Skip to content
2000
image of Synthesis of Novel Indolyl Aryl Sulfone-clubbed Hydrazone Derivatives as Potential HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors: Molecular Modeling and QSAR Studies

Abstract

Background

Non-Nucleoside Reverse Transcriptases Inhibitors (NNRTIs) are among the most extensively studied enzymes for understanding the biology of Human Immunodeficiency Viruses (HIV) and designing inhibitors for managing HIV infections. Indolyl aryl sulfones (IASs), an underexplored class of potent NNRTIs, require further exploration for the development of newer drugs for HIV.

Aims

In this context, we synthesized a series of novels by Indolyl Aryl Sulfones with a hydrazone moiety at the carboxylate site of the indole nucleus. A 2D-QSAR model was developed to predict Reverse Transcriptase inhibitory activity against wild-type RT (WT-RT) enzyme.

Method

The model was successfully applied to predict the HIV-1 inhibitory activity of known Indolyl Aryl Sulfones. Considering the reliability, robustness, and reproducibility of the 2D-QSAR model, we made an prediction of the RT inhibition for our synthesized compounds (-).

Results

Molecular docking and dynamics simulations established our synthesized Indolyl Aryl Sulfones, particularly compounds , and , as effective NNRTIs by stabilizing HIV reverse transcriptase's structure. Binding energy calculations revealed compound as the strongest inhibitor (-43.21 ± 0.09 kcal/mol), followed by (-40.94 ± 0.10 kcal/mol) and (-39.18±0.08 kcal/mol), emphasizing their binding affinity towards HIV reverse transcriptase.

Conclusion

In summary, the synthesized Indolyl Aryl Sulfones, particularly compounds , , and , demonstrate significant potential as Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) against HIV. These results highlight the promising role of these compounds in developing novel NNRTIs for managing HIV infections.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673318987240926052450
2024-10-14
2024-11-26
Loading full text...

Full text loading...

