delivery system for bacterial infections. Encapsulating antimicrobial agents within liposomes enhances treatment efficiency. Moreover, liposomal systems counteract challenges posed by antimicrobial resistance, offering hope in managing persistent multidrug-resistant infections. In the battle against bacterial resistance and the antibiotics crisis, the use of antimicrobial-loaded liposomes as delivery vehicles shows great promise. This innovative approach not only extends drug effectiveness and reduces toxicity but also provides a path to address highly resistant infectious conditions. As research advances, liposomal nanotherapeutics may emerge as a transformative solution in the fight against bacterial infections.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673322058241003073312
2024-10-17
2024-11-26
Loading full text...

Full text loading...

References

  1. Varela M.F. Stephen J. Lekshmi M. Ojha M. Wenzel N. Sanford L.M. Hernandez A.J. Parvathi A. Kumar S.H. Bacterial resistance to antimicrobial agents. Antibiotics (Basel) 2021 10 5 593 10.3390/antibiotics10050593 34067579
    [Google Scholar]
  2. Iredell J. Antimicrobial resistance. Microbiol. Aust. 2019 40 2 55 56 10.1071/MA19016
    [Google Scholar]
  3. Bassetti M. Garau J. Current and future perspectives in the treatment of multidrug-resistant Gram-negative infections. J. Antimicrob. Chemother. 2021 76 Suppl. 4 iv23 iv37 10.1093/jac/dkab352 34849997
    [Google Scholar]
  4. Dartois VA Rubin EJ Anti-tuberculosis treatment strategies and drug development: Challenges and priorities. Nature Rev. Microbiol. 2022 20 11 00731-y 10.1038/s41579‑022‑00731‑y
    [Google Scholar]
  5. Terreni M. Taccani M. Pregnolato M. New Antibiotics for Multidrug-Resistant Bacterial Strains: Latest Research Developments and Future Perspectives. Molecules 2021 26 9 2671 10.3390/molecules26092671 34063264
    [Google Scholar]
  6. Miethke M Pieroni M Weber T Brönstrup M Hammann P Halby L Towards the sustainable discovery and development of new antibiotics. Nat Rev Chem 2021 5 10 726 729 10.1038/s41570‑021‑00313‑1
    [Google Scholar]
  7. Parmanik A. Das S. Kar B. Bose A. Dwivedi G.R. Pandey M.M. Current Treatment Strategies Against Multidrug-Resistant Bacteria: A Review. Curr. Microbiol. 2022 79 12 388 10.1007/s00284‑022‑03061‑7 36329256
    [Google Scholar]
  8. Chinemerem Nwobodo D. Ugwu M.C. Oliseloke Anie C. Al-Ouqaili M.T.S. Chinedu Ikem J. Victor Chigozie U. Saki M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J. Clin. Lab. Anal. 2022 36 9 e24655 10.1002/jcla.24655 35949048
    [Google Scholar]
  9. Aljeldah M.M. Antimicrobial Resistance and Its Spread Is a Global Threat. Antibiotics (Basel) 2022 11 8 1082 10.3390/antibiotics11081082 36009948
    [Google Scholar]
  10. Patel G. Patel R. Thermoresponsive hydrogel: A carrier for tissue engineering and regenerative medicine. Hydrogels for Tissue Engineering and Regenerative Medicine: From Fundamentals to Applications. Oliveira J.M. Silva-Correia J. Reis R.L. Cambridge, Massachusetts Academic Press 2023 213 232 10.1016/B978‑0‑12‑823948‑3.00009‑9
    [Google Scholar]
  11. Patel R. Patel G. Preparation and Characterization of a Novel Optimum Modified Liquisolid Compact to Enhance the Dissolution Profile of Mifepristone. Dissolut. Technol. 2023 30 4 238 244 10.14227/DT300423P238
    [Google Scholar]
  12. Patel R Patel S Momin I Shah S. The Evolving Landscape of Colonoscopy: Recent Developments and Complication Management. Colonoscopy - Diagnostic and Therapeutic Advances London InTechOpen 2024 10.5772/intechopen.1003894
    [Google Scholar]
  13. Patel G. shah S. Patel R. Nanocomposite hydrogels: An optimistic insight towards the treatments of ocular disorders. Recent Pat. Nanotechnol. 2023 17 10.2174/1872210517666230731102130
    [Google Scholar]
  14. Liu P. Chen G. Zhang J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules 2022 27 4 1372 10.3390/molecules27041372 35209162
    [Google Scholar]
