Skip to content
2000
image of Potential Targets for the Protective Effect of Astaxanthin on Ethanol-induced Damage in Rat Liver Mitochondria

Abstract

Background

Alcohol intoxication leads to multiple degenerative disorders in the structure and function of mitochondria. The mechanisms underlying these disorders, as well as ways to prevent them, are an urgent task in biomedicine. We investigate the mechanism of the positive effect of AX on rat liver mitochondria after chronic alcohol administration and suggest the targets of its effects. In this work, we continued our studies of astaxanthin (AX) as a possible protector of mitochondria from the toxic effects of ethanol.

Method

In our experiments, we used the Lieber-DeCarly model of chronic alcohol intoxication, which allows high-dose alcohol intake. Four groups of animals were used in the experiments: group 1 (control), group 2 (treated with AX), group 3 (treated with ethanol), and group 4 (treated with ethanol and AX together). Rat liver mitochondria (RLM) were isolated by the standard method modified in our laboratory. A multifunctional chamber with built-in electrodes was used to determine mitochondrial functions. Electrophoresis followed by Western blot analysis was used to detect mitochondrial proteins. Statistical significance was calculated using -test Student-Newman- Keuls test.

Result

AX has been shown to have a positive effect on the functioning of the mitochondrial permeability transition pore (mPTP), the regulation of signaling pathways, as well as mitochondrial dynamics. It was found that AX is able to suppress the degenerative effect of alcohol on liver mitochondria. Targets for the protective action of AX in rat liver mitochondria (RLM) have been proposed.

Conclusion

The discovered protective effect of AX on liver mitochondria during alcohol damage may contribute to the development of new strategies for the treatment of alcohol-induced damage

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673316592240822102619
2024-08-30
2025-01-18
Loading full text...

Full text loading...

