Skip to content
2000
image of Mitochondrial DNA Mutations in Colorectal Cancer Stem Cells: Implications for Tumor Dynamics and Therapeutic Strategies

Abstract

This review offers an in-depth analysis of mitochondrial DNA (mtDNA) mutations in colorectal cancer stem cells (CSCs), emphasizing their significant impact on tumor dynamics and potential therapeutic strategies. CSCs are a special subpopulation due to their unique capabilities for self-renewal, differentiation, and resistance to conventional therapies. Given that CSCs significantly differ from other tumor cell subpopulations, particularly in their metabolic properties, and considering that colorectal cancer is a malignancy characterized by mitochondrial dysfunction, this review aims to put together existing data on the differences in the mitochondrial genome of CSCs compared to other colorectal tumor cell subpopulations. Additionally, the review seeks to explore the potential roles of these differences and to identify new ideas for therapeutic strategies. Key topics include the identification and properties of CSCs in colorectal cancer, the distinctive features of the mitochondrial genome, and the functional consequences of mtDNA mutations. The review hypothesizes that CSCs rely on well-functioning mitochondria for crucial aspects like energy production; yet, mtDNA mutations can lead to mitochondrial dysfunction, altering CSC characteristics and influencing cancer progression. The article discusses emerging therapeutic approaches targeting mitochondrial function in colorectal CSCs and highlights the need for advanced research, including the development of preclinical models and exploration of targeted therapies, to improve the understanding and treatment of colorectal cancer.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673316839240829075650
2024-09-11
2025-01-18
Loading full text...

Full text loading...

References

  1. Colon and Rectum Cancers 2023 Available from: https://platform.who.int/mortality/themes/theme-details/topics/indicator-groups/indicator-group-details/MDB/colon-and-rectum-cancers
  2. Siegel R.L. Wagle N.S. Cercek A. Smith R.A. Jemal A. Colorectal cancer statistics, 2023. CA Cancer J. Clin. 2023 73 3 233 254 10.3322/caac.21772 36856579
    [Google Scholar]
  3. Johnson C.M. Wei C. Ensor J.E. Smolenski D.J. Amos C.I. Levin B. Berry D.A. Meta-analyses of colorectal cancer risk factors. Cancer Causes Control 2013 24 6 1207 1222 10.1007/s10552‑013‑0201‑5 23563998
    [Google Scholar]
  4. Zhao H. Han R. Wang Z. Xian J. Bai X. Colorectal cancer stem cells and targeted agents. Pharmaceutics 2023 15 12 2763 10.3390/pharmaceutics15122763 38140103
    [Google Scholar]
  5. Scioli M.G. Terriaca S. Fiorelli E. Storti G. Fabbri G. Cervelli V. Orlandi A. Extracellular vesicles and cancer stem cells in tumor progression: new therapeutic perspectives. Int. J. Mol. Sci. 2021 22 19 10572 10.3390/ijms221910572 34638913
    [Google Scholar]
  6. Trosko J.E. The concept of “cancer stem cells” in the context of classic carcinogenesis hypotheses and experimental findings. Life 2021 11 12 1308 10.3390/life11121308 34947839
    [Google Scholar]
  7. Fedyanin M. Anna P. Elizaveta P. Sergei T. Role of stem cells in colorectal cancer progression and prognostic and predictive characteristics of stem cell markers in colorectal cancer. Curr. Stem Cell Res. Ther. 2016 12 1 19 30 10.2174/1574888X11666160905092938 27593447
    [Google Scholar]
  8. Gan L. Li Q. Nie W. Zhang Y. Jiang H. Tan C. Zhang L. Zhang J. Li Q. Hou P. Yuan Y. Sun X. Liu D. Sheng W. Liu T. Xu M. Guo W. PROX1-mediated epigenetic silencing of SIRT3 contributes to proliferation and glucose metabolism in colorectal cancer. Int. J. Biol. Sci. 2023 19 1 50 65 10.7150/ijbs.73530 36594098
    [Google Scholar]
  9. Ziranu P. Aimola V. Pretta A. Dubois M. Murru R. Liscia N. Cau F. Persano M. Deias G. Palmas E. Loi F. Migliari M. Pusceddu V. Puzzoni M. Lai E. Cascinu S. Faa G. Scartozzi M. New horizons in metastatic colorectal cancer: prognostic role of cd44 expression. Cancers 2023 15 4 1212 10.3390/cancers15041212 36831554
    [Google Scholar]
  10. Gheytanchi E. Naseri M. Karimi-Busheri F. Atyabi F. Mirsharif E.S. Bozorgmehr M. Ghods R. Madjd Z. Morphological and molecular characteristics of spheroid formation in HT-29 and Caco-2 colorectal cancer cell lines. Cancer Cell Int. 2021 21 1 204 10.1186/s12935‑021‑01898‑9 33849536
    [Google Scholar]
  11. Zhao H. Yan C. Hu Y. Mu L. Huang K. Li Q. Li X. Tao D. Qin J. Sphere‑forming assay vs. organoid culture: Determining long‑term stemness and the chemoresistant capacity of primary colorectal cancer cells. Int. J. Oncol. 2019 54 3 893 904 10.3892/ijo.2019.4683 30664193
    [Google Scholar]
  12. Patel N. Baranwal S. Patel B.B. A Strategic approach to identification of selective inhibitors of cancer stem cells. Methods Mol. Biol. 2022 2303 765 777
    [Google Scholar]
