Skip to content
2000
Volume 32, Issue 7
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Alcohol intoxication leads to multiple degenerative disorders in the structure and function of mitochondria. The mechanisms underlying these disorders, as well as ways to prevent them, are an urgent task in biomedicine. We investigate the mechanism of the positive effect of AX on rat liver mitochondria after chronic alcohol administration and suggest the targets of its effects. In this work, we continued our studies of astaxanthin (AX) as a possible protector of mitochondria from the toxic effects of ethanol.

Methods

In our experiments, we used the Lieber-DeCarly model of chronic alcohol intoxication, which allows high-dose alcohol intake. Four groups of animals were used in the experiments: group 1 (control), group 2 (treated with AX), group 3 (treated with ethanol), and group 4 (treated with ethanol and AX together). Rat liver mitochondria (RLM) were isolated by the standard method modified in our laboratory. A multifunctional chamber with built-in electrodes was used to determine mitochondrial functions. Electrophoresis followed by Western blot analysis was used to detect mitochondrial proteins. Statistical significance was calculated using -test Student-Newman- Keuls test.

Results

AX has been shown to have a positive effect on the functioning of the mitochondrial permeability transition pore (mPTP), the regulation of signaling pathways, as well as mitochondrial dynamics. It was found that AX is able to suppress the degenerative effect of alcohol on liver mitochondria. Targets for the protective action of AX in rat liver mitochondria (RLM) have been proposed.

Conclusion

The discovered protective effect of AX on liver mitochondria during alcohol damage may contribute to the development of new strategies for the treatment of alcohol-induced damage.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673316592240822102619
2024-08-30
2025-04-04
Loading full text...

Full text loading...

References

  1. AugerC. AlhasawiA. ContavadooM. AppannaV.D. Dysfunctional mitochondrial bioenergetics and the pathogenesis of hepatic disorders.Front. Cell Dev. Biol.201534010.3389/fcell.2015.0004026161384
    [Google Scholar]
  2. BaburinaY. OdinokovaI. KrestininaO. The effects of PK11195 and protoporphyrin IX can modulate chronic alcohol intoxication in rat liver mitochondria under the opening of the mitochondrial permeability transition pore.Cells202098177410.3390/cells908177432722345
    [Google Scholar]
  3. KingA.L. SwainT.M. MaoZ. UdohU.S. OlivaC.R. BetancourtA.M. GriguerC.E. CroweD.R. LesortM. BaileyS.M. Involvement of the mitochondrial permeability transition pore in chronic ethanol-mediated liver injury in mice.Am. J. Physiol. Gastrointest. Liver Physiol.20143064G265G27710.1152/ajpgi.00278.201324356880
    [Google Scholar]
  4. LeFortK.R. RungratanawanichW. SongB.J. Contributing roles of mitochondrial dysfunction and hepatocyte apoptosis in liver diseases through oxidative stress, post- translational modifications, inflammation, and intestinal barrier dysfunction.Cell. Mol. Life Sci.20248113410.1007/s00018‑023‑05061‑738214802
    [Google Scholar]
  5. Manzo-AvalosS. Saavedra-MolinaA. Cellular and mitochondrial effects of alcohol consumption.Int. J. Environ. Res. Public Health20107124281430410.3390/ijerph712428121318009
    [Google Scholar]
  6. SigginsR.W. McTernanP.M. SimonL. Souza-SmithF.M. MolinaP.E. Mitochondrial dysfunction: At the nexus between alcohol-associated immunometabolic dysregulation and tissue injury.Int. J. Mol. Sci.20232410865010.3390/ijms2410865037239997