References

  1. Auger C. Alhasawi A. Contavadoo M. Appanna V.D. Dysfunctional mitochondrial bioenergetics and the pathogenesis of hepatic disorders. Front. Cell Dev. Biol. 2015 3 40 10.3389/fcell.2015.00040 26161384
    [Google Scholar]
  2. Baburina Y. Odinokova I. Krestinina O. The effects of PK11195 and protoporphyrin IX can modulate chronic alcohol intoxication in rat liver mitochondria under the opening of the mitochondrial permeability transition pore. Cells 2020 9 8 1774 10.3390/cells9081774 32722345
    [Google Scholar]
  3. King A.L. Swain T.M. Mao Z. Udoh U.S. Oliva C.R. Betancourt A.M. Griguer C.E. Crowe D.R. Lesort M. Bailey S.M. Involvement of the mitochondrial permeability transition pore in chronic ethanol-mediated liver injury in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2014 306 4 G265 G277 10.1152/ajpgi.00278.2013 24356880
    [Google Scholar]
  4. LeFort K.R. Rungratanawanich W. Song B.J. Contributing roles of mitochondrial dysfunction and hepatocyte apoptosis in liver diseases through oxidative stress, post-translational modifications, inflammation, and intestinal barrier dysfunction. Cell. Mol. Life Sci. 2024 81 1 34 10.1007/s00018‑023‑05061‑7 38214802
    [Google Scholar]
  5. Manzo-Avalos S. Saavedra-Molina A. Cellular and mitochondrial effects of alcohol consumption. Int. J. Environ. Res. Public Health 2010 7 12 4281 4304 10.3390/ijerph7124281 21318009
    [Google Scholar]
  6. Siggins R.W. McTernan P.M. Simon L. Souza-Smith F.M. Molina P.E. Mitochondrial dysfunction: At the nexus between alcohol-associated immunometabolic dysregulation and tissue injury. Int. J. Mol. Sci. 2023 24 10 8650 10.3390/ijms24108650 37239997
    [Google Scholar]
  7. Subramaiyam N. Insights of mitochondrial involvement in alcoholic fatty liver disease. J. Cell. Physiol. 2023 238 10 2175 2190 10.1002/jcp.31100 37642259
    [Google Scholar]
  8. Nestler E.J. Molecular mechanisms of drug addiction. J. Neurosci. 1992 12 7 2439 2450 10.1523/JNEUROSCI.12‑07‑02439.1992 1319476
    [Google Scholar]
  9. Lelevich S.V. Comparative feature of the glucose metabolism in liver of the rats under acute alcohol and morphine intoxication. Biomed. Khim. 2011 57 6 615 623 10.18097/pbmc20115706615 22359917
    [Google Scholar]
  10. Baburina Y. Odinokova I. Krestinina O. Carbenoxolon is capable to regulate the mitochondrial permeability transition pore opening in chronic alcohol intoxication. Int. J. Mol. Sci. 2021 22 19 10249 10.3390/ijms221910249 34638588
    [Google Scholar]
  11. Bonet-Ponce L. Saez-Atienzar S. da Casa C. Flores-Bellver M. Barcia J.M. Sancho-Pelluz J. Romero F.J. Jordan J. Galindo M.F. On the mechanism underlying ethanol-induced mitochondrial dynamic disruption and autophagy response. Biochim. Biophys. Acta Mol. Basis Dis. 2015 1852 7 1400 1409 10.1016/j.bbadis.2015.03.006 25779081
    [Google Scholar]
  12. Hwang H. Liu R. Eldridge R. Hu X. Forghani P. Jones D.P. Xu C. Chronic ethanol exposure induces mitochondrial dysfunction and alters gene expression and metabolism in human cardiac spheroids. Alcohol. Clin. Exp. Res. 2023 47 4 643 658 10.1111/acer.15026 36799338
    [Google Scholar]
  13. Samuvel D.J. Li L. Krishnasamy Y. Gooz M. Takemoto K. Woster P.M. Lemasters J.J. Zhong Z. Mitochondrial depolarization after acute ethanol treatment drives mitophagy in living mice. Autophagy 2022 18 11 2671 2685 10.1080/15548627.2022.2046457 35293288