  13. Park J. Kim S.K. Hallis S.P. Choi B.H. Kwak M.K. Role of CD133/NRF2 axis in the development of colon cancer stem cell-like properties. Front. Oncol. 2022 11 808300 10.3389/fonc.2021.808300 35155201
    [Google Scholar]
  14. Shin J.M. Lim E. Cho Y.S. Nho C.W. Cancer-preventive effect of phenethyl isothiocyanate through tumor microenvironment regulation in a colorectal cancer stem cell xenograft model. Phytomedicine 2021 84 153493 10.1016/j.phymed.2021.153493 33626429
    [Google Scholar]
  15. Relucenti M. Francescangeli F. De Angelis M.L. D’Andrea V. Miglietta S. Pilozzi E. Li X. Boe A. Chen R. Zeuner A. Familiari G. The Ultrastructural analysis of human colorectal cancer stem cell-derived spheroids and their mouse xenograft shows that the same cells types have different ratios. Biology 2021 10 9 929 10.3390/biology10090929 34571806
    [Google Scholar]
  16. De Angelis M.L. Francescangeli F. Zeuner A. Baiocchi M. Orthotopic xenografts of colorectal cancer stem cells. Methods Mol. Biol. 2022 2429 555 565 10.1007/978‑1‑0716‑1979‑7_39
    [Google Scholar]
  17. Mangiapane L.R. Nicotra A. Turdo A. Gaggianesi M. Bianca P. Di Franco S. Sardina D.S. Veschi V. Signore M. Beyes S. Fagnocchi L. Fiori M.E. Bongiorno M.R. Lo Iacono M. Pillitteri I. Ganduscio G. Gulotta G. Medema J.P. Zippo A. Todaro M. De Maria R. Stassi G. PI3K-driven HER2 expression is a potential therapeutic target in colorectal cancer stem cells. Gut 2022 71 1 119 128 10.1136/gutjnl‑2020‑323553 33436496
    [Google Scholar]
  18. Spisak S. Chen D. Likasitwatanakul P. Doan P. Li Z. Bala P. Vizkeleti L. Tisza V. De Silva P. Giannakis M. Utilizing a dual endogenous reporter system to identify functional regulators of aberrant stem cell and differentiation activity in colorectal cancer. BioRxiv Prepr. Serv. Biol. 2024 545895 10.1101/2023.06.21.545895
    [Google Scholar]
  19. Zowada M.K. Tirier S.M. Dieter S.M. Krieger T.G. Oberlack A. Chua R.L. Huerta M. Ten F.W. Laaber K. Park J. Jechow K. Müller T. Kalxdorf M. Kriegsmann M. Kriegsmann K. Herbst F. Krijgsveld J. Schneider M. Eils R. Glimm H. Conrad C. Ball C.R. Functional states in tumor-initiating cell differentiation in human colorectal cancer. Cancers 2021 13 5 1097 10.3390/cancers13051097 33806447
    [Google Scholar]
  20. Avendaño-Felix M. Aguilar-Medina M. Romero-Quintana J.G. Ayala-Ham A. Beltran A.S. Olivares-Quintero J.F. López-Camarillo C. Pérez-Plasencia C. Bermúdez M. Lizárraga-Verdugo E. López-Gutierrez J. Sanchez-Schmitz G. Ramos-Payán R. SOX9 knockout decreases stemness properties in colorectal cancer cells. J. Gastrointest. Oncol. 2023 14 4 1735 1745 10.21037/jgo‑22‑1163 37720443
    [Google Scholar]
  21. Walter R.J. Sonnentag S.J. Orian-Rousseau V. Munoz-Sagredo L. Plasticity in colorectal cancer: Why cancer cells differentiate. Cancers 2021 13 4 918 10.3390/cancers13040918 33671641
    [Google Scholar]
  22. Huang J.L. Oshi M. Endo I. Takabe K. Clinical relevance of stem cell surface markers CD133, CD24, and CD44 in colorectal cancer. Am. J. Cancer Res. 2021 11 10 5141 5154 34765317
    [Google Scholar]
  23. Vázquez-Iglesias L. Barcia-Castro L. Rodríguez-Quiroga M. de la Cadena M.P. Rodríguez-Berrocal J. Cordero O.J. Surface expression marker profile in colon cancer cell lines and sphere-derived cells suggests complexity in CD26+cancer stem cells subsets. Biol. Open 2019 8 7 041673 10.1242/bio.041673 31285270
    [Google Scholar]
  24. Abbasian M. Mousavi E. Arab-Bafrani Z. Sahebkar A. The most reliable surface marker for the identification of colorectal cancer stem‐like cells: A systematic review and meta‐analysis. J. Cell. Physiol. 2019 234 6 8192 8202 10.1002/jcp.27619 30317669
    [Google Scholar]
  25. Mersakova S. Janikova K. Kalman M. Marcinek J. Grendar M. Vojtko M. Kycina R. Pindura M. Janik J. Mikolajcik P. Gabonova E. Laca L. Mejstrikova E. Halasova E. Strnadel J. Lasabova Z. Cancer stem cell marker expression and methylation status in patients with colorectal cancer. Oncol. Lett. 2022 24 1 231 10.3892/ol.2022.13352 35720495
    [Google Scholar]
  26. Suman S. Hota S.K. Misra P. Sahu N. Sahu S. Immunohistochemical expression of the stem cell marker cd133 in colorectal carcinoma. Cureus 2023 15 7 e41242 10.7759/cureus.41242 37529823
    [Google Scholar]
  27. Roudi R. Barodabi M. Madjd Z. Roviello G. Corona S.P. Panahi M. Expression patterns and clinical significance of the potential cancer stem cell markers OCT4 and NANOG in colorectal cancer patients. Mol. Cell. Oncol. 2020 7 5 1788366 10.1080/23723556.2020.1788366 32944642
    [Google Scholar]
  28. Kalantari E. Taheri T. Fata S. Abolhasani M. Mehrazma M. Madjd Z. Asgari M. Significant co-expression of putative cancer stem cell markers, EpCAM and CD166, correlates with tumor stage and invasive behavior in colorectal cancer. World J. Surg. Oncol. 2022 20 1 15 10.1186/s12957‑021‑02469‑y 35016698
    [Google Scholar]