    [Google Scholar]
  7. SubramaiyamN. Insights of mitochondrial involvement in alcoholic fatty liver disease.J. Cell. Physiol.2023238102175219010.1002/jcp.3110037642259
    [Google Scholar]
  8. NestlerE.J. Molecular mechanisms of drug addiction.J. Neurosci.19921272439245010.1523/JNEUROSCI.12‑07‑02439.19921319476
    [Google Scholar]
  9. LelevichS.V. Comparative feature of the glucose metabolism in liver of the rats under acute alcohol and morphine intoxication.Biomed. Khim.201157661562310.18097/pbmc2011570661522359917
    [Google Scholar]
  10. BaburinaY. OdinokovaI. KrestininaO. Carbenoxolon is capable to regulate the mitochondrial permeability transition pore opening in chronic alcohol intoxication.Int. J. Mol. Sci.202122191024910.3390/ijms22191024934638588
    [Google Scholar]
  11. Bonet-PonceL. Saez-AtienzarS. da CasaC. Flores- BellverM. BarciaJ.M. Sancho-PelluzJ. RomeroF.J. JordanJ. GalindoM.F. On the mechanism underlying ethanol-induced mitochondrial dynamic disruption and autophagy response.Biochim. Biophys. Acta Mol. Basis Dis.2015185271400140910.1016/j.bbadis.2015.03.00625779081
    [Google Scholar]
  12. HwangH. LiuR. EldridgeR. HuX. ForghaniP. JonesD.P. XuC. Chronic ethanol exposure induces mitochondrial dysfunction and alters gene expression and metabolism in human cardiac spheroids.Alcohol. Clin. Exp. Res.202347464365810.1111/acer.1502636799338
    [Google Scholar]
  13. SamuvelD.J. LiL. KrishnasamyY. GoozM. TakemotoK. WosterP.M. LemastersJ.J. ZhongZ. Mitochondrial depolarization after acute ethanol treatment drives mitophagy in living mice.Autophagy202218112671268510.1080/15548627.2022.204645735293288
    [Google Scholar]
  14. ZhangS. RaoS. YangM. MaC. HongF. YangS. Role of mitochondrial pathways in cell apoptosis during he-patic ischemia/reperfusion injury.Int. J. Mol. Sci.2022234235710.3390/ijms2304235735216473
    [Google Scholar]
  15. BaburinaY.L. ZvyaginaA.I. OdinokovaI.V. KrestininaO.V. Effect of erastin and G3139 on rat liver mitochondria in chronic alcoholic intoxication.Biomed. Khim.2023691627110.18097/pbmc2023690106236857428
    [Google Scholar]
  16. LuoY. ChenP. YangL.P. DuanX.H. Effect of ethanol extract of Gastrodiae rhizoma on mitochondrial dysfunction in cerebral ischemia-reperfusion injury.Zhongguo Zhongyao Zazhi202247205564557336471974
    [Google Scholar]
  17. BaevA.Y. VinokurovA.Y. PotapovaE.V. DunaevA.V. AngelovaP.R. AbramovA.Y. Mitochondrial permeability transition, cell death and neurodegeneration.Cells202413764810.3390/cells1307064838607087
    [Google Scholar]
  18. NavaneethaKrishnanS. RosalesJ.L. LeeK.Y. mPTP opening caused by Cdk5 loss is due to increased mitochondrial Ca2+ uptake.Oncogene202039132797280610.1038/s41388‑020‑1188‑532024968
    [Google Scholar]
  19. AzarashviliT. KrestininaO. YurkovI. EvtodienkoY. ReiserG. High-affinity peripheral benzodiazepine receptor ligand, PK11195, regulates protein phosphorylation in rat brain mitochondria under control of Ca2+.J. Neurochem.20059441054106210.1111/j.1471‑4159.2005.03260.x16092946
    [Google Scholar]
  20. KharechkinaE.S. NikiforovaA.B. KruglovA.G. Regulation of mitochondrial permeability transition pore opening by monovalent cations in liver mitochondria.Int. J. Mol. Sci.20232411923710.3390/ijms2411923737298189
    [Google Scholar]
  21. NeginskayaM.A. MorrisS.E. PavlovE.V. Refractive index imaging reveals that elimination of the ATP synthase c subunit does not prevent the adenine nucleotide translocase-dependent mitochondrial permeability transition.Cells20231215195010.3390/cells1215195037566029