    [Google Scholar]
  14. Zhang S. Rao S. Yang M. Ma C. Hong F. Yang S. Role of mitochondrial pathways in cell apoptosis during he-patic ischemia/reperfusion injury. Int. J. Mol. Sci. 2022 23 4 2357 10.3390/ijms23042357 35216473
    [Google Scholar]
  15. Baburina Y.L. Zvyagina A.I. Odinokova I.V. Krestinina O.V. Effect of erastin and G3139 on rat liver mitochondria in chronic alcoholic intoxication. Biomed. Khim. 2023 69 1 62 71 10.18097/pbmc20236901062 36857428
    [Google Scholar]
  16. Luo Y. Chen P. Yang L.P. Duan X.H. Effect of ethanol extract of Gastrodiae Rhizoma on mitochondrial dysfunction in cerebral ischemia-reperfusion injury. Zhongguo Zhongyao Zazhi 2022 47 20 5564 5573 36471974
    [Google Scholar]
  17. Baev A.Y. Vinokurov A.Y. Potapova E.V. Dunaev A.V. Angelova P.R. Abramov A.Y. Mitochondrial permeability transition, cell death and neurodegeneration. Cells 2024 13 7 648 10.3390/cells13070648 38607087
    [Google Scholar]
  18. NavaneethaKrishnan S. Rosales J.L. Lee K.Y. mPTP opening caused by Cdk5 loss is due to increased mitochondrial Ca2+ uptake. Oncogene 2020 39 13 2797 2806 10.1038/s41388‑020‑1188‑5 32024968
    [Google Scholar]
  19. Azarashvili T. Krestinina O. Yurkov I. Evtodienko Y. Reiser G. High-affinity peripheral benzodiazepine receptor ligand, PK11195, regulates protein phosphorylation in rat brain mitochondria under control of Ca 2+. J. Neurochem. 2005 94 4 1054 1062 10.1111/j.1471‑4159.2005.03260.x 16092946
    [Google Scholar]
  20. Kharechkina E.S. Nikiforova A.B. Kruglov A.G. Regulation of mitochondrial permeability transition pore opening by monovalent cations in liver mitochondria. Int. J. Mol. Sci. 2023 24 11 9237 10.3390/ijms24119237 37298189
    [Google Scholar]
  21. Neginskaya M.A. Morris S.E. Pavlov E.V. Refractive index imaging reveals that elimination of the ATP synthase c subunit does not prevent the adenine nucleotide translocase-dependent mitochondrial permeability transition. Cells 2023 12 15 1950 10.3390/cells12151950 37566029
    [Google Scholar]
  22. Bround M.J. Havens J.R. York A.J. Sargent M.A. Karch J. Molkentin J.D. ANT-dependent MPTP underlies necrotic myofiber death in muscular dystrophy. Sci. Adv. 2023 9 34 eadi2767 10.1126/sciadv.adi2767 37624892
    [Google Scholar]
  23. Baburina Y. Krestinin R. Fedorov D. Odinokova I. Pershina E. Sotnikova L. Krestinina O. The improvement of functional state of brain mitochondria with astaxanthin in rats after heart failure. Int. J. Mol. Sci. 2022 24 1 31 10.3390/ijms24010031 36613474
    [Google Scholar]
  24. Baburina Y. Azarashvili T. Grachev D. Krestinina O. Galvita A. Stricker R. Reiser G. Mitochondrial 2′, 3′-cyclic nucleotide 3′-phosphodiesterase (CNP) interacts with mPTP modulators and functional complexes (I–V) coupled with release of apoptotic factors. Neurochem. Int. 2015 90 46 55 10.1016/j.neuint.2015.07.012 26188334
    [Google Scholar]
  25. Azarashvili T. Krestinina O. Baburina Y. Odinokova I. Grachev D. Papadopoulos V. Akatov V. Lemasters J.J. Reiser G. Combined effect of G3139 and TSPO ligands on Ca2+-induced permeability transition in rat brain mitochondria. Arch. Biochem. Biophys. 2015 587 70 77 10.1016/j.abb.2015.10.012 26498031
    [Google Scholar]