  29. Mah V. Elshimali Y. Chu A. Moatamed N.A. Uzzell J.P. Tsui J. Schettler S. Shakeri H. Wadehra M. ALDH1 expression predicts progression of premalignant lesions to cancer in Type I endometrial carcinomas. Sci. Rep. 2021 11 1 11949 10.1038/s41598‑021‑90570‑3 34099751
    [Google Scholar]
  30. Wang Y. Chen Y. Garcia-Milian R. Golla J.P. Charkoftaki G. Lam T.T. Thompson D.C. Vasiliou V. Proteomic profiling reveals an association between ALDH and oxidative phosphorylation and DNA damage repair pathways in human colon adenocarcinoma stem cells. Chem. Biol. Interact. 2022 368 110175 10.1016/j.cbi.2022.110175 36162455
    [Google Scholar]
  31. Zhou L. Sheng D. Wang D. Ma W. Deng Q. Deng L. Liu S. Identification of cancer-type specific expression patterns for active aldehyde dehydrogenase (ALDH) isoforms in ALDEFLUOR assay. Cell Biol. Toxicol. 2019 35 2 161 177 10.1007/s10565‑018‑9444‑y 30220009
    [Google Scholar]
  32. Lin K. Chowdhury S. Zeineddine M.A. Zeineddine F.A. Hornstein N.J. Villarreal O.E. Maru D.M. Haymaker C.L. Vauthey J-N. Chang G.J. Identification of colorectal cancer cell stemness from single-cell rna sequencing. Mol. Cancer Res. 2023 22 4 337 346 10.1158/1541‑7786.MCR‑23‑0468
    [Google Scholar]
  33. Li R. Liu X. Huang X. Zhang D. Chen Z. Zhang J. Bai R. Zhang S. Zhao H. Xu Z. Single-Cell Transcriptomic Analysis Deciphers Heterogenous Cancer Stem-like Cells in Colorectal Cancer and Their Organ-Specific Metastasis. Gut 2023 73 3 470 484 10.1136/gutjnl‑2023‑330243
    [Google Scholar]
  34. Wang H. Gong P. Chen T. Gao S. Wu Z. Wang X. Li J. Marjani S.L. Costa J. Weissman S.M. Qi F. Pan X. Liu L. Colorectal cancer stem cell states uncovered by simultaneous single‐cell analysis of transcriptome and telomeres. Adv. Sci. 2021 8 8 2004320 10.1002/advs.202004320 33898197
    [Google Scholar]
  35. Shen Y. Ni S. Li S. Lv B. Role of stemness‐related genes TIMP1, PGF, and SNAI1 in the prognosis of colorectal cancer through single‐cell RNA‐seq. Cancer Med. 2023 12 10 11611 11623 10.1002/cam4.5833 37017587
    [Google Scholar]
  36. Gutierrez A. Demond H. Brebi P. Ili C.G. Novel methylation biomarkers for colorectal cancer prognosis. Biomolecules 2021 11 11 1722 10.3390/biom11111722 34827720
    [Google Scholar]
  37. Norollahi S.E. Mansour-Ghanaei F. Joukar F. Ghadarjani S. Mojtahedi K. Gharaei Nejad K. Hemmati H. Gharibpoor F. Khaksar R. Samadani A.A. Therapeutic approach of Cancer stem cells (CSCs) in gastric adenocarcinoma; DNA methyltransferases enzymes in cancer targeted therapy. Biomed. Pharmacother. 2019 115 108958 10.1016/j.biopha.2019.108958 31075731
    [Google Scholar]
  38. Jin M.L. Jeong K.W. Histone modifications in drug-resistant cancers: From a cancer stem cell and immune evasion perspective. Exp. Mol. Med. 2023 55 7 1333 1347 10.1038/s12276‑023‑01014‑z 37394580
    [Google Scholar]
  39. Völker-Albert M. Bronkhorst A. Holdenrieder S. Imhof A. Histone modifications in stem cell development and their clinical implications. Stem Cell Reports 2020 15 6 1196 1205 10.1016/j.stemcr.2020.11.002 33296672
    [Google Scholar]
  40. Moreira H. Szyjka A. Grzesik J. Pelc K. Żuk M. Kulma A. Emhemmed F. Muller C. Gąsiorowski K. Barg E. Celastrol and resveratrol modulate sirt genes expression and exert anticancer activity in colon cancer cells and cancer stem-like cells. Cancers 2022 14 6 1372 10.3390/cancers14061372 35326523
    [Google Scholar]
  41. Kumar B. Ahmad R. Sharma S. Gowrikumar S. Primeaux M. Rana S. Natarajan A. Oupicky D. Hopkins C.R. Dhawan P. Singh A.B. PIK3C3 inhibition promotes sensitivity to colon cancer therapy by inhibiting cancer stem cells. Cancers 2021 13 9 2168 10.3390/cancers13092168 33946505
    [Google Scholar]
  42. Osum M. Kalkan R. Cancer stem cells and their therapeutic usage. Cell Biology and Translational Medicin Springer 2023 69 85 10.1007/5584_2022_758
    [Google Scholar]
  43. Cianciosi D. Ansary J. Forbes-Hernandez T.Y. Regolo L. Quinzi D. Gracia Villar S. Garcia Villena E. Tutusaus Pifarre K. Alvarez-Suarez J.M. Battino M. Giampieri F. The molecular basis of different approaches for the study of cancer stem cells and the advantages and disadvantages of a three-dimensional culture. Molecules 2021 26 9 2615 10.3390/molecules26092615 33947095
    [Google Scholar]
  44. Metcalfe T.X. Zhang S. Hassel C. O’Hagan H.M. Nephew K.P. Abstract 2455: Investigating cancer stem cell plasticity in ovarian cancer. Cancer Res. 2023 83 7_Supplement 2455 2455 10.1158/1538‑7445.AM2023‑2455
    [Google Scholar]
  45. Stouras I. Vasileiou M. Kanatas P.F. Tziona E. Tsianava C. Theocharis S. Metabolic profiles of cancer stem cells and normal stem cells and their therapeutic significance. Cells 2023 12 23 2686 10.3390/cells12232686 38067114
    [Google Scholar]
