Skip to content
2000
image of Quassinoids as Promising Anti-cancer Agents