  26. Gatliff J. East D. Crosby J. Abeti R. Harvey R. Craigen W. Parker P. Campanella M. TSPO interacts with VDAC1 and triggers a ROS-mediated inhibition of mitochondrial quality control. Autophagy 2014 10 12 2279 2296 10.4161/15548627.2014.991665 25470454
    [Google Scholar]
  27. Shoshan-Barmatz V. Pittala S. Mizrachi D. VDAC1 and the TSPO: Expression, interactions, and associated functions in health and disease states. Int. J. Mol. Sci. 2019 20 13 3348 10.3390/ijms20133348 31288390
    [Google Scholar]
  28. Waddell J. McKenna M.C. Kristian T. Brain ethanol metabolism and mitochondria. Curr. Top. Biochem. Res. 2022 23 1 13 36873619
    [Google Scholar]
  29. Kraus F. Roy K. Pucadyil T.J. Ryan M.T. Function and regulation of the divisome for mitochondrial fission. Nature 2021 590 7844 57 66 10.1038/s41586‑021‑03214‑x 33536648
    [Google Scholar]
  30. van der Bliek A.M. Shen Q. Kawajiri S. Mechanisms of mitochondrial fission and fusion. Cold Spring Harb. Perspect. Biol. 2013 5 6 a011072 10.1101/cshperspect.a011072 23732471
    [Google Scholar]
  31. Kitagaki H. Araki Y. Funato K. Shimoi H. Ethanol-induced death in yeast exhibits features of apoptosis mediated by mitochondrial fission pathway. FEBS Lett. 2007 581 16 2935 2942 10.1016/j.febslet.2007.05.048 17544409
    [Google Scholar]
  32. Ibrahim B.M. Fan M. Abdel-Rahman A.A. Oxidative stress and autonomic dysregulation contribute to the acute time-dependent myocardial depressant effect of ethanol in conscious female rats. Alcohol. Clin. Exp. Res. 2014 38 5 1205 1215 10.1111/acer.12363 24754626
    [Google Scholar]
  33. El-Mas M.M. Abdel-Rahman A.A. Estrogen modulation of the ethanol-evoked myocardial oxidative stress and dysfunction via DAPK3/Akt/ERK activation in male rats. Toxicol. Appl. Pharmacol. 2015 287 3 284 292 10.1016/j.taap.2015.06.015 26111663
    [Google Scholar]
  34. Weishaar R. Sarma J.S.M. Maruyama Y. Fischer R. Bertuglia S. Bing R.J. Reversibility of mitochondrial and contractile changes in the myocardium after cessation of prolonged ethanol intake. Am. J. Cardiol. 1977 40 4 556 562 10.1016/0002‑9149(77)90071‑6 562064
    [Google Scholar]
  35. Mashimo K. Arthur P.G. Ohno Y. Ethanol dose- and time-dependently increases α and β subunits of mitochondrial ATP synthase of cultured neonatal rat cardiomyocytes. J. Nippon Med. Sch. 2015 82 5 237 245 10.1272/jnms.82.237 26568390
    [Google Scholar]
  36. Zhong L. Zhu J. Lv T. Chen G. Sun H. Yang X. Huang X. Tian J. Ethanol and its metabolites induce histone lysine 9 acetylation and an alteration of the expression of heart development-related genes in cardiac progenitor cells. Cardiovasc. Toxicol. 2010 10 4 268 274 10.1007/s12012‑010‑9081‑z 20811785
    [Google Scholar]
  37. Matyas C. Varga Z.V. Mukhopadhyay P. Paloczi J. Lajtos T. Erdelyi K. Nemeth B.T. Nan M. Hasko G. Gao B. Pacher P. Chronic plus binge ethanol feeding induces myocardial oxidative stress, mitochondrial and cardiovascular dysfunction, and steatosis. Am. J. Physiol. Heart Circ. Physiol. 2016 310 11 H1658 H1670 10.1152/ajpheart.00214.2016 27106042
    [Google Scholar]
  38. Eftekhari A. Hasanzadeh A. Khalilov R. Hosainzadegan H. Ahmadian E. Eghbal M.A. Hepatoprotective role of berberine against paraquat-induced liver toxicity in rat. Environ. Sci. Pollut. Res. Int. 2020 27 5 4969 4975 10.1007/s11356‑019‑07232‑1 31845254
    [Google Scholar]