References

  1. WHO. The Global Health Observatory: Explore a world of health data. 2021 Available From: http://www.who.int/data/gho/data/themes/hiv-aids
  2. WHO. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: Recommendations for a public health approach, 2nd ed. 2016 Available From: http://www.who.int/publications/i/item/9789241549684
  3. Esté J.A. Cihlar T. Current status and challenges of antiretroviral research and therapy. Antiviral Res. 2010 85 1 25 33 10.1016/j.antiviral.2009.10.007 20018390
    [Google Scholar]
  4. Cortez K.J. Maldarelli F. Clinical management of HIV drug resistance. Viruses 2011 3 4 347 378 10.3390/v3040347 21994737
    [Google Scholar]
  5. De Clercq E. The nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors in the treatment of HIV infections (AIDS). Adv. Pharmacol. 2013 67 317 358 10.1016/B978‑0‑12‑405880‑4.00009‑3 23886005
    [Google Scholar]
  6. Hawkins T. Understanding and managing the adverse effects of antiretroviral therapy. Antiviral Res. 2010 85 1 201 209 10.1016/j.antiviral.2009.10.016 19857521
    [Google Scholar]
  7. Silvestri R. De Martino G. La Regina G. Artico M. Massa S. Vargiu L. Mura M. Loi A.G. Marceddu T. La Colla P. Novel indolyl aryl sulfones active against HIV-1 carrying NNRTI resistance mutations: Synthesis and SAR studies. J. Med. Chem. 2003 46 12 2482 2493 10.1021/jm0211063 12773052
    [Google Scholar]
  8. Williams T.M. Ciccarone T.M. MacTough S.C. Rooney C.S. Balani S.K. Condra J.H. Emini E.A. Goldman M.E. Greenlee W.J. Kauffman L.R. 5-Chloro-3-(Phenylsulfonyl)Indole-2-Carboxyamide: A Novel Non Nucleoside Inhibitor of the HIV-1 Reverse Transcriptase. J. Med. Chem. 1993 36 1291 10.1021/jm00061a022 7683725
    [Google Scholar]
  9. Silvestri R. Artico M. De Martino G. La Regina G. Loddo R. La Colla M. La Colla P. La Colla P. Simple, short peptide derivatives of a sulfonylindolecarboxamide (L-737,126) active in vitro against HIV-1 wild type and variants carrying non-nucleoside reverse transcriptase inhibitor resistance mutations. J. Med. Chem. 2004 47 15 3892 3896 10.1021/jm031147e 15239667
    [Google Scholar]
  10. Young S.D. Amblard M.C. Britcher S.F. Grey V.E. Tran L.O. Lumma W.C. Huff J.R. Schleif W.A. Emini E.E. O’Brien J.A. Pettibone D.J. 2-Heterocyclic indole-3-sulfones as inhibitors of HIV-1 reverse transcriptase. Bioorg. Med. Chem. Lett. 1995 5 5 491 496 10.1016/0960‑894X(95)00059‑3
    [Google Scholar]
  11. Ragno R. Artico M. De Martino G. La Regina G. Coluccia A. Di Pasquali A. Silvestri R. Docking and 3-D QSAR studies on indolyl aryl sulfones. Binding mode exploration at the HIV-1 reverse transcriptase non-nucleoside binding site and design of highly active N-(2-hydroxyethyl)carboxamide and N-(2-hydroxyethyl)carbohydrazide derivatives. J. Med. Chem. 2005 48 1 213 223 10.1021/jm040854k 15634015
    [Google Scholar]
  12. Ragno R. Coluccia A. La Regina G. De Martino G. Piscitelli F. Lavecchia A. Novellino E. Bergamini A. Ciaprini C. Sinistro A. Maga G. Crespan E. Artico M. Silvestri R. Design, molecular modeling, synthesis, and anti-HIV-1 activity of new indolyl aryl sulfones. Novel derivatives of the indole-2-carboxamide. J. Med. Chem. 2006 49 11 3172 3184 10.1021/jm0512490 16722636
    [Google Scholar]
  13. La Regina G. Coluccia A. Piscitelli F. Bergamini A. Sinistro A. Cavazza A. Maga G. Samuele A. Zanoli S. Novellino E. Artico M. Silvestri R. Indolyl aryl sulfones as HIV-1 non-nucleoside reverse transcriptase inhibitors: Role of two halogen atoms at the indole ring in developing new analogues with improved antiviral activity. J. Med. Chem. 2007 50 20 5034 5038 10.1021/jm070488f 17803291