  15. Kumar R. Dkhar D.S. Kumari R. Divya Mahapatra S. Dubey V.K. Chandra P. Lipid based nanocarriers: Production techniques, concepts, and commercialization aspect. J. Drug Deliv. Sci. Technol. 2022 74 103526 10.1016/j.jddst.2022.103526
    [Google Scholar]
  16. Puri A. Loomis K. Smith B. Lee J.H. Yavlovich A. Heldman E. Blumenthal R. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst. 2009 26 6 523 580 10.1615/CritRevTherDrugCarrierSyst.v26.i6.10 20402623
    [Google Scholar]
  17. Jaiswal P. Gidwani B. Vyas A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif. Cells Nanomed. Biotechnol. 2016 44 1 27 40 10.3109/21691401.2014.909822 24813223
    [Google Scholar]
  18. Shah S Patel AA Prajapati BG Alexander A Pandya V Trivedi N Multifaceted nanolipidic carriers: A modish stratagem accentuating nose-to-brain drug delivery. J. Nanoparticle Res. 2023 25 150 05804-4 10.1007/s11051‑023‑05804‑4
    [Google Scholar]
  19. Zhang Z Feng Z Zhao X Jean D Yu Z Chapman ER Functionalization and higher-order organization of liposomes with DNA nanostructures. Nature Commun. 2023 14 5256 41013-2 10.1038/s41467‑023‑
    [Google Scholar]
  20. Mukherjee A. Bisht B. Dutta S. Paul M.K. Current advances in the use of exosomes, liposomes, and bioengineered hybrid nanovesicles in cancer detection and therapy. Acta Pharmacol. Sin. 2022 43 11 2759 2776 10.1038/s41401‑022‑00902‑w 35379933
    [Google Scholar]
  21. Jan B Jan R Afzal S Ayoub M Masoodi MH Non-traditional Approaches to Combat Antimicrobial Drug Resistance. Berlin, Heidelberg Springer Link 2023 10.1007/978‑981‑19‑9167‑7_4
    [Google Scholar]
  22. Trivedi S. Shah S. Patel R. Review on novel oral iron formulations with enhanced bioavailability for the treatment of iron deficiency. J. Drug Deliv. Sci. Technol. 2023 90 105181 10.1016/j.jddst.2023.105181
    [Google Scholar]
  23. Bramer W.M. De Jonge G.B. Rethlefsen M.L. Mast F. Kleijnen J. A systematic approach to searching: An efficient and complete method to develop literature searches. J. Med. Libr. Assoc. 2018 106 4 531 541 10.5195/jmla.2018.283 30271302
    [Google Scholar]
  24. Shukla A. Antifungal nanoparticles for targeted treatment of fungal infections. US Patent 11273124B2 2018
  25. James B. Liposomal anti-infective formulations to inhibit non-tuberculous mycobacteria (ntm) microaggregate formation and establishment of NTM biofilm. WO Patent 2018186998 2018
  26. ABANCI A.U. Liposomal ozone nanosolutions. EP Patent 4203920A1 2018
  27. BR Patent 102022005943A2
  28. Liangliang Y. A kind of preparation method of antibacterial peptide liposome. CN Patent 102462661A 2018
  29. Zhou Q. Liposomal nano formulation of combinational antibiotics and the uses thereof. US Patent 20210113595A1 2018
  30. Guilford F.T. Treatment of evolving bacterial resistance diseases including Klebsiella pneumoniae with liposomally formulated glutathione. US Patent 9913801B2 2018
  31. Gonda I. Liposomal ciprofloxacin formulations with activity against non-tuberculous mycobacteria. US Patent 9532986B2 2018
  32. Formulations having anti-inflammatory activity and antimicrobial activity against gram-positive bacteria. US Patent 20170333379A1 2018
  33. Fan Y. Zhang Q. Development of liposomal formulations: From concept to clinical investigations. Asian J. Pharmaceut. Sci. 2013 8 2 81 87 10.1016/j.ajps.2013.07.010
    [Google Scholar]
  34. Bulbake U. Doppalapudi S. Kommineni N. Khan W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017 9 2 12 10.3390/pharmaceutics9020012 28346375
    [Google Scholar]
  35. Zylberberg C. Matosevic S. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape. Drug Deliv. 2016 23 9 3319 3329 10.1080/10717544.2016.1177136 27145899
    [Google Scholar]
  36. Am D Water S. Amphotericin B Liposome for Injection Rx only. 2012 Available From: file:///C:/Users/Amber-web/Downloads/20220210_593cffa0-c305-48b6-8ec7-331e0ff91d2b.pdf
  37. Intelence Highlights of Prescribing Information. 2014 Available From: https://dailymed.nlm.nih.gov/dailymed/fda/fdaDrugXsl.cfm?setid=6a9cbc29-9f15-4b24-8d86-206b82887f3d&type=display