    [Google Scholar]
  22. BroundM.J. HavensJ.R. YorkA.J. SargentM.A. KarchJ. MolkentinJ.D. ANT-dependent MPTP underlies necrotic myofiber death in muscular dystrophy.Sci. Adv.2023934eadi276710.1126/sciadv.adi276737624892
    [Google Scholar]
  23. BaburinaY. KrestininR. FedorovD. OdinokovaI. PershinaE. SotnikovaL. KrestininaO. The improvement of functional state of brain mitochondria with astaxanthin in rats after heart failure.Int. J. Mol. Sci.20222413110.3390/ijms2401003136613474
    [Google Scholar]
  24. BaburinaY. AzarashviliT. GrachevD. KrestininaO. GalvitaA. StrickerR. ReiserG. Mitochondrial 2′, 3′- cyclic nucleotide 3′-phosphodiesterase (CNP) interacts with mPTP modulators and functional complexes (I–V) coupled with release of apoptotic factors.Neurochem. Int.201590465510.1016/j.neuint.2015.07.01226188334
    [Google Scholar]
  25. AzarashviliT. KrestininaO. BaburinaY. OdinokovaI. GrachevD. PapadopoulosV. AkatovV. LemastersJ.J. ReiserG. Combined effect of G3139 and TSPO ligands on Ca2+-induced permeability transition in rat brain mitochondria.Arch. Biochem. Biophys.2015587707710.1016/j.abb.2015.10.01226498031
    [Google Scholar]
  26. GatliffJ. EastD. CrosbyJ. AbetiR. HarveyR. CraigenW. ParkerP. CampanellaM. TSPO interacts with VDAC1 and triggers a ROS-mediated inhibition of mitochondrial quality control.Autophagy201410122279229610.4161/15548627.2014.99166525470454
    [Google Scholar]
  27. Shoshan-BarmatzV. PittalaS. MizrachiD. VDAC1 and the TSPO: Expression, interactions, and associated functions in health and disease states.Int. J. Mol. Sci.20192013334810.3390/ijms2013334831288390
    [Google Scholar]
  28. WaddellJ. McKennaM.C. KristianT. Brain ethanol metabolism and mitochondria.Curr. Top. Biochem. Res.20222311336873619
    [Google Scholar]
  29. KrausF. RoyK. PucadyilT.J. RyanM.T. Function and regulation of the divisome for mitochondrial fission.Nature20215907844576610.1038/s41586‑021‑03214‑x33536648
    [Google Scholar]
  30. van der BliekA.M. ShenQ. KawajiriS. Mechanisms of mitochondrial fission and fusion.Cold Spring Harb. Perspect. Biol.201356a01107210.1101/cshperspect.a01107223732471
    [Google Scholar]
  31. KitagakiH. ArakiY. FunatoK. ShimoiH. Ethanol-induced death in yeast exhibits features of apoptosis mediated by mitochondrial fission pathway.FEBS Lett.2007581162935294210.1016/j.febslet.2007.05.04817544409
    [Google Scholar]
  32. IbrahimB.M. FanM. Abdel-RahmanA.A. Oxidative stress and autonomic dysregulation contribute to the acute time-dependent myocardial depressant effect of ethanol in conscious female rats.Alcohol. Clin. Exp. Res.20143851205121510.1111/acer.1236324754626
    [Google Scholar]
  33. El-MasM.M. Abdel-RahmanA.A. Estrogen modulation of the ethanol-evoked myocardial oxidative stress and dysfunction via DAPK3/Akt/ERK activation in male rats.Toxicol. Appl. Pharmacol.2015287328429210.1016/j.taap.2015.06.01526111663
    [Google Scholar]
  34. WeishaarR. SarmaJ.S.M. MaruyamaY. FischerR. BertugliaS. BingR.J. Reversibility of mitochondrial and contractile changes in the myocardium after cessation of prolonged ethanol intake.Am. J. Cardiol.197740455656210.1016/0002‑9149(77)90071‑6562064
    [Google Scholar]
  35. MashimoK. ArthurP.G. OhnoY. Ethanol dose- and time-dependently increases α and β subunits of mitochondrial ATP synthase of cultured neonatal rat cardiomyocytes.J. Nippon Med. Sch.201582523724510.1272/jnms.82.23726568390