  46. Greer Y.E. Hernandez L. Fennell E.M.J. Kundu M. Voeller D. Chari R. Gilbert S.F. Gilbert T.S. Ratnayake S. Tang B. Hafner M. Chen Q. Meerzaman D. Iwanowicz E. Annunziata C.M. Graves L.M. Lipkowitz S. Mitochondrial matrix protease clpp agonists inhibit cancer stem cell function in breast cancer cells by disrupting mitochondrial homeostasis. Cancer Res. Commu. 2022 2 10 1144 1161 10.1158/2767‑9764.CRC‑22‑0142 36388465
    [Google Scholar]
  47. Laws K. Bineva-Todd G. Eskandari A. Lu C. O’Reilly N. Suntharalingam K. A copper(ii) phenanthroline metallopeptide that targets and disrupts mitochondrial function in breast cancer stem cells. Angew. Chem. Int. Ed. 2018 57 1 287 291 10.1002/anie.201710910 29144008
    [Google Scholar]
  48. Zhao Z. Sun Y. Tang J. Yang Y. Xu X. LRPPRC regulates malignant behaviors, protects mitochondrial homeostasis, mitochondrial function in osteosarcoma and derived cancer stem-like cells. BMC Cancer 2023 23 1 935 10.1186/s12885‑023‑11443‑8 37789316
    [Google Scholar]
  49. Hu Q. Yuan Y. Wu Y. Huang Y. Zhao Z. Xiao C. MicroRNA‑137 exerts protective effects on hypoxia‑induced cell injury by inhibiting autophagy/mitophagy and maintaining mitochondrial function in breast cancer stem‑like cells. Oncol. Rep. 2020 44 4 1627 1637 10.3892/or.2020.7714 32945512
    [Google Scholar]
  50. Praharaj P.P. Patra S. Mishra S.R. Mukhopadhyay S. Klionsky D.J. Patil S. Bhutia S.K. CLU (clusterin) promotes mitophagic degradation of MSX2 through an AKT-DNM1L/Drp1 axis to maintain SOX2-mediated stemness in oral cancer stem cells. Autophagy 2023 19 8 2196 2216 10.1080/15548627.2023.2178876 36779631
    [Google Scholar]
  51. Das U. Shanavas S. Nagendra A.H. Kar B. Roy N. Vardhan S. Sahoo S.K. Panda D. Bose B. Paira P. Luminescent 11-naphthalen-1-YLDIPYRIDO[3,2-a:2′,3′-c]phenazine-based ru(ii)/ir(iii)/re(i) complexes for hct-116 colorectal cancer stem cell therapy. ACS Appl. Bio Mater. 2023 6 2 410 424 10.1021/acsabm.2c00556 36638050
    [Google Scholar]
  52. Kar B. Shanavas S. Nagendra A.H. Das U. Roy N. Pete S. Sharma S A. De S. Kumar S K A. Vardhan S. Sahoo S.K. Panda D. Shenoy S. Bose B. Paira P. Iridium( iii )–Cp*-(imidazo[4,5- f ][1,10]phenanthrolin-2-yl)phenol analogues as hypoxia active, GSH-resistant cancer cytoselective and mitochondria-targeting cancer stem cell therapeutic agents. Dalton Trans. 2022 51 14 5494 5514 10.1039/D2DT00168C 35293923
    [Google Scholar]
  53. Rainho M.A. Siqueira P.B. de Amorim Í.S. Mencalha A.L. Thole A.A. Mitochondria in colorectal cancer stem cells - a target in drug resistance. Cancer Drug Resist. 2023 6 2 273 283 10.20517/cdr.2022.116 37457136
    [Google Scholar]
  54. Takeda M. Koseki J. Takahashi H. Miyoshi N. Nishida N. Nishimura J. Hata T. Matsuda C. Mizushima T. Yamamoto H. Ishii H. Doki Y. Mori M. Haraguchi N. Disruption of endolysosomal RAB5/7 efficiently eliminates colorectal cancer stem cells. Cancer Res. 2019 79 7 1426 1437 10.1158/0008‑5472.CAN‑18‑2192 30765602
    [Google Scholar]
  55. Bandelt H.J. Kloss-Brandstätter A. Richards M.B. Yao Y.G. Logan I. The case for the continuing use of the revised Cambridge Reference Sequence (rCRS) and the standardization of notation in human mitochondrial DNA studies. J. Hum. Genet. 2014 59 2 66 77 10.1038/jhg.2013.120 24304692
    [Google Scholar]
  56. Hernández C. Mitochondrial DNA in human diversity and health: From the golden age to the omics era. Genes 2023 14 8 1534 10.3390/genes14081534 37628587
    [Google Scholar]
  57. Cui H. Huang P. Wang Z. Zhang Y. Zhang Z. Xu W. Wang X. Han Y. Guo X. Association of decreased mitochondrial DNA content with the progression of colorectal cancer. BMC Cancer 2013 13 1 110 10.1186/1471‑2407‑13‑110 23497023
    [Google Scholar]
  58. Ferreira A. Serafim T.L. Sardão V.A. Cunha-Oliveira T. Role of mt DNA ‐related mitoepigenetic phenomena in cancer. Eur. J. Clin. Invest. 2015 45 s1 44 49 10.1111/eci.12359 25524586
    [Google Scholar]
  59. Cavalcante G.C. Ribeiro-dos-Santos Â. de Araújo G.S. Mitochondria in tumour progression: A network of mtDNA variants in different types of cancer. BMC Genomic Data 2022 23 1 16 10.1186/s12863‑022‑01032‑2 35183124
    [Google Scholar]
  60. Bjørnetrø T. Bousquet P.A. Redalen K.R. Trøseid A.M. Lüders T. Stang E. Sanabria A.M. Johansen C. Fuglestad A.J. Kersten C. Meltzer S. Ree A.H. Next-generation sequencing reveals mitogenome diversity in plasma extracellular vesicles from colorectal cancer patients. BMC Cancer 2023 23 1 650 10.1186/s12885‑023‑11092‑x 37438741
    [Google Scholar]
  61. Li X. Guo X. Li D. Du X. Yin C. Chen C. Fang W. Bian Z. Zhang J. Li B. Yang H. Xing J. Multi‐regional sequencing reveals intratumor heterogeneity and positive selection of somatic mtDNA mutations in hepatocellular carcinoma and colorectal cancer. Int. J. Cancer 2018 143 5 1143 1152 10.1002/ijc.31395 29569724
    [Google Scholar]
  62. Skonieczna K. Malyarchuk B. Jawień A. Marszałek A. Banaszkiewicz Z. Jarmocik P. Grzybowski T. Mitogenomic differences between the normal and tumor cells of colorectal cancer patients. Hum. Mutat. 2018 39 5 691 701 10.1002/humu.23402 29330893