  38. DailyMed ABELCET- amphotericin b, dimyristoylphosphatidylcholine, dl- and dimyristoylphosphatidylglycerol, dl- injection. 2023 Available From: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=5587db37-f21a-4a39-a319-e1077032ced9
  39. HMA MRI Product Index. 2021 Available From: https://www.hma.eu/mriproductindex.html
  40. Jackson M.M. Infection prevention and control. Crit. Care Nurs. Clin. North Am. 1992 4 3 401 409 10.1016/S0899‑5885(18)30628‑2 1388985
    [Google Scholar]
  41. John P. Arikayce. 2024 Available From: https://www.rxlist.com/arikayce-drug.htm
  42. EMA Arikayce liposomal. 2024 Available From: https://www.ema.europa.eu/en/medicines/human/EPAR/arikayce-liposomal
  43. Lay M. Callejo B. Chang S. Hong D.K. Lewis D.B. Carroll T.D. Matzinger S. Fritts L. Miller C.J. Warner J.F. Liang L. Fairman J. Cationic lipid/DNA complexes (JVRS-100) combined with influenza vaccine (Fluzone®) increases antibody response, cellular immunity, and antigenically drifted protection. Vaccine 2009 27 29 3811 3820 10.1016/j.vaccine.2009.04.054 19406188
    [Google Scholar]
  44. Hartikka J. Bozoukova V. Yang C.K. Ye M. Rusalov D. Shlapobersky M. Vilalta A. Wei Q. Rolland A. Smith L.R. Vaxfectin®, a cationic lipid-based adjuvant for protein-based influenza vaccines. Vaccine 2009 27 46 6399 6403 10.1016/j.vaccine.2009.06.014 19552895
    [Google Scholar]
  45. National Institute of Allergy and Infectious Diseases (NIAID) Evaluating the Safety and Immunogenicity of an HIV-1 gp41 MPER-656 Liposome Vaccine in Healthy, HIV-uninfected Adult Participants. 2022 Available From: https://clinicaltrials.gov/ct2/show/NCT03934541?term=liposome+AND+vaccine&draw=2&rank=1
  46. Patel R. Yadav B.K. Patel G. Progresses in Nano-Enabled Platforms for the Treatment of Vaginal Disorders. Recent Pat. Nanotechnol. 2023 17 3 208 227 10.2174/1872210516666220628150447 35762539
    [Google Scholar]
  47. Xing H. Hwang K. Lu Y. Recent Developments of Liposomes as Nanocarriers for Theranostic Applications. Theranostics 2016 6 9 1336 1352 10.7150/thno.15464 27375783
    [Google Scholar]
  48. Abbasi H. Kouchak M. Mirveis Z. Hajipour F. Khodarahmi M. Rahbar N. Handali S. What We Need to Know about Liposomes as Drug Nanocarriers: An Updated Review. Adv. Pharm. Bull. 2022 13 1 7 23 10.34172/apb.2023.009 36721822
    [Google Scholar]
  49. Harayama T Riezman H Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol. 2018 19 5 281 296 10.1038/nrm.2017.138
    [Google Scholar]
  50. Kaymaz S.V. Nobar H.M. Sarıgül H. Soylukan C. Akyüz L. Yüce M. Nanomaterial surface modification toolkit: Principles, components, recipes, and applications. Adv. Colloid Interface Sci. 2023 322 103035 10.1016/j.cis.2023.103035 37931382
    [Google Scholar]
  51. Sercombe L. Veerati T. Moheimani F. Wu S.Y. Sood A.K. Hua S. Advances and Challenges of Liposome Assisted Drug Delivery. Front. Pharmacol. 2015 6 DEC 286 10.3389/fphar.2015.00286 26648870
    [Google Scholar]
  52. Ling D. Hackett M.J. Hyeon T. Surface ligands in synthesis, modification, assembly and biomedical applications of nanoparticles. Nano Today 2014 9 4 457 477 10.1016/j.nantod.2014.06.005
    [Google Scholar]
  53. Kanásová M Nesměrák K Systematic review of liposomes’ characterization methods. Monatshefte für Chemie - Chemical Monthly 2017 148 1581 1593 10.1007/s00706‑017‑1994‑9
    [Google Scholar]
  54. Choi S Kang B Yang E Kim K Kwak MK Chang PS Precise control of liposome size using characteristic time depends on solvent type and membrane properties. Sci. Reports 2023 13 4728 31895-z 10.1038/s41598‑023‑31895‑z
    [Google Scholar]
  55. Filipczak N. Pan J. Yalamarty S.S.K. Torchilin V.P. Recent advancements in liposome technology. Adv. Drug Deliv. Rev. 2020 156 4 22 10.1016/j.addr.2020.06.022 32593642
    [Google Scholar]
  56. Akram N. Afzaal M. Saeed F. Shah Y.A. Faisal Z. Asghar A. Ateeq H. Nayik G.A. Wani S.H. Hussain M. Asif Shah M. Khaneghah A.M. Liposomes: A promising delivery system for active ingredients in food and nutrition. Int. J. Food Prop. 2023 26 1 2476 2492 10.1080/10942912.2023.2247578