    [Google Scholar]
  36. ZhongL. ZhuJ. LvT. ChenG. SunH. YangX. HuangX. TianJ. Ethanol and its metabolites induce histone lysine 9 acetylation and an alteration of the expression of heart development-related genes in cardiac progenitor cells.Cardiovasc. Toxicol.201010426827410.1007/s12012‑010‑9081‑z20811785
    [Google Scholar]
  37. MatyasC. VargaZ.V. MukhopadhyayP. PalocziJ. LajtosT. ErdelyiK. NemethB.T. NanM. HaskoG. GaoB. PacherP. Chronic plus binge ethanol feeding induces myocardial oxidative stress, mitochondrial and cardiovascular dysfunction, and steatosis.Am. J. Physiol. Heart Circ. Physiol.201631011H1658H167010.1152/ajpheart.00214.201627106042
    [Google Scholar]
  38. EftekhariA. HasanzadehA. KhalilovR. HosainzadeganH. AhmadianE. EghbalM.A. Hepatoprotective role of berberine against paraquat-induced liver toxicity in rat.Environ. Sci. Pollut. Res. Int.20202754969497510.1007/s11356‑019‑07232‑131845254
    [Google Scholar]
  39. FardJ. HamzeiyH. SattariM. EftekhariA. AhmadianE. EghbalM. Triazole rizatriptan induces liver toxicity through lysosomal/mitochondrial dysfunction.Drug Res.201666947047810.1055/s‑0042‑11017827399851
    [Google Scholar]
  40. AhmadianE. BabaeiH. Mohajjel NayebiA. EftekhariA. EghbalM.A. Mechanistic approach for toxic effects of bupropion in primary rat hepatocytes.Drug Res.201767421722210.1055/s‑0042‑12303428118671
    [Google Scholar]
  41. KrestininaO. OdinokovaI. SotnikovaL. KrestininR. ZvyaginaA. BaburinaY. Astaxanthin is able to prevent alcohol-induced dysfunction of liver mitochondria.Antioxidants20221110201910.3390/antiox1110201936290741
    [Google Scholar]
  42. LieberC.S. DeCarliL.M. Liquid diet technique of ethanol administration: 1989 update.Alcohol Alcohol.19892431972112667528
    [Google Scholar]
  43. BaburinaY. KrestininR. OdinokovaI. SotnikovaL. KruglovA. KrestininaO. Astaxanthin inhibits mitochondrial permeability transition pore opening in rat heart mitochondria.Antioxidants201981257610.3390/antiox812057631766490
    [Google Scholar]
  44. KrestininaO. BaburinaY. KrestininR. OdinokovaI. FadeevaI. SotnikovaL. Astaxanthin prevents mitochondrial impairment induced by isoproterenol in isolated rat heart mitochondria.Antioxidants20209326210.3390/antiox903026232210012
    [Google Scholar]
  45. AzarashviliT. GrachevD. KrestininaO. EvtodienkoY. YurkovI. PapadopoulosV. ReiserG. The peripheral-type benzodiazepine receptor is involved in control of Ca2+-induced permeability transition pore opening in rat brain mitochondria.Cell Calcium2007421273910.1016/j.ceca.2006.11.00417174393
    [Google Scholar]
  46. ReiserG. KunzelmannU. SteinhilberG. BinmöllerF.J. Generation of a monoclonal antibody against the myelin protein CNP (2′,3′-cyclic nucleotide 3′-phosphodiesterase) suitable for biochemical and for immunohistochemical investigations of CNP.Neurochem. Res.199419121479148510.1007/BF009689947877717
    [Google Scholar]
  47. LimS. SmithK.R. LimS.T.S. TianR. LuJ. TanM. Regulation of mitochondrial functions by protein phosphorylation and dephosphorylation.Cell Biosci.2016612510.1186/s13578‑016‑0089‑327087918
    [Google Scholar]
  48. XiJ. WangH. MuellerR.A. NorfleetE.A. XuZ. Mechanism for resveratrol-induced cardioprotection against reperfusion injury involves glycogen synthase kinase 3β and mitochondrial permeability transition pore.Eur. J. Pharmacol.20096041-311111610.1016/j.ejphar.2008.12.02419135050
    [Google Scholar]
  49. BijurG.N. JopeR.S. Glycogen synthase kinase-3β is highly activated in nuclei and mitochondria.Neuroreport200314182415241910.1097/00001756‑200312190‑0002514663202