    [Google Scholar]
  63. Akouchekian M. Houshmand M. Akbari M.H. Kamalidehghan B. Dehghan M. Analysis of mitochondrial ND1 gene in human colorectal cancer. J. Res. Med. Sci. 2011 16 1 50 55 21448383
    [Google Scholar]
  64. Afkhami E. Heidari M.M. Khatami M. Ghadamyari F. Dianatpour S. Detection of novel mitochondrial mutations in cytochrome C oxidase subunit 1 (COX1) in patients with familial adenomatous polyposis (FAP). Clin. Transl. Oncol. 2020 22 6 908 918 10.1007/s12094‑019‑02208‑6 31552592
    [Google Scholar]
  65. Jr G.A. Mehrabi S. Vatcharapijarn Y. Iyamu O.I. Akwe J.A. Grizzle W.E. Yao X. Aikhionbare F.O. Frequencies of mtDNA mutations in primary tissues of colorectal adeno-polyps. Front. Biosci. 2013 E5 3 809 813 10.2741/E661 23747897
    [Google Scholar]
  66. MA Mohammed F. Rezaee khorasany A.R. Mosaieby E. Houshmand M. Mitochondrial A12308G alteration in tRNALeu(CUN) in colorectal cancer samples. Diagn. Pathol. 2015 10 1 115 10.1186/s13000‑015‑0337‑6 26189042
    [Google Scholar]
  67. Bragoszewski P. Kupryjanczyk J. Bartnik E. Rachinger A. Ostrowski J. Limited clinical relevance of mitochondrial DNA mutation and gene expression analyses in ovarian cancer. BMC Cancer 2008 8 1 292 10.1186/1471‑2407‑8‑292 18842121
    [Google Scholar]
  68. Nicholls T.J. Minczuk M. In D-loop: 40years of mitochondrial 7S DNA. Exp. Gerontol. 2014 56 175 181 10.1016/j.exger.2014.03.027 24709344
    [Google Scholar]
  69. Jemt E. Persson Ö. Shi Y. Mehmedovic M. Uhler J.P. Dávila López M. Freyer C. Gustafsson C.M. Samuelsson T. Falkenberg M. Regulation of DNA replication at the end of the mitochondrial D-loop involves the helicase TWINKLE and a conserved sequence element. Nucleic Acids Res. 2015 43 19 9262 9275 10.1093/nar/gkv804 26253742
    [Google Scholar]
  70. Røyrvik E.C. Johnston I.G. MtDNA sequence features associated with ‘selfish genomes’ predict tissue-specific segregation and reversion. Nucleic Acids Res. 2020 48 15 8290 8301 10.1093/nar/gkaa622 32716035
    [Google Scholar]
  71. Elorza A.A. Soffia J.P. mtDNA heteroplasmy at the core of aging-associated heart failure. an integrative view of oxphos and mitochondrial life cycle in cardiac mitochondrial physiology. 2021 9 625020 10.3389/fcell.2021.625020 33692999
    [Google Scholar]
  72. Kopinski P.K. Singh L.N. Zhang S. Lott M.T. Wallace D.C. Mitochondrial DNA variation and cancer. Nat. Rev. Cancer 2021 21 7 431 445 10.1038/s41568‑021‑00358‑w 34045735
    [Google Scholar]
  73. Guo W. Liu Y. Ji X. Guo S. Xie F. Chen Y. Zhou K. Zhang H. Peng F. Wu D. Wang Z. Guo X. zhao Q. Gu X. Xing J. Mutational signature of mtDNA confers mechanistic insight into oxidative metabolism remodeling in colorectal cancer. Theranostics 2023 13 1 324 338 10.7150/thno.78718 36593960
    [Google Scholar]
  74. Smith A.L.M. Whitehall J.C. Bradshaw C. Gay D. Robertson F. Blain A.P. Hudson G. Pyle A. Houghton D. Hunt M. Sampson J.N. Stamp C. Mallett G. Amarnath S. Leslie J. Oakley F. Wilson L. Baker A. Russell O.M. Johnson R. Richardson C.A. Gupta B. McCallum I. McDonald S.A. Kelly S. Mathers J.C. Heer R. Taylor R.W. Perkins N.D. Turnbull D.M. Sansom O.J. Greaves L.C. Age-associated mitochondrial DNA mutations cause metabolic remodeling that contributes to accelerated intestinal tumorigenesis. Nat. Can. 2020 1 10 976 989 10.1038/s43018‑020‑00112‑5 33073241
    [Google Scholar]
  75. Sigurðardóttir S. Helgason A. Gulcher J.R. Stefansson K. Donnelly P. The mutation rate in the human mtDNA control region. Am. J. Hum. Genet. 2000 66 5 1599 1609 10.1086/302902 10756141
    [Google Scholar]
  76. Leuthner T.C. Meyer J.N. Mitochondrial DNA mutagenesis: Feature of and biomarker for environmental exposures and aging. Curr. Environ. Health Rep. 2021 8 4 294 308 10.1007/s40572‑021‑00329‑1 34761353
    [Google Scholar]
  77. Lee Y. Kim T. Lee M. So S. Karagozlu M.Z. Seo G.H. Choi I.H. Lee P.C. Kim C.J. Kang E. Lee B.H. De Novo development of mtdna deletion due to decreased polg and ssbp1 expression in humans. Genes 2021 12 2 284 10.3390/genes12020284 33671400
    [Google Scholar]
  78. Dabravolski S.A. Nikiforov N.G. Zhuravlev A.D. Orekhov N.A. Grechko A.V. Orekhov A.N. Role of the mtDNA mutations and mitophagy in inflammaging. Int. J. Mol. Sci. 2022 23 3 1323 10.3390/ijms23031323 35163247
    [Google Scholar]
  79. Guo W. Liu Y. Su L. Guo S. Xie F. Ji X. Zhou K. Guo X. Gu X. Xing J. MitoSomati: A tool for accurate identification of mitochondrial DNA mutations without paired controls. Mol. Oncol. 2023 17 5 857 871 10.1002/1878‑0261.13335 36330809
    [Google Scholar]
  80. Yu T. Slone J. Liu W. Barnes R. Opresko P.L. Wark L. Mai S. Horvath S. Huang T. Premature aging is associated with higher levels of 8‐oxoguanine and increased DNA damage in the Polg mutator mouse. Aging Cell 2022 21 9 e13669 10.1111/acel.13669 35993394
    [Google Scholar]