  39. Fard J. Hamzeiy H. Sattari M. Eftekhari A. Ahmadian E. Eghbal M. Triazole rizatriptan induces liver toxicity through lysosomal/mitochondrial dysfunction. Drug Res. 2016 66 9 470 478 10.1055/s‑0042‑110178 27399851
    [Google Scholar]
  40. Ahmadian E. Babaei H. Mohajjel Nayebi A. Eftekhari A. Eghbal M.A. Mechanistic approach for toxic effects of bupropion in primary rat hepatocytes. Drug Res. 2017 67 4 217 222 10.1055/s‑0042‑123034 28118671
    [Google Scholar]
  41. Krestinina O. Odinokova I. Sotnikova L. Krestinin R. Zvyagina A. Baburina Y. Astaxanthin is able to prevent alcohol-induced dysfunction of liver mitochondria. Antioxidants 2022 11 10 2019 10.3390/antiox11102019 36290741
    [Google Scholar]
  42. Lieber C.S. DeCarli L.M. Liquid diet technique of ethanol administration: 1989 update. Alcohol Alcohol. 1989 24 3 197 211 2667528
    [Google Scholar]
  43. Baburina Y. Krestinin R. Odinokova I. Sotnikova L. Kruglov A. Krestinina O. Astaxanthin inhibits mitochondrial permeability transition pore opening in rat heart mitochondria. Antioxidants 2019 8 12 576 10.3390/antiox8120576 31766490
    [Google Scholar]
  44. Krestinina O. Baburina Y. Krestinin R. Odinokova I. Fadeeva I. Sotnikova L. Astaxanthin prevents mitochondrial impairment induced by isoproterenol in isolated rat heart mitochondria. Antioxidants 2020 9 3 262 10.3390/antiox9030262 32210012
    [Google Scholar]
  45. Azarashvili T. Grachev D. Krestinina O. Evtodienko Y. Yurkov I. Papadopoulos V. Reiser G. The peripheral-type benzodiazepine receptor is involved in control of Ca2+-induced permeability transition pore opening in rat brain mitochondria. Cell Calcium 2007 42 1 27 39 10.1016/j.ceca.2006.11.004 17174393
    [Google Scholar]
  46. Reiser G. Kunzelmann U. Steinhilber G. Binmöller F.J. Generation of a monoclonal antibody against the myelin protein CNP (2′,3′-cyclic nucleotide 3′-phosphodiesterase) suitable for biochemical and for immunohistochemical investigations of CNP. Neurochem. Res. 1994 19 12 1479 1485 10.1007/BF00968994 7877717
    [Google Scholar]
  47. Lim S. Smith K.R. Lim S.T.S. Tian R. Lu J. Tan M. Regulation of mitochondrial functions by protein phosphorylation and dephosphorylation. Cell Biosci. 2016 6 1 25 10.1186/s13578‑016‑0089‑3 27087918
    [Google Scholar]
  48. Xi J. Wang H. Mueller R.A. Norfleet E.A. Xu Z. Mechanism for resveratrol-induced cardioprotection against reperfusion injury involves glycogen synthase kinase 3β and mitochondrial permeability transition pore. Eur. J. Pharmacol. 2009 604 1-3 111 116 10.1016/j.ejphar.2008.12.024 19135050
    [Google Scholar]
  49. Bijur G.N. Jope R.S. Glycogen synthase kinase-3β is highly activated in nuclei and mitochondria. Neuroreport 2003 14 18 2415 2419 10.1097/00001756‑200312190‑00025 14663202
    [Google Scholar]
  50. Nishihara M. Miura T. Miki T. Tanno M. Yano T. Naitoh K. Ohori K. Hotta H. Terashima Y. Shimamoto K. Modulation of the mitochondrial permeability transition pore complex in GSK-3β-mediated myocardial protection. J. Mol. Cell. Cardiol. 2007 43 5 564 570 10.1016/j.yjmcc.2007.08.010 17931653
    [Google Scholar]
  51. Das S. Wong R. Rajapakse N. Murphy E. Steenbergen C. Glycogen synthase kinase 3 inhibition slows mitochondrial adenine nucleotide transport and regulates voltage-dependent anion channel phosphorylation. Circ. Res. 2008 103 9 983 991 10.1161/CIRCRESAHA.108.178970 18802025
    [Google Scholar]