    [Google Scholar]
  57. Andra V.V.S.N.L. Pammi S.V.N. Bhatraju L.V.K.P. Ruddaraju L.K. A Comprehensive Review on Novel Liposomal Methodologies, Commercial Formulations, Clinical Trials and Patents. Bionanoscience 2022 12 1 274 291 10.1007/s12668‑022‑00941‑x 35096502
    [Google Scholar]
  58. Polaka S Katrajkar K Siva Reddy D V. Shukla H Arafat B Tekade RK Factors affecting the pharmacokinetics of the liposomal drugs. Biopharmaceutics and Pharmacokinetics Considerations. Cambridge, Massachusetts Academic Press 2021 10.1016/B978‑0‑12‑814425‑1.00016‑4
    [Google Scholar]
  59. Pandey P Patel J Kumar S Pathak Y. Pharmacokinetics and Pharmacodynamics of Nanoparticulate Drug Delivery Systems. Berlin, Heidelberg SpringerLink 2022 10.1007/978‑3‑030‑83395‑4_8
    [Google Scholar]
  60. Sainaga Jyothi V.G.S. Bulusu R. Venkata Krishna Rao B. Pranothi M. Banda S. Kumar Bolla P. Kommineni N. Stability characterization for pharmaceutical liposome product development with focus on regulatory considerations: An update. Int. J. Pharm. 2022 624 122022 10.1016/j.ijpharm.2022.122022 35843364
    [Google Scholar]
  61. Subramani T. Ganapathyswamy H. An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical. J. Food Sci. Technol. 2020 57 10 3545 3555 10.1007/s13197‑020‑04360‑2 32903987
    [Google Scholar]
  62. Antimisiaris S.G. Marazioti A. Kannavou M. Natsaridis E. Gkartziou F. Kogkos G. Mourtas S. Overcoming barriers by local drug delivery with liposomes. Adv. Drug Deliv. Rev. 2021 174 53 86 10.1016/j.addr.2021.01.019 33539852
    [Google Scholar]
  63. Allahou L.W. Madani S.Y. Seifalian A. Investigating the Application of Liposomes as Drug Delivery Systems for the Diagnosis and Treatment of Cancer. Int. J. Biomater. 2021 2021 1 16 10.1155/2021/3041969 34512761
    [Google Scholar]
  64. Yuan Z. Gottsacker C. He X. Waterkotte T. Park Y.C. Repetitive drug delivery using Light-Activated liposomes for potential antimicrobial therapies. Adv. Drug Deliv. Rev. 2022 187 114395 10.1016/j.addr.2022.114395 35709884
    [Google Scholar]
  65. Ferreira M. Ogren M. Dias J.N.R. Silva M. Gil S. Tavares L. Aires-da-Silva F. Gaspar M.M. Aguiar S.I. Liposomes as Antibiotic Delivery Systems: A Promising Nanotechnological Strategy against Antimicrobial Resistance. Molecules 2021 26 7 2047 10.3390/molecules26072047 33918529
    [Google Scholar]
  66. Chen L. Kumar S. Wu H. A review of current antibiotic resistance and promising antibiotics with novel modes of action to combat antibiotic resistance. Arch. Microbiol. 2023 205 11 356 10.1007/s00203‑023‑03699‑2 37863957
    [Google Scholar]
  67. Uddin T.M. Chakraborty A.J. Khusro A. Zidan B.M.R.M. Mitra S. Emran T.B. Dhama K. Ripon M.K.H. Gajdács M. Sahibzada M.U.K. Hossain M.J. Koirala N. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J. Infect. Public Health 2021 14 12 1750 1766 10.1016/j.jiph.2021.10.020 34756812
    [Google Scholar]
  68. Patel K. Bunachita S. Agarwal A.A. Bhamidipati A. Patel U.K. A Comprehensive Overview of Antibiotic Selection and the Factors Affecting It. Cureus 2021 13 3 e13925 10.7759/cureus.13925 33868859
    [Google Scholar]
  69. Murugaiyan J. Kumar P.A. Rao G.S. Iskandar K. Hawser S. Hays J.P. Mohsen Y. Adukkadukkam S. Awuah W.A. Jose R.A.M. Sylvia N. Nansubuga E.P. Tilocca B. Roncada P. Roson-Calero N. Moreno-Morales J. Amin R. Kumar B.K. Kumar A. Toufik A.R. Zaw T.N. Akinwotu O.O. Satyaseela M.P. van Dongen M.B.M. Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics. Antibiotics (Basel) 2022 11 2 200 10.3390/antibiotics11020200 35203804
    [Google Scholar]
  70. Castro-Sánchez E. Moore L.S.P. Husson F. Holmes A.H. What are the factors driving antimicrobial resistance? Perspectives from a public event in London, England. BMC Infect. Dis. 2016 16 1 465 10.1186/s12879‑016‑1810‑x 27590053
    [Google Scholar]
  71. Larsson D.G.J. Flach C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022 20 5 257 269 10.1038/s41579‑021‑00649‑x 34737424
    [Google Scholar]