  81. Stamp C. Whitehall J.C. Smith A.L. Houghton D. Bradshaw C. Stoll E.A. Blain A.P. Turnbull D.M. Greaves L.C. Age‐associated mitochondrial complex I deficiency is linked to increased stem cell proliferation rates in the mouse colon. Aging Cell 2021 20 3 e13321 10.1111/acel.13321 33626245
    [Google Scholar]
  82. Rahman S. Copeland W.C. POLG-related disorders and their neurological manifestations. Nat. Rev. Neurol. 2019 15 1 40 52 10.1038/s41582‑018‑0101‑0 30451971
    [Google Scholar]
  83. Deepha S. Govindaraj P. Sankaran B.P. Chiplunkar S. Kashinkunti C. Nunia V. Nagappa M. Sinha S. Khanna T. Thangaraj K. Taly A.B. Gayathri N. clinico-pathological and molecular spectrum of mitochondrial polymerase γ mutations in a cohort from India. J. Mol. Neurosci. 2021 71 11 2219 2228 10.1007/s12031‑020‑01765‑8 33469851
    [Google Scholar]
  84. Tanaka T. Kobunai T. Yamamoto Y. Murono K. Otani K. Yasuda K. Nishikawa T. Kiyomatsu T. Kawai K. Hata K. Nozawa H. Ishihara S. Watanabe T. Increased copy number variation of mtDNA in an array-based digital pcr assay predicts ulcerative colitis-associated colorectal cancer. Vivo Athens Greece 2017 31 4 713 718 10.21873/invivo.11119 28652445
    [Google Scholar]
  85. Baker K.T. Nachmanson D. Kumar S. Emond M.J. Ussakli C. Brentnall T.A. Kennedy S.R. Risques R.A. Mitochondrial dna mutations are associated with ulcerative colitis preneoplasia but tend to be negatively selected in cancer. Mol. Cancer Res. 2019 17 2 488 498 10.1158/1541‑7786.MCR‑18‑0520 30446624
    [Google Scholar]
  86. Xu Y. Zhou J. Yuan Q. Su J. Li Q. Lu X. Zhang L. Cai Z. Han J. Quantitative detection of circulating MT-ND1 as a potential biomarker for colorectal cancer. Bosn. J. Basic Med. Sci. 2021 21 5 577 586 10.17305/bjbms.2021.5576 33823124
    [Google Scholar]
  87. Almeida J. Pérez-Figueroa A. Alves J.M. Valecha M. Prado-López S. Alvariño P. Cameselle-Teijeiro J.M. Chantada D. Fonseca M.M. Posada D. Single-cell mtDNA heteroplasmy in colorectal cancer. Genomics 2022 114 2 110315 10.1016/j.ygeno.2022.110315 35181467
    [Google Scholar]
  88. Deleterious heteroplasmic mitochondrial mutations are associated with an increased risk of overall and cancer-specific mortality 2023 Available from:https://www.nature.com/articles/s41467-023-41785-7
  89. Kozakiewicz P. Grzybowska-Szatkowska L. Ciesielka M. Rzymowska J. The role of mitochondria in carcinogenesis. Int. J. Mol. Sci. 2021 22 10 5100 10.3390/ijms22105100 34065857
    [Google Scholar]
  90. Zheng X. Chen J. Sun Y. Chen T. Wang J. Yu S. Mitochondria in cancer stem cells: Achilles heel or hard armor. Trends Cell Biol. 2023 33 8 708 727 10.1016/j.tcb.2023.03.009 37137792
    [Google Scholar]
  91. Gonçalves A.C. Richiardone E. Jorge J. Polónia B. Xavier C.P. Salaroglio I.C. Riganti C. Vasconcelos M.H. Corbet C. Sarmento-Ribeiro A.B. Impact of cancer metabolism on therapy resistance – Clinical implications. Drug Resist. Updat. 2021 59 100797 10.1016/j.drup.2021.100797 34955385
    [Google Scholar]
  92. Smith A.L. Whitehall J.C. Greaves L.C. Mitochondrial DNA mutations in ageing and cancer. Mol. Oncol. 2022 16 18 3276 3294 10.1002/1878‑0261.13291 35842901
    [Google Scholar]
  93. Wallace D.C. Mitochondrial DNA mutations in disease and aging. Environ. Mol. Mutagen. 2010 51 5 440 450 10.1002/em.20586 20544884
    [Google Scholar]
  94. Mitochondrial dna mutations in ageing and cancer. 2023 Available from:https://febs.onlinelibrary.wiley.com/doi/full/10.1002/1878-0261.13291
  95. Sica V. Bravo-San Pedro J.M. Stoll G. Kroemer G. Oxidative phosphorylation as a potential therapeutic target for cancer therapy. Int. J. Cancer 2020 146 1 10 17 10.1002/ijc.32616 31396957
    [Google Scholar]
  96. Zhao H. Yan C. Hu Y. Mu L. Liu S. Huang K. Li Q. Li X. Tao D. Qin J. Differentiated cancer cell-originated lactate promotes the self-renewal of cancer stem cells in patient-derived colorectal cancer organoids. Cancer Lett. 2020 493 236 244 10.1016/j.canlet.2020.08.044 32898601
    [Google Scholar]
  97. Offermans K. Jenniskens J.C. Simons C.C. Samarska I. Fazzi G.E. Smits K.M. Schouten L.J. Weijenberg M.P. Grabsch H.I. van den Brandt P.A. Association between adjuvant therapy and survival in colorectal cancer patients according to metabolic Warburg-subtypes. J. Cancer Res. Clin. Oncol. 2023 149 9 6271 6282 10.1007/s00432‑023‑04581‑w 36723668
    [Google Scholar]
  98. Liu S. Zhao H. Hu Y. Yan C. Mi Y. Li X. Tao D. Qin J. Lactate promotes metastasis of normoxic colorectal cancer stem cells through PGC-1α-mediated oxidative phosphorylation. Cell Death Dis. 2022 13 7 651 10.1038/s41419‑022‑05111‑1 35896535
    [Google Scholar]
  99. Yan C. Liu S. Song Q. Hu Y. Metformin inhibits self-renewal of colorectal cancer stem cells by inhibiting mitochondrial oxidative phosphorylation. Nan Fang Yi Ke Da Xue Xue Bao 2023 43 8 1279 1286 10.12122/j.issn.1673‑4254.2023.08.03 37712263
    [Google Scholar]