  52. Azarashvili T. Odinokova I. Krestinina O. Baburina Y. Teplova V. Jahangir A. Holmuhamedov E. Acute ethanol exposure increases the activity of mitochondria-associated glycogen synthase kinase-3 beta (gsk-3β): Role in phosphorylation of mitochondrial proteins. Innov. j. med. heal. sci. 2013 3 163 170
    [Google Scholar]
  53. Bland A.R. Payne F.M. Ashton J.C. Jamialahmadi T. Sahebkar A. The cardioprotective actions of statins in targeting mitochondrial dysfunction associated with myocardial ischaemia-reperfusion injury. Pharmacol. Res. 2022 175 105986 10.1016/j.phrs.2021.105986 34800627
    [Google Scholar]
  54. Liang M.H. Chuang D.M. Differential roles of glycogen synthase kinase-3 isoforms in the regulation of transcriptional activation. J. Biol. Chem. 2006 281 41 30479 30484 10.1074/jbc.M607468200 16912034
    [Google Scholar]
  55. De Cesare D. Fimia G.M. Sassone-Corsi P. Signaling routes to CREM and CREB: Plasticity in transcriptional activation. Trends Biochem. Sci. 1999 24 7 281 285 10.1016/S0968‑0004(99)01414‑0 10390618
    [Google Scholar]
  56. Palma E. Ma X. Riva A. Iansante V. Dhawan A. Wang S. Ni H.M. Sesaki H. Williams R. Ding W.X. Chokshi S. Dynamin-1–like protein inhibition drives megamitochondria formation as an adaptive response in alcohol-induced hepatotoxicity. Am. J. Pathol. 2019 189 3 580 589 10.1016/j.ajpath.2018.11.008 30553835
    [Google Scholar]
  57. Oh K.H. Sheoran S. Richmond J.E. Kim H. Alcohol induces mitochondrial fragmentation and stress responses to maintain normal muscle function in Caenorhabditis elegans. FASEB J. 2020 34 6 8204 8216 10.1096/fj.201903166R 32294300
    [Google Scholar]
  58. Choi Y. Seo H. Cho M. Kim J. Chung H.S. Lee I. Kim M.J. Rutin inhibits DRP1-mediated mitochondrial fission and prevents ethanol-induced hepatotoxicity in HepG2 cells and zebrafish. Anim. Cells Syst. 2021 25 1 74 81 10.1080/19768354.2021.1882565 33717419
    [Google Scholar]
  59. Han J. Lee C. Hur J. Jung Y. Current therapeutic options and potential of mesenchymal stem cell therapy for alcoholic liver disease. Cells 2022 12 1 22 10.3390/cells12010022 36611816
    [Google Scholar]
  60. Han J.H. Ju J.H. Lee Y.S. Park J.H. Yeo I.J. Park M.H. Roh Y.S. Han S.B. Hong J.T. Astaxanthin alleviated ethanol-induced liver injury by inhibition of oxidative stress and inflammatory responses via blocking of STAT3 activity. Sci. Rep. 2018 8 1 14090 10.1038/s41598‑018‑32497‑w 30237578
    [Google Scholar]
  61. Kim J.H. Choi S.K. Choi S.Y. Kim H.K. Chang H.I. Suppressive effect of astaxanthin isolated from the Xanthophyllomyces dendrorhous mutant on ethanol-induced gastric mucosal injury in rats. Biosci. Biotechnol. Biochem. 2005 69 7 1300 1305 10.1271/bbb.69.1300 16041134
    [Google Scholar]
  62. Lamarche F. Carcenac C. Gonthier B. Cottet-Rousselle C. Chauvin C. Barret L. Leverve X. Savasta M. Fontaine E. Mitochondrial permeability transition pore inhibitors prevent ethanol-induced neuronal death in mice. Chem. Res. Toxicol. 2013 26 1 78 88 10.1021/tx300395w 23268549
    [Google Scholar]
  63. Coluccino G. Muraca V.P. Corazza A. Lippe G. Cyclophilin D in mitochondrial dysfunction: A key player in neurodegeneration? Biomolecules 2023 13 8 1265 10.3390/biom13081265 37627330
    [Google Scholar]
  64. Crompton M. Virji S. Ward J.M. 31 Cyclophilin-D binding proteins. Biochem. Soc. Trans. 1998 26 4 S330 10.1042/bst026s330 10047844