    [Google Scholar]
  14. Storer R. Alexandre F. R. Dousson C. Moussa A. M. Bridges E. Stewart A. Wang J. Y. Mayes B. A. Enantiomerically pure phosphoindoles as HIV inhibitors. WO Patent 2008042240A2 2008
  15. Zhao Z. Wolkenberg S.E. Lu M. Munshi V. Moyer G. Feng M. Carella A.V. Ecto L.T. Gabryelski L.J. Lai M-T. Prasad S.G. Yan Y. McGaughey G.B. Miller M.D. Lindsley C.W. Hartman G.D. Vacca J.P. Williams T.M. Williams T.M. Novel indole-3-sulfonamides as potent HIV non-nucleoside reverse transcriptase inhibitors (NNRTIs). Bioorg. Med. Chem. Lett. 2008 18 2 554 559 10.1016/j.bmcl.2007.11.085 18083561
    [Google Scholar]
  16. Consonni V. Ballabio D. Todeschini R. Comments on the definition of the Q2 parameter for QSAR validation. J. Chem. Inf. Model. 2009 49 7 1669 1678 10.1021/ci900115y 19527034
    [Google Scholar]
  17. Duchowicz P.R. Goodarzi M. Ocsachoque M.A. Romanelli G.P. Ortiz E.V. Autino J.C. Bennardi D.O. Ruiz D.M. Castro E.A. QSAR analysis on Spodoptera litura antifeedant activities for flavone derivatives. Sci. Total Environ. 2009 408 2 277 285 10.1016/j.scitotenv.2009.09.041 19846206
    [Google Scholar]
  18. Weaver S. Gleeson M.P. The importance of the domain of applicability in QSAR modeling. J. Mol. Graph. Model. 2008 26 8 1315 1326 10.1016/j.jmgm.2008.01.002 18328754
    [Google Scholar]
  19. Gramatica P. Chirico N. Papa E. Cassani S. Kovarich S. QSARINS: A new software for the development, analysis, and validation of QSAR MLR models. J. Comput. Chem. 2013 34 24 2121 2132 10.1002/jcc.23361
    [Google Scholar]
  20. Liu Y. Zhang Y. Hu C. Wan J.P. Wen C. Synthesis of 3-sulfenylated indoles by a simple NaOH promoted sulfenylation reaction. RSC Advances 2014 4 67 35528 35530 10.1039/C4RA05206D
    [Google Scholar]
  21. Ali M. Ali S. Khan M. Rashid U. Ahmad M. Khan A. Al-Harrasi A. Ullah F. Latif A. Synthesis, biological activities, and molecular docking studies of 2-mercaptobenzimidazole based derivatives. Bioorg. Chem. 2018 80 472 479 10.1016/j.bioorg.2018.06.032 29990895
    [Google Scholar]
  22. Boraei A. El Ashry E. Barakat A. Ghabbour H. Synthesis of New Functionalized Indoles Based on Ethyl Indol-2-carboxylate. Molecules 2016 21 3 333 10.3390/molecules21030333 26978331
    [Google Scholar]
  23. Roy U. Luck L.A. Molecular modeling of estrogen receptor using molecular operating environment. Biochem. Mol. Biol. Educ. 2007 35 4 238 243 10.1002/bmb.65 21591100
    [Google Scholar]
  24. Khan A. Khan M. Halim S.A. Khan Z.A. Shafiq Z. Al-Harrasi A. Quinazolinones as Competitive Inhibitors of Carbonic Anhydrase-II (Human and Bovine): Synthesis, in-vitro, in-silico, Selectivity, and Kinetics Studies. Front Chem. 2020 8 598095 10.3389/fchem.2020.598095 33335888
    [Google Scholar]
  25. Liu X. Shi D. Zhou S. Liu H. Liu H. Yao X. Molecular dynamics simulations and novel drug discovery. Expert Opin. Drug Discov. 2018 13 1 23 37 10.1080/17460441.2018.1403419 29139324
    [Google Scholar]
  26. Case D.A. Aktulga H.M. Belfon K. Cerutti D.S. Cisneros G.A. Cruzeiro V.W.D. Forouzesh N. Giese T.J. Götz A.W. Gohlke H. Izadi S. Kasavajhala K. Kaymak M.C. King E. Kurtzman T. Lee T.S. Li P. Liu J. Luchko T. Luo R. Manathunga M. Machado M.R. Nguyen H.M. O’Hearn K.A. Onufriev A.V. Pan F. Pantano S. Qi R. Rahnamoun A. Risheh A. Schott-Verdugo S. Shajan A. Swails J. Wang J. Wei H. Wu X. Wu Y. Zhang S. Zhao S. Zhu Q. Cheatham T.E. III Roe D.R. Roitberg A. Simmerling C. York D.M. Nagan M.C. Merz K.M. Jr AmberTools. J. Chem. Inf. Model. 2023 63 20 6183 6191 10.1021/acs.jcim.3c01153 37805934