  100. Seo Y. Kim J. Park S.J. Park J.J. Cheon J.H. Kim W.H. Kim T.I. Metformin suppresses cancer stem cells through ampk activation and inhibition of protein prenylation of the mevalonate pathway in colorectal cancer. Cancers 2020 12 9 2554 10.3390/cancers12092554 32911743
    [Google Scholar]
  101. Sessions D.T. Kashatus D.F. Mitochondrial dynamics in cancer stem cells. Cell. Mol. Life Sci. 2021 78 8 3803 3816 10.1007/s00018‑021‑03773‑2 33580834
    [Google Scholar]
  102. Das P.K. Islam F. Lam A.K. The roles of cancer stem cells and therapy resistance in colorectal carcinoma. Cells 2020 9 6 1392 10.3390/cells9061392 32503256
    [Google Scholar]
  103. Praharaj P.P. Panigrahi D.P. Bhol C.S. Patra S. Mishra S.R. Mahapatra K.K. Behera B.P. Singh A. Patil S. Bhutia S.K. Mitochondrial rewiring through mitophagy and mitochondrial biogenesis in cancer stem cells: A potential target for anti-CSC cancer therapy. Cancer Lett. 2021 498 217 228 10.1016/j.canlet.2020.10.036 33186655
    [Google Scholar]
  104. Behnam B. Fazilaty H. Ghadyani M. Fadavi P. Taghizadeh-Hesary F. Ciliated, mitochondria-rich postmitotic cells are immune-privileged, and mimic immunosuppressive microenvironment of tumor-initiating stem cells: from molecular anatomy to molecular pathway. Frontiers in Bioscience-Landmark 2023 28 10 261 10.31083/j.fbl2810261 37919090
    [Google Scholar]
  105. Arasanz H. Hernández C. Bocanegra A. Chocarro L. Zuazo M. Gato M. Ausin K. Santamaría E. Fernández-Irigoyen J. Fernandez G. Santamaria E. Rodríguez C. Blanco-Luquin I. Vera R. Escors D. Kochan G. Profound reprogramming towards stemness in pancreatic cancer cells as adaptation to AKT Inhibition. Cancers 2020 12 8 2181 10.3390/cancers12082181 32764385
    [Google Scholar]
  106. Wang R. Mao Y. Wang W. Zhou X. Wang W. Gao S. Li J. Wen L. Fu W. Tang F. Systematic evaluation of colorectal cancer organoid system by single-cell RNA-Seq analysis. Genome Biol. 2022 23 1 106 10.1186/s13059‑022‑02673‑3 35484598
    [Google Scholar]
  107. Kwon S. Kim S. Nebeck H. Ahn E. Immortalization of different breast epithelial cell types results in distinct mitochondrial mutagenesis. Int. J. Mol. Sci. 2019 20 11 2813 10.3390/ijms20112813 31181796
    [Google Scholar]
  108. Zhong X. He X. Wang Y. Hu Z. Huang H. Zhao S. Wei P. Li D. Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications. J. Hematol. Oncol. 2022 15 1 160 10.1186/s13045‑022‑01358‑5 36319992
    [Google Scholar]
  109. Offermans K. Jenniskens J.C. Simons C.C. Samarska I. Fazzi G.E. Smits K.M. Schouten L.J. Weijenberg M.P. Grabsch H.I. van den Brandt P.A. Expression of proteins associated with the Warburg‐effect and survival in colorectal cancer. J. Pathol. Clin. Res. 2022 8 2 169 180 10.1002/cjp2.250 34791830
    [Google Scholar]
  110. Thompson C.B. Vousden K.H. Johnson R.S. Koppenol W.H. Sies H. Lu Z. Finley L.W. Frezza C. Kim J. Hu Z. Bartman C.R. A century of the Warburg effect. Nat. Metab. 2023 5 11 1840 1843 10.1038/s42255‑023‑00927‑3 37990075
    [Google Scholar]
  111. Amengual-Cladera E. Morla-Barcelo P.M. Morán-Costoya A. Sastre-Serra J. Pons D.G. Valle A. Roca P. Nadal-Serrano M. Metformin: From diabetes to cancer—unveiling molecular mechanisms and therapeutic strategies. Biology 2024 13 5 302 10.3390/biology13050302 38785784
    [Google Scholar]
  112. García Rubiño M.E. Carrillo E. Ruiz Alcalá G. Domínguez-Martín A. A Marchal J. Boulaiz H. Phenformin as an anticancer agent: Challenges and prospects. Int. J. Mol. Sci. 2019 20 13 3316 10.3390/ijms20133316 31284513
    [Google Scholar]
  113. Xu J. Dong X. Huang D.C. Xu P. Zhao Q. Chen B. Current advances and future strategies for bcl-2 inhibitors: Potent weapons against cancers. Cancers 2023 15 20 4957 10.3390/cancers15204957 37894324
    [Google Scholar]
  114. Wang Z. Tang S. Cai L. Wang Q. Pan D. Dong Y. Zhou H. Li J. Ji N. Zeng X. Zhou Y. Shen Y. Chen Q. DRP1 inhibition-mediated mitochondrial elongation abolishes cancer stemness, enhances glutaminolysis, and drives ferroptosis in oral squamous cell carcinoma. Br. J. Cancer 2024 130 11 1744 1757 10.1038/s41416‑024‑02670‑2 38582810
    [Google Scholar]
  115. Wu Z. Xiao C. Long J. Huang W. You F. Li X. Mitochondrial dynamics and colorectal cancer biology: Mechanisms and potential targets. Cell Commun. Signal. 2024 22 1 91 10.1186/s12964‑024‑01490‑4 38302953
    [Google Scholar]
  116. Dong L. Gopalan V. Holland O. Neuzil J. Mitocans revisited: Mitochondrial targeting as efficient anti-cancer therapy. Int. J. Mol. Sci. 2020 21 21 7941 10.3390/ijms21217941 33114695
    [Google Scholar]
  117. Wang S.F. Tseng L.M. Lee H.C. Role of mitochondrial alterations in human cancer progression and cancer immunity. J. Biomed. Sci. 2023 30 1 61 10.1186/s12929‑023‑00956‑w 37525297
    [Google Scholar]