    [Google Scholar]
  50. NishiharaM. MiuraT. MikiT. TannoM. YanoT. NaitohK. OhoriK. HottaH. TerashimaY. ShimamotoK. Modulation of the mitochondrial permeability transition pore complex in GSK-3β-mediated myocardial protection.J. Mol. Cell. Cardiol.200743556457010.1016/j.yjmcc.2007.08.01017931653
    [Google Scholar]
  51. DasS. WongR. RajapakseN. MurphyE. SteenbergenC. Glycogen synthase kinase 3 inhibition slows mitochondrial adenine nucleotide transport and regulates voltage-dependent anion channel phosphorylation.Circ. Res.2008103998399110.1161/CIRCRESAHA.108.17897018802025
    [Google Scholar]
  52. AzarashviliT. OdinokovaI. KrestininaO. BaburinaY. TeplovaV. JahangirA. HolmuhamedovE. Acute ethanol exposure increases the activity of mitochondria-associated glycogen synthase kinase-3 beta (gsk-3β): Role in phosphorylation of mitochondrial proteins.Innov. J. Med. Heal. Sci.20133163170
    [Google Scholar]
  53. BlandA.R. PayneF.M. AshtonJ.C. JamialahmadiT. SahebkarA. The cardioprotective actions of statins in targeting mitochondrial dysfunction associated with myocardial ischaemia-reperfusion injury.Pharmacol. Res.202217510598610.1016/j.phrs.2021.10598634800627
    [Google Scholar]
  54. LiangM.H. ChuangD.M. Differential roles of glycogen synthase kinase-3 isoforms in the regulation of transcriptional activation.J. Biol. Chem.200628141304793048410.1074/jbc.M60746820016912034
    [Google Scholar]
  55. De CesareD. FimiaG.M. Sassone-CorsiP. Signaling routes to CREM and CREB: Plasticity in transcriptional activation.Trends Biochem. Sci.199924728128510.1016/S0968‑0004(99)01414‑010390618
    [Google Scholar]
  56. PalmaE. MaX. RivaA. IansanteV. DhawanA. WangS. NiH.M. SesakiH. WilliamsR. DingW.X. ChokshiS. Dynamin-1–like protein inhibition drives megamitochondria formation as an adaptive response in alcohol-induced hepatotoxicity.Am. J. Pathol.2019189358058910.1016/j.ajpath.2018.11.00830553835
    [Google Scholar]
  57. OhK.H. SheoranS. RichmondJ.E. KimH. Alcohol induces mitochondrial fragmentation and stress responses to maintain normal muscle function in Caenorhabditis elegans.FASEB J.20203468204821610.1096/fj.201903166R32294300
    [Google Scholar]
  58. ChoiY. SeoH. ChoM. KimJ. ChungH.S. LeeI. KimM.J. Rutin inhibits DRP1-mediated mitochondrial fission and prevents ethanol-induced hepatotoxicity in HepG2 cells and zebrafish.Anim. Cells Syst.2021251748110.1080/19768354.2021.188256533717419
    [Google Scholar]
  59. HanJ. LeeC. HurJ. JungY. Current therapeutic options and potential of mesenchymal stem cell therapy for alcoholic liver disease.Cells20221212210.3390/cells1201002236611816
    [Google Scholar]
  60. HanJ.H. JuJ.H. LeeY.S. ParkJ.H. YeoI.J. ParkM.H. RohY.S. HanS.B. HongJ.T. Astaxanthin alleviated ethanol-induced liver injury by inhibition of oxidative stress and inflammatory responses via blocking of STAT3 activity.Sci. Rep.2018811409010.1038/s41598‑018‑32497‑w30237578
    [Google Scholar]
  61. KimJ.H. ChoiS.K. ChoiS.Y. KimH.K. ChangH.I. Suppressive effect of astaxanthin isolated from the Xanthophyllomyces dendrorhous mutant on ethanol-induced gastric mucosal injury in rats.Biosci. Biotechnol. Biochem.20056971300130510.1271/bbb.69.130016041134
    [Google Scholar]
  62. LamarcheF. CarcenacC. GonthierB. Cottet-RousselleC. ChauvinC. BarretL. LeverveX. SavastaM. FontaineE. Mitochondrial permeability transition pore inhibitors prevent ethanol-induced neuronal death in mice.Chem. Res. Toxicol.2013261788810.1021/tx300395w23268549