  72. von Wintersdorff C.J.H. Penders J. van Niekerk J.M. Mills N.D. Majumder S. van Alphen L.B. Savelkoul P.H.M. Wolffs P.F.G. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front. Microbiol. 2016 7 FEB 173 10.3389/fmicb.2016.00173 26925045
    [Google Scholar]
  73. Dymek M. Sikora E. Liposomes as biocompatible and smart delivery systems – the current state. Adv. Colloid Interface Sci. 2022 309 102757 10.1016/j.cis.2022.102757 36152374
    [Google Scholar]
  74. Chelliah R. Khan I. Daliri E.B.M. Tamizhini L. Pravitha K.S. Begum M. Liposomes for Drug Delivery: Progress and Problems. Smart Nanomaterials in Biomedical Applications Berlin, Heidelberg Springer Link 2021 425 447 10.1007/978‑3‑030‑84262‑8_15
    [Google Scholar]
  75. Lombardo D. Kiselev M.A. Methods of Liposomes Preparation: Formation and Control Factors of Versatile Nanocarriers for Biomedical and Nanomedicine Application. Pharmaceutics 2022 14 3 543 10.3390/pharmaceutics14030543 35335920
    [Google Scholar]
  76. Póvoa P. Moniz P. Pereira J.G. Coelho L. Optimizing Antimicrobial Drug Dosing in Critically Ill Patients. Microorganisms 2021 9 7 1401 10.3390/microorganisms9071401 34203510
    [Google Scholar]
  77. Powell J.R. Cook J. Wang Y. Peck R. Weiner D. Drug Dosing Recommendations for All Patients: A Roadmap for Change. Clin. Pharmacol. Ther. 2021 109 1 65 72 10.1002/cpt.1923 32453862
    [Google Scholar]
  78. Tyson R.J. Park C.C. Powell J.R. Patterson J.H. Weiner D. Watkins P.B. Gonzalez D. Precision Dosing Priority Criteria: Drug, Disease, and Patient Population Variables. Front. Pharmacol. 2020 11 420 10.3389/fphar.2020.00420 32390828
    [Google Scholar]
  79. Rawson T.M. Wilson R.C. O’Hare D. Herrero P. Kambugu A. Lamorde M. Ellington M. Georgiou P. Cass A. Hope W.W. Holmes A.H. Optimizing antimicrobial use: Challenges, advances and opportunities. Nat. Rev. Microbiol. 2021 19 12 747 758 10.1038/s41579‑021‑00578‑9 34158654
    [Google Scholar]
  80. Onufrak N.J. Forrest A. Gonzalez D. Pharmacokinetic and Pharmacodynamic Principles of Anti-infective Dosing. Clin. Ther. 2016 38 9 1930 1947 10.1016/j.clinthera.2016.06.015 27449411
    [Google Scholar]
  81. Eyler R.F. Shvets K. Clinical pharmacology of antibiotics. Clin. J. Am. Soc. Nephrol. 2019 14 7 1080 1090 10.2215/CJN.08140718 30862698
    [Google Scholar]
  82. Masich A.M. Omecene N.E. Lai J. Ong R. Gravatt L.A.H. Khan R.W. Pharmacokinetic-Pharmacodynamic and Clinical Considerations for Extended- and Continuous-Infusion Antibiotics. Clin. Microbiol. Newsl. 2023 45 14 115 123 10.1016/j.clinmicnews.2023.07.003
    [Google Scholar]
  83. Levison M.E. Levison J.H. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect. Dis. Clin. North Am. 2009 23 4 791 815, vii 10.1016/j.idc.2009.06.008 19909885
    [Google Scholar]
  84. Yılmaz Ç. Özcengiz G. Antibiotics: Pharmacokinetics, toxicity, resistance and multidrug efflux pumps. Biochem. Pharmacol. 2017 133 43 62 10.1016/j.bcp.2016.10.005 27765485
    [Google Scholar]
  85. Large D.E. Abdelmessih R.G. Fink E.A. Auguste D.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv. Drug Deliv. Rev. 2021 176 113851 10.1016/j.addr.2021.113851 34224787
    [Google Scholar]
  86. Mohamed M. Abu Lila A.S. Shimizu T. Alaaeldin E. Hussein A. Sarhan H.A. Szebeni J. Ishida T. PEGylated liposomes: Immunological responses. Sci. Technol. Adv. Mater. 2019 20 1 710 724 10.1080/14686996.2019.1627174 31275462
    [Google Scholar]
  87. Panahi Y. Farshbaf M. Mohammadhosseini M. Mirahadi M. Khalilov R. Saghfi S. Akbarzadeh A. Recent advances on liposomal nanoparticles: Synthesis, characterization and biomedical applications. Artif. Cells Nanomed. Biotechnol. 2017 45 4 788 799 10.1080/21691401.2017.1282496 28278586
    [Google Scholar]