    [Google Scholar]
  27. Tian C. Kasavajhala K. Belfon K.A.A. Raguette L. Huang H. Migues A.N. Bickel J. Wang Y. Pincay J. Wu Q. Simmerling C. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2020 16 1 528 552 10.1021/acs.jctc.9b00591 31714766
    [Google Scholar]
  28. Sengupta A. Li Z. Song L.F. Li P. Merz K.M. Jr Parameterization of Monovalent Ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB Water Models. J. Chem. Inf. Model. 2021 61 2 869 880 10.1021/acs.jcim.0c01390 33538599
    [Google Scholar]
  29. Wang B. Merz K.M. A Fast QM/MM (Quantum Mechanical/Molecular Mechanical) Approach to Calculate Nuclear Magnetic Resonance Chemical Shifts for Macromolecules. J. Chem. Theory Comput. 2006 2 1 209 215 10.1021/ct050212s 26626395
    [Google Scholar]
  30. Wang J. Wang W. Kollman P.A. Case D.A. Antechamber: An Accessory Software Package for Molecular Mechanical Calculations. J. Am. Chem. Soc. 2001 222 1
    [Google Scholar]
  31. Kräutler V. Van Gunsteren W.F. Hünenberger P.H. A Fast SHAKE Algorithm to Solve Distance Constraint Equations for Small Molecules in Molecular Dynamics Simulations. J. Comput. Chem. 2001 22 5 501 508 10.1002/1096‑987X(20010415)22:5<501::AID‑JCC1021>3.0.CO;2‑V
    [Google Scholar]
  32. Harris J.A. Liu R. Martins de Oliveira V. Vázquez-Montelongo E.A. Henderson J.A. Shen J. GPU-Accelerated All-Atom Particle-Mesh Ewald Continuous Constant pH Molecular Dynamics in Amber. J. Chem. Theory Comput. 2022 18 12 7510 7527 10.1021/acs.jctc.2c00586 36377980
    [Google Scholar]
  33. Press W.H. Flannery B.P. Teukolsky S.A. Vetterling W.T. Kramer P.B. Numerical Recipes: The Art of Scientific Computing Phys. Today 1987 40 10 120 122 10.1063/1.2820230
    [Google Scholar]
  34. Sindhikara D.J. Kim S. Voter A.F. Roitberg A.E. Bad Seeds Sprout Perilous Dynamics: Stochastic Thermostat Induced Trajectory Synchronization in Biomolecules. J. Chem. Theory Comput. 2009 5 6 1624 1631 10.1021/ct800573m 26609854
    [Google Scholar]
  35. Roe D.R. Cheatham T.E. III PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013 9 7 3084 3095 10.1021/ct400341p 26583988
    [Google Scholar]
  36. Halim S.A. Waqas M. Khan A. Ogaly H.A. Othman G. Al-Harrasi A. Identification of potential agonist-like molecules for α2-adrenergic receptor by multi-layer virtual screening to combat sinusitis. Comput. Biol. Med. 2023 167 107693 10.1016/j.compbiomed.2023.107693 37976818
    [Google Scholar]
  37. Kollman P.A. Massova I. Reyes C. Kuhn B. Huo S. Chong L. Lee M. Lee T. Duan Y. Wang W. Donini O. Cieplak P. Srinivasan J. Case D.A. Cheatham T.E. III Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res. 2000 33 12 889 897 10.1021/ar000033j 11123888
    [Google Scholar]
  38. Wang W. Donini O. Reyes C.M. Kollman P.A. Biomolecular simulations: Recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annu. Rev. Biophys. Biomol. Struct. 2001 30 1 211 243 10.1146/annurev.biophys.30.1.211 11340059
    [Google Scholar]
  39. Wang J. Hou T. Xu X. Recent Advances in Free Energy Calculations with a Combination of Molecular Mechanics and Continuum Models. Curr. Computeraided Drug Des. 2006 2 3 287 306 10.2174/157340906778226454
    [Google Scholar]
  40. Onufriev A. Bashford D. Case D.A. Exploring protein native states and large‐scale conformational changes with a modified generalized born model. Proteins 2004 55 2 383 394 10.1002/prot.20033 15048829
    [Google Scholar]
  41. Weiser J. Shenkin P.S. Still W.C. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J. Comput. Chem. 1999 20 2 217 230 10.1002/(SICI)1096‑987X(19990130)20:2<217::AID‑JCC4>3.0.CO;2‑A