  118. De Francesco E.M. Bonuccelli G. Maggiolini M. Sotgia F. Lisanti M.P. Vitamin C and Doxycycline: A synthetic lethal combination therapy targeting metabolic flexibility in cancer stem cells (CSCs). Oncotarget 2017 8 40 67269 67286 10.18632/oncotarget.18428 28978032
    [Google Scholar]
  119. Fiorillo M. Tóth F. Sotgia F. Lisanti M.P. Doxycycline, Azithromycin and Vitamin C (DAV): A potent combination therapy for targeting mitochondria and eradicating cancer stem cells (CSCs). Aging 2019 11 8 2202 2216 10.18632/aging.101905 31002656
    [Google Scholar]
  120. Marx C. Sonnemann J. Maddocks O.D. Marx-Blümel L. Beyer M. Hoelzer D. Thierbach R. Maletzki C. Linnebacher M. Heinzel T. Krämer O.H. Global metabolic alterations in colorectal cancer cells during irinotecan-induced DNA replication stress. Cancer Metab. 2022 10 1 10 10.1186/s40170‑022‑00286‑9 35787728
    [Google Scholar]
  121. Praharaj P.P. Patro B.S. Bhutia S.K. Dysregulation of mitophagy and mitochondrial homeostasis in cancer stem cells: Novel mechanism for anti‐cancer stem cell‐targeted cancer therapy. Br. J. Pharmacol. 2022 179 22 5015 5035 10.1111/bph.15401 33527371
    [Google Scholar]
  122. Al-Bari M.A. Co‐targeting of lysosome and mitophagy in cancer stem cells with chloroquine analogues and antibiotics. J. Cell. Mol. Med. 2020 24 20 11667 11679 10.1111/jcmm.15879 32935427
    [Google Scholar]
  123. Wang S. Jiang X. Xie X. Yin J. Zhang J. Liu T. Chen S. Wang Y. Zhou X. Wang Y. Cui R. Jiang H. piR-823 inhibits cell apoptosis via modulating mitophagy by binding to PINK1 in colorectal cancer. Cell Death Dis. 2022 13 5 465 10.1038/s41419‑022‑04922‑6 35581181
    [Google Scholar]
  124. Sun J. Su W. Deng J. Qin Y. Wang Z. Liu Y. DNA2 mutation causing multisystemic disorder with impaired mitochondrial DNA maintenance. J. Hum. Genet. 2022 67 12 691 699 10.1038/s10038‑022‑01075‑4 36064591
    [Google Scholar]
  125. Tsybrovskyy O. De Luise M. de Biase D. Caporali L. Fiorini C. Gasparre G. Carelli V. Hackl D. Imamovic L. Haim S. Sobrinho-Simões M. Tallini G. Papillary thyroid carcinoma tall cell variant shares accumulation of mitochondria, mitochondrial DNA mutations, and loss of oxidative phosphorylation complex I integrity with oncocytic tumors. J. Pathol. Clin. Res. 2022 8 2 155 168 10.1002/cjp2.247 34792302
    [Google Scholar]
  126. Thongon N. Ma F. Lockyer P. Baran N. Liu J. Jackson C. Rose A. Wildeman B. Marchesini M. Marchica V. Targeting DNA2 overcomes metabolic reprogramming in multiple myeloma bioRxiv [Preprint] 2023 10.1101/2023.02.22.529457
    [Google Scholar]
  127. Erisik D. Ozdil B. Acikgoz E. Asker Abdikan C.S. Yesin T.K. Aktug H. Differences and similarities between colorectal cancer cells and colorectal cancer stem cells: Molecular insights and implications. ACS Omega 2023 8 33 30145 30157 10.1021/acsomega.3c02681 37636966
    [Google Scholar]
  128. Mohd-Zahid M.H. Mohamud R. Abdullah C.A. Lim J. Alem H. Hanaffi W.N. Colorectal cancer stem cells: A review of targeted drug delivery by gold nanoparticles. RSC Advances 2020 10 973 985 10.1039/C9RA08192E
    [Google Scholar]
  129. Yan S. Tang D. Hong Z. Wang J. Yao H. Lu L. Yi H. Fu S. Zheng C. He G. Zou H. Hou X. He Q. Xiong L. Li Q. Deng X. CD133 peptide-conjugated pyropheophorbide-a as a novel photosensitizer for targeted photodynamic therapy in colorectal cancer stem cells. Biomater. Sci. 2021 9 6 2020 2031 10.1039/D0BM01874K 33439161
    [Google Scholar]
  130. Fan X. Yang C. Li W. Bai X. Zhou X. Xie H. Wen L. Tang F. SMOOTH-seq: single-cell genome sequencing of human cells on a third-generation sequencing platform. Genome Biol. 2021 22 1 195 10.1186/s13059‑021‑02406‑y 34193237
    [Google Scholar]
  131. Lareau C.A. Liu V. Muus C. Praktiknjo S.D. Nitsch L. Kautz P. Sandor K. Yin Y. Gutierrez J.C. Pelka K. Satpathy A.T. Regev A. Sankaran V.G. Ludwig L.S. Mitochondrial single-cell ATAC-seq for high-throughput multi-omic detection of mitochondrial genotypes and chromatin accessibility. Nat. Protoc. 2023 18 5 1416 1440 10.1038/s41596‑022‑00795‑3 36792778
    [Google Scholar]
  132. Miller T.E. Lareau C.A. Verga J.A. DePasquale E.A. Liu V. Ssozi D. Sandor K. Yin Y. Ludwig L.S. El Farran C.A. Morgan D.M. Satpathy A.T. Griffin G.K. Lane A.A. Love J.C. Bernstein B.E. Sankaran V.G. van Galen P. Mitochondrial variant enrichment from high-throughput single-cell RNA sequencing resolves clonal populations. Nat. Biotechnol. 2022 40 7 1030 1034 10.1038/s41587‑022‑01210‑8 35210612
    [Google Scholar]
  133. Soler-Agesta R. Marco-Brualla J. Fernández-Silva P. Mozas P. Anel A. Moreno Loshuertos R. Transmitochondrial cybrid generation using cancer cell lines. J. Vis. Exp. 2023 2023 193 10.3791/65186 37010306
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673316839240829075650
Loading
/content/journals/cmc/10.2174/0109298673316839240829075650
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: colorectal cancer ; mitochondrial genome ; Cancer stem cell ; mitochondria
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test