  88. Sartelli M. Barie P.S. Coccolini F. Abbas M. Abbo L.M. Abdukhalilova G.K. Abraham Y. Abubakar S. Abu-Zidan F.M. Adebisi Y.A. Adamou H. Afandiyeva G. Agastra E. Alfouzan W.A. Al-Hasan M.N. Ali S. Ali S.M. Allaw F. Allwell-Brown G. Amir A. Amponsah O.K.O. Al Omari A. Ansaloni L. Ansari S. Arauz A.B. Augustin G. Awazi B. Azfar M. Bah M.S.B. Bala M. Banagala A.S.K. Baral S. Bassetti M. Bavestrello L. Beilman G. Bekele K. Benboubker M. Beović B. Bergamasco M.D. Bertagnolio S. Biffl W.L. Blot S. Boermeester M.A. Bonomo R.A. Brink A. Brusaferro S. Butemba J. Caínzos M.A. Camacho-Ortiz A. Canton R. Cascio A. Cassini A. Cástro-Sanchez E. Catarci M. Catena R. Chamani-Tabriz L. Chandy S.J. Charani E. Cheadle W.G. Chebet D. Chikowe I. Chiara F. Cheng V.C-C. Chioti A. Cocuz M.E. Coimbra R. Cortese F. Cui Y. Czepiel J. Dasic M. de Francisco Serpa N. de Jonge S.W. Delibegovic S. Dellinger E.P. Demetrashvili Z. De Palma A. De Silva D. De Simone B. De Waele J. Dhingra S. Diaz J.J. Dima C. Dirani N. Dodoo C.C. Dorj G. Duane T.M. Eckmann C. Egyir B. Elmangory M.M. Enani M.A. Ergonul O. Escalera-Antezana J.P. Escandon K. Ettu A-W.O. Fadare J.O. Fantoni M. Farahbakhsh M. Faro M.P. Ferreres A. Flocco G. Foianini E. Fry D.E. Garcia A.F. Gerardi C. Ghannam W. Giamarellou H. Glushkova N. Gkiokas G. Goff D.A. Gomi H. Gottfredsson M. Griffiths E.A. Guerra Gronerth R.I. Guirao X. Gupta Y.K. Halle-Ekane G. Hansen S. Haque M. Hardcastle T.C. Hayman D.T.S. Hecker A. Hell M. Ho V.P. Hodonou A.M. Isik A. Islam S. Itani K.M.F. Jaidane N. Jammer I. Jenkins D.R. Kamara I.F. Kanj S.S. Jumbam D. Keikha M. Khanna A.K. Khanna S. Kapoor G. Kapoor G. Kariuki S. Khamis F. Khokha V. Kiggundu R. Kiguba R. Kim H.B. Kim P.K. Kirkpatrick A.W. Kluger Y. Ko W-C. Kok K.Y.Y. Kotecha V. Kouma I. Kovacevic B. Krasniqi J. Krutova M. Kryvoruchko I. Kullar R. Labi K.A. Labricciosa F.M. Lakoh S. Lakatos B. Lansang M.A.D. Laxminarayan R. Lee Y.R. Leone M. Leppaniemi A. Hara G.L. Litvin A. Lohsiriwat V. Machain G.M. Mahomoodally F. Maier R.V. Majumder M.A.A. Malama S. Manasa J. Manchanda V. Manzano-Nunez R. Martínez-Martínez L. Martin-Loeches I. Marwah S. Maseda E. Mathewos M. Maves R.C. McNamara D. Memish Z. Mertz D. Mishra S.K. Montravers P. Moro M.L. Mossialos E. Motta F. Mudenda S. Mugabi P. Mugisha M.J.M. Mylonakis E. Napolitano L.M. Nathwani D. Nkamba L. Nsutebu E.F. O’Connor D.B. Ogunsola S. Jensen P.Ø. Ordoñez J.M. Ordoñez C.A. Ottolino P. Ouedraogo A-S. Paiva J.A. Palmieri M. Pan A. Pant N. Panyko A. Paolillo C. Patel J. Pea F. Petrone P. Petrosillo N. Pintar T. Plaudis H. Podda M. Ponce-de-Leon A. Powell S.L. Puello-Guerrero A. Pulcini C. Rasa K. Regimbeau J-M. Rello J. Retamozo-Palacios M.R. Reynolds-Campbell G. Ribeiro J. Rickard J. Rocha-Pereira N. Rosenthal V.D. Rossolini G.M. Rwegerera G.M. Rwigamba M. Sabbatucci M. Saladžinskas Ž. Salama R.E. Sali T. Salile S.S. Sall I. Kafil H.S. Sakakushev B.E. Sawyer R.G. Scatizzi M. Seni J. Septimus E.J. Sganga G. Shabanzadeh D.M. Shelat V.G. Shibabaw A. Somville F. Souf S. Stefani S. Tacconelli E. Tan B.K. Tattevin P. Rodriguez-Taveras C. Telles J.P. Téllez-Almenares O. Tessier J. Thang N.T. Timmermann C. Timsit J-F. Tochie J.N. Tolonen M. Trueba G. Tsioutis C. Tumietto F. Tuon F.F. Ulrych J. Uranues S. van Dongen M. van Goor H. Velmahos G.C. Vereczkei A. Viaggi B. Viale P. Vila J. Voss A. Vraneš J. Watkins R.R. Wanjiru-Korir N. Waworuntu O. Wechsler-Fördös A. Yadgarova K. Yahaya M. Yahya A.I. Xiao Y. Zakaria A.D. Zakrison T.L. Zamora Mesia V. Siquini W. Darzi A. Pagani L. Catena F. Ten golden rules for optimal antibiotic use in hospital settings: The WARNING call to action. World J. Emerg. Surg. 2023 18 1 50 10.1186/s13017‑023‑00518‑3 38057900
    [Google Scholar]
  89. Leekha S. Terrell C.L. Edson R.S. General principles of antimicrobial therapy. Mayo Clin. Proc. 2011 86 2 156 167 10.4065/mcp.2010.0639 21282489
    [Google Scholar]
  90. Tewabe A. Abate A. Tamrie M. Seyfu A. Abdela Siraj E. Targeted Drug Delivery — From Magic Bullet to Nanomedicine: Principles, Challenges, and Future Perspectives. J. Multidiscip. Healthc. 2021 14 1711 1724 10.2147/JMDH.S313968 34267523
    [Google Scholar]
  91. Kalelkar PP Riddick M García AJ Biomaterial-based antimicrobial therapies for the treatment of bacterial infections. Nature Rev. Mater. 2021 2021 39 54 10.1038/s41578‑021‑00362‑4