    [Google Scholar]
  63. ColuccinoG. MuracaV.P. CorazzaA. LippeG. Cyclophilin D in mitochondrial dysfunction: A key player in neurodegeneration?Biomolecules2023138126510.3390/biom1308126537627330
    [Google Scholar]
  64. CromptonM. VirjiS. WardJ.M. 31 Cyclophilin-D binding proteins.Biochem. Soc. Trans.1998264S33010.1042/bst026s33010047844
    [Google Scholar]
  65. LeungA.W.C. VaranyuwatanaP. HalestrapA.P. The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition.J. Biol. Chem.200828339263122632310.1074/jbc.M80523520018667415
    [Google Scholar]
  66. JavadovS. JangS. Parodi-RullánR. KhuchuaZ. KuznetsovA.V. Mitochondrial permeability transition in cardiac ischemia–reperfusion: whether cyclophilin D is a viable target for cardioprotection?Cell. Mol. Life Sci.201774152795281310.1007/s00018‑017‑2502‑428378042
    [Google Scholar]
  67. KadamA. JadiyaP. TomarD. Post-translational modifications and protein quality control of mitochondrial channels and transporters.Front. Cell Dev. Biol.202311119646610.3389/fcell.2023.119646637601094
    [Google Scholar]
  68. AzarashviliT. KrestininaO. GalvitaA. GrachevD. BaburinaY. StrickerR. EvtodienkoY. ReiserG. Ca 2+ -dependent permeability transition regulation in rat brain mitochondria by 2′,3′-cyclic nucleotides and 2′,3′-cyclic nucleotide 3′-phosphodiesterase.Am. J. Physiol. Cell Physiol.20092966C1428C143910.1152/ajpcell.00006.200919357238
    [Google Scholar]
  69. OlgaK. YuliaB. VassiliosP. The functions of mitochondrial 2′,3′-cyclic nucleotide-3′-phosphodiesterase and prospects for its future.Int. J. Mol. Sci.2020219321710.3390/ijms2109321732370072
    [Google Scholar]
  70. Da CostaR.T. RiggsL.M. SolesioM.E. Inorganic polyphosphate and the regulation of mitochondrial physiology.Biochem. Soc. Trans.20235162153216110.1042/BST2023073537955101
    [Google Scholar]
  71. KimH.K. KimM. MarquezJ.C. JeongS.H. KoT.H. NohY.H. KhaP.T. ChoiH.M. KimD.H. KimJ.T. YangY.I. KoK.S. RheeB.D. ShubinaL.K. MakarievaT.N. YashunskyD.Y. GerbstA.G. NifantievN.E. StonikV.A. HanJ. Novel GSK-3β inhibitor neopetroside a protects against murine myocardial ischemia/reperfusion injury.JACC Basic Transl. Sci.20227111102111610.1016/j.jacbts.2022.05.00436687267
    [Google Scholar]
  72. FiolC.J. WilliamsJ.S. ChouC.H. WangQ.M. RoachP.J. AndrisaniO.M. A secondary phosphorylation of CREB341 at Ser129 is required for the cAMP-mediated control of gene expression. A role for glycogen synthase kinase-3 in the control of gene expression.J. Biol. Chem.199426951321873219310.1016/S0021‑9258(18)31619‑37798217
    [Google Scholar]
  73. LeeJ. KimC.H. SimonD.K. AminovaL.R. AndreyevA.Y. KushnarevaY.E. MurphyA.N. LonzeB.E. KimK.S. GintyD.D. FerranteR.J. RyuH. RatanR.R. Mitochondrial cyclic AMP response element-binding protein (CREB) mediates mitochondrial gene expression and neuronal survival.J. Biol. Chem.200528049403984040110.1074/jbc.C50014020016207717
    [Google Scholar]
  74. WangY.L. ZhuX.L. SunM.H. DangY.K. Effects of astaxanthin onaxonal regeneration via cAMP/PKA signaling pathway in mice with focal cerebral infarction.Eur. Rev. Med. Pharmacol. Sci.2019233Suppl.13514331389584
    [Google Scholar]
  75. DaiW. JiangL. Dysregulated mitochondrial dynamics and metabolism in obesity, diabetes, and cancer.Front. Endocrinol.20191057010.3389/fendo.2019.0057031551926
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673316592240822102619
Loading
/content/journals/cmc/10.2174/0109298673316592240822102619
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test