    [Google Scholar]
  65. Leung A.W.C. Varanyuwatana P. Halestrap A.P. The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition. J. Biol. Chem. 2008 283 39 26312 26323 10.1074/jbc.M805235200 18667415
    [Google Scholar]
  66. Javadov S. Jang S. Parodi-Rullán R. Khuchua Z. Kuznetsov A.V. Mitochondrial permeability transition in cardiac ischemia–reperfusion: whether cyclophilin D is a viable target for cardioprotection? Cell. Mol. Life Sci. 2017 74 15 2795 2813 10.1007/s00018‑017‑2502‑4 28378042
    [Google Scholar]
  67. Kadam A. Jadiya P. Tomar D. Post-translational modifications and protein quality control of mitochondrial channels and transporters. Front. Cell Dev. Biol. 2023 11 1196466 10.3389/fcell.2023.1196466 37601094
    [Google Scholar]
  68. Azarashvili T. Krestinina O. Galvita A. Grachev D. Baburina Y. Stricker R. Evtodienko Y. Reiser G. Ca 2+ -dependent permeability transition regulation in rat brain mitochondria by 2′,3′-cyclic nucleotides and 2′,3′-cyclic nucleotide 3′-phosphodiesterase. Am. J. Physiol. Cell Physiol. 2009 296 6 C1428 C1439 10.1152/ajpcell.00006.2009 19357238
    [Google Scholar]
  69. Olga K. Yulia B. Vassilios P. The functions of mitochondrial 2′,3′-cyclic nucleotide-3′-phosphodiesterase and prospects for its future. Int. J. Mol. Sci. 2020 21 9 3217 10.3390/ijms21093217 32370072
    [Google Scholar]
  70. Da Costa R.T. Riggs L.M. Solesio M.E. Inorganic polyphosphate and the regulation of mitochondrial physiology. Biochem. Soc. Trans. 2023 51 6 2153 2161 10.1042/BST20230735 37955101
    [Google Scholar]
  71. Kim H.K. Kim M. Marquez J.C. Jeong S.H. Ko T.H. Noh Y.H. Kha P.T. Choi H.M. Kim D.H. Kim J.T. Yang Y.I. Ko K.S. Rhee B.D. Shubina L.K. Makarieva T.N. Yashunsky D.Y. Gerbst A.G. Nifantiev N.E. Stonik V.A. Han J. Novel GSK-3β inhibitor neopetroside a protects against murine myocardial ischemia/reperfusion injury. JACC Basic Transl. Sci. 2022 7 11 1102 1116 10.1016/j.jacbts.2022.05.004 36687267
    [Google Scholar]
  72. Fiol C.J. Williams J.S. Chou C.H. Wang Q.M. Roach P.J. Andrisani O.M. A secondary phosphorylation of CREB341 at Ser129 is required for the cAMP-mediated control of gene expression. A role for glycogen synthase kinase-3 in the control of gene expression. J. Biol. Chem. 1994 269 51 32187 32193 10.1016/S0021‑9258(18)31619‑3 7798217
    [Google Scholar]
  73. Lee J. Kim C.H. Simon D.K. Aminova L.R. Andreyev A.Y. Kushnareva Y.E. Murphy A.N. Lonze B.E. Kim K.S. Ginty D.D. Ferrante R.J. Ryu H. Ratan R.R. Mitochondrial cyclic AMP response element-binding protein (CREB) mediates mitochondrial gene expression and neuronal survival. J. Biol. Chem. 2005 280 49 40398 40401 10.1074/jbc.C500140200 16207717
    [Google Scholar]
  74. Wang Y.L. Zhu X.L. Sun M.H. Dang Y.K. Effects of astaxanthin onaxonal regeneration via cAMP/PKA signaling pathway in mice with focal cerebral infarction. Eur. Rev. Med. Pharmacol. Sci. 2019 23 3 Suppl. 135 143 31389584
    [Google Scholar]
  75. Dai W. Jiang L. Dysregulated mitochondrial dynamics and metabolism in obesity, diabetes, and cancer. Front. Endocrinol. 2019 10 570 10.3389/fendo.2019.00570 31551926
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673316592240822102619
Loading
/content/journals/cmc/10.2174/0109298673316592240822102619
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test