    [Google Scholar]
  92. Choi V Rohn JL Stoodley P Carugo D Stride E Drug delivery strategies for antibiofilm therapy. Nat. Rev. Microbiol. 2023 21 9 555 572 10.1038/s41579‑023‑00905‑2
    [Google Scholar]
  93. Lam J.K.W. Zhou Q. Advances in Pulmonary Drug Delivery Systems and Inhalation Formulations. Pharm. Res. 2023 40 5 1013 1014 10.1007/s11095‑023‑03534‑9 37217660
    [Google Scholar]
  94. Yue L. Zhang X. Zhao C. Chen R. Chen X. Rao L. Inhaled drug delivery: Past, present, and future. Nano Today 2023 52 101942 10.1016/j.nantod.2023.101942
    [Google Scholar]
  95. Patel G. Patel P. Sonara Z. Patel R. Fabrication and Optimization of 3D Printed Insert Coated With Rate Controlling Membrane in the Treatment of Recurrent Vaginal Candidiasis Via Vaginal Route. Preprint 2023 10.2139/ssrn.4514316
    [Google Scholar]
  96. Sou T. Bergström C.A.S. Contemporary Formulation Development for Inhaled Pharmaceuticals. J. Pharm. Sci. 2021 110 1 66 86 10.1016/j.xphs.2020.09.006 32916138
    [Google Scholar]
  97. Bassetti M. Vena A. Russo A. Peghin M. Inhaled Liposomal Antimicrobial Delivery in Lung Infections. Drugs 2020 80 13 1309 1318 10.1007/s40265‑020‑01359‑z 32691293
    [Google Scholar]
  98. Hou J. Fu R. Yu T. Ge P. Wang Y. Zhao M. Zou A. Xianyu Y. Synergistic antibacterial therapy for multidrug-resistant bacterial infections using multifunctional nanozymes. Nano Today 2024 54 102118 10.1016/j.nantod.2023.102118
    [Google Scholar]
  99. Simões A. Veiga F. Vitorino C. Progressing Towards the Sustainable Development of Cream Formulations. Pharmaceutics 2020 12 7 647 10.3390/pharmaceutics12070647 32659962
    [Google Scholar]
  100. Garg T. Rath G. Goyal A.K. Comprehensive review on additives of topical dosage forms for drug delivery. Drug Deliv. 2015 22 8 969 987 10.3109/10717544.2013.879355 24456019
    [Google Scholar]
  101. Chang R.K. Raw A. Lionberger R. Yu L. Generic development of topical dermatologic products: Formulation development, process development, and testing of topical dermatologic products. AAPS J. 2013 15 1 41 52 10.1208/s12248‑012‑9411‑0 23054971
    [Google Scholar]
  102. Schlich M Musazzi UM Campani V Biondi M Franzé S Lai F Design and development of topical liposomal formulations in a regulatory perspective. Drug Deliv. Transl. Res. 2022 12 8 1811 1828 10.1007/s13346‑021‑01089‑z
    [Google Scholar]
  103. Augustin M. Goepel L. Jacobi A. Bosse B. Mueller S. Hopp M. Efficacy and tolerability of liposomal polyvinylpyrrolidone-iodine hydrogel for the localized treatment of chronic infective, inflammatory, dermatoses: An uncontrolled pilot study. Clin. Cosmet. Investig. Dermatol. 2017 10 373 384 10.2147/CCID.S141887 28989281
    [Google Scholar]
  104. Burgess D Morris M Subramanyam M Juhairiyah F De Lange ECM Understanding Drug Delivery to the Brain Using Liposome-Based Strategies: Studies that Provide Mechanistic Insights Are Essential. The AAPS J. 2021 23 6 1 16 10.1208/s12248‑021‑00648‑z
    [Google Scholar]
  105. Jayapriya P. Pardhi E. Vasave R. Guru S.K. Madan J. Mehra N.K. A review on Stimuli-pH responsive liposomal formulation in cancer therapy. J. Drug Deliv. Sci. Technol. 2023 90 105172 10.1016/j.jddst.2023.105172
    [Google Scholar]
  106. Daraee H. Etemadi A. Kouhi M. Alimirzalu S. Akbarzadeh A. Application of liposomes in medicine and drug delivery. Artif. Cells Nanomed. Biotechnol. 2016 44 1 381 391 10.3109/21691401.2014.953633 25222036
    [Google Scholar]
  107. Dimov N Kastner E Hussain M Perrie Y Szita N Formation and purification of tailored liposomes for drug delivery using a module-based micro continuous-flow system. Sci. Reports 2017 7 1 1 13 10.1038/s41598‑017‑11533‑1
    [Google Scholar]
  108. Hajiahmadi F. Alikhani M.Y. Shariatifar H. Arabestani M.R. Ahmadvand D. The bactericidal effect of liposomal vancomycin as a topical combating system against Methicillin-resistant Staphylococcus aureus skin wound infection in mice. Med. J. Islam. Repub. Iran 2019 33 1 153 10.47176/mjiri.33.153 32280659