    [Google Scholar]
  42. OriginLab Origin 2021 Feature Highlights. 2021 Available From: https://www.originlab.com/2021
  43. La Regina G. Coluccia A. Brancale A. Piscitelli F. Gatti V. Maga G. Samuele A. Pannecouque C. Schols D. Balzarini J. Novellino E. Silvestri R. Indolylarylsulfones as HIV-1 non-nucleoside reverse transcriptase inhibitors: New cyclic substituents at indole-2-carboxamide. J. Med. Chem. 2011 54 6 1587 1598 10.1021/jm101614j 21366296
    [Google Scholar]
  44. Piscitelli F. Coluccia A. Brancale A. La Regina G. Sansone A. Giordano C. Balzarini J. Maga G. Zanoli S. Samuele A. Cirilli R. La Torre F. Lavecchia A. Novellino E. Silvestri R. Indolylarylsulfones bearing natural and unnatural amino acids. Discovery of potent inhibitors of HIV-1 non-nucleoside wild type and resistant mutant strains reverse transcriptase and coxsackie B4 virus. J. Med. Chem. 2009 52 7 1922 1934 10.1021/jm801470b 19281225
    [Google Scholar]
  45. Kabsch W. A solution for the best rotation to relate two sets of vectors. Acta Crystallogr. A 1976 32 5 922 923 10.1107/S0567739476001873
    [Google Scholar]
  46. Maiorov V.N. Crippen G.M. Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. J. Mol. Biol. 1994 235 2 625 634 10.1006/jmbi.1994.1017 8289285
    [Google Scholar]
  47. Carballeira N.M. Montano N. Amador L.A. Rodríguez A.D. Golovko M.Y. Golovko S.A. Reguera R.M. Álvarez-Velilla R. Balaña-Fouce R. Novel Very Long‐Chain α‐Methoxylated Δ5,9 Fatty Acids from the Sponge Asteropus niger Are Effective Inhibitors of Topoisomerases IB. Lipids 2016 51 2 245 256 10.1007/s11745‑015‑4114‑9 26694606
    [Google Scholar]
  48. Chen Q. Vieth M. Timm D.E. Humblet C. Schneidman-Duhovny D. Chemmama I.E. Sali A. Zeng W. Lu J. Liu L. Reconstruction of 3D structures of MET antibodies from electron microscopy 2D class averages. PLoS One 2017 12 4 e0175758 10.1371/journal.pone.0175758 28406969
    [Google Scholar]
  49. Waqas M. Ullah S. Halim S.A. Rehman N.U. Ali A. Jan A. Muhsinah A.B. Khan A. Al-Harrasi A. Targeting papain-like protease by natural products as novel therapeutic potential SARS-CoV-2. Int. J. Biol. Macromol. 2024 258 Pt 1 128812 10.1016/j.ijbiomac.2023.128812 38114011
    [Google Scholar]
  50. Kohn J.E. Millett I.S. Jacob J. Zagrovic B. Dillon T.M. Cingel N. Dothager R.S. Seifert S. Thiyagarajan P. Sosnick T.R. Hasan M.Z. Pande V.S. Ruczinski I. Doniach S. Plaxco K.W. Random-coil behavior and the dimensions of chemically unfolded proteins. Proc. Natl. Acad. Sci. USA 2004 101 34 12491 12496 10.1073/pnas.0403643101 15314214
    [Google Scholar]
  51. Marsh J.A. Forman-Kay J.D. Sequence determinants of compaction in intrinsically disordered proteins. Biophys. J. 2010 98 10 2383 2390 10.1016/j.bpj.2010.02.006 20483348
    [Google Scholar]
  52. Luzar A. Chandler D. Hydrogen-bond kinetics in liquid water. Nature 1996 379 6560 55 57 10.1038/379055a0
    [Google Scholar]
  53. Kumar S. Nussinov R. Relationship between ion pair geometries and electrostatic strengths in proteins. Biophys. J. 2002 83 3 1595 1612 10.1016/S0006‑3495(02)73929‑5 12202384
    [Google Scholar]
  54. Amadei A. Linssen A.B.M. Berendsen H.J.C. Essential dynamics of proteins. Proteins 1993 17 4 412 425 10.1002/prot.340170408 8108382
    [Google Scholar]
  55. García A.E. Large-amplitude nonlinear motions in proteins. Phys. Rev. Lett. 1992 68 17 2696 2699 10.1103/PhysRevLett.68.2696 10045464
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673318987240926052450
Loading
/content/journals/cmc/10.2174/0109298673318987240926052450
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test