    [Google Scholar]
  109. Dhole S. Mahakalkar C. Kshirsagar S. Bhargava A. Antibiotic Prophylaxis in Surgery: Current Insights and Future Directions for Surgical Site Infection Prevention. Cureus 2023 15 10 e47858 10.7759/cureus.47858 38021553
    [Google Scholar]
  110. Wang X. Fang L. Wang S. Chen Y. Ma H. Zhao H. Xie Z. Antibiotic treatment regimens for bone infection after debridement: A study of 902 cases. BMC Musculoskelet. Disord. 2020 21 1 215 10.1186/s12891‑020‑03214‑4 32264852
    [Google Scholar]
  111. Hui T. Yongqing X. Tiane Z. Gang L. Yonggang Y. Muyao J. Jun L. Jing D. Treatment of osteomyelitis by liposomal gentamicin-impregnated calcium sulfate. Arch. Orthop. Trauma Surg. 2009 129 10 1301 1308 10.1007/s00402‑008‑0782‑8 19034468
    [Google Scholar]
  112. Aditi Priyadarshini B Mahalakshmi K Naveen Kumar V. Mutant Prevention Concentration of Ciprofloxacin against Klebsiella pneumoniae Clinical Isolates: An Ideal Prognosticator in Treating Multidrug-Resistant Strains. Int J Microbiol. 2019 2019 6850108 10.1155/2019/6850108
    [Google Scholar]
  113. Chen YC Li YT Lee CL Kuo YT Ho CL Lin WC Electroactive membrane fusion-liposome for increased electron transfer to enhance radiodynamic therapy. Nat. Nanotechnol. 2023 18 12 1492 1501 10.1038/s41565‑023‑01476‑2
    [Google Scholar]
  114. Cui Z. Li Y. Qin Y. Li J. Shi L. Wan M. Hu M. Chen Y. Ji Y. Hou Y. Ye F. Liu C. Polymyxin B-targeted liposomal photosensitizer cures MDR A. baumannii burn infections and accelerates wound healing via M1/M2 macrophage polarization. J. Control. Release 2024 366 297 311 10.1016/j.jconrel.2023.12.046 38161034
    [Google Scholar]
  115. Nacucchio M.C. Bellora M.J. Sordelli D.O. D’Aquino M. Enhanced liposome-mediated activity of piperacillin against staphylococci. Antimicrob. Agents Chemother. 1985 27 1 137 139 10.1128/AAC.27.1.137 3872624
    [Google Scholar]
  116. Gaspar D.P. Faria V. Gonçalves L.M.D. Taboada P. Remuñán-López C. Almeida A.J. Rifabutin-loaded solid lipid nanoparticles for inhaled antitubercular therapy: Physicochemical and in vitro studies. Int. J. Pharm. 2016 497 1-2 199 209 10.1016/j.ijpharm.2015.11.050 26656946
    [Google Scholar]
  117. Zhang W. Wang Z. Wu C. Jin Y. Liu X. Wu Z. Liu J. The effect of DSPE-PEG2000, cholesterol and drug incorporated in bilayer on the formation of discoidal micelles. Eur. J. Pharm. Sci. 2018 125 74 85 10.1016/j.ejps.2018.09.013 30236551
    [Google Scholar]
  118. Nicolosi D. Scalia M. Nicolosi V.M. Pignatello R. Encapsulation in fusogenic liposomes broadens the spectrum of action of vancomycin against Gram-negative bacteria. Int. J. Antimicrob. Agents 2010 35 6 553 558 10.1016/j.ijantimicag.2010.01.015 20219328
    [Google Scholar]
  119. Forier K. Raemdonck K. De Smedt S.C. Demeester J. Coenye T. Braeckmans K. Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. J. Control. Release 2014 190 607 623 10.1016/j.jconrel.2014.03.055 24794896
    [Google Scholar]
  120. Alipour M. Halwani M. Omri A. Suntres Z.E. Antimicrobial effectiveness of liposomal polymyxin B against resistant Gram-negative bacterial strains. Int. J. Pharm. 2008 355 1-2 293 298 10.1016/j.ijpharm.2007.11.035 18164881
    [Google Scholar]
  121. Drulis-Kawa Z. Dorotkiewicz-Jach A. Liposomes as delivery systems for antibiotics. Int. J. Pharm. 2010 387 1-2 187 198 10.1016/j.ijpharm.2009.11.033 19969054
    [Google Scholar]
  122. Furneri P.M. Fresta M. Puglisi G. Tempera G. Ofloxacin-loaded liposomes: In vitro activity and drug accumulation in bacteria. Antimicrob. Agents Chemother. 2000 44 9 2458 2464 10.1128/AAC.44.9.2458‑2464.2000 10952595
    [Google Scholar]
  123. Bartomeu Garcia C. Shi D. Webster T.J. Tat-functionalized liposomes for the treatment of meningitis: An in vitro study. Int. J. Nanomedicine 2017 12 3009 3021 10.2147/IJN.S130125 28442909
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673322058241003073312
Loading
/content/journals/cmc/10.2174/0109298673322058241003073312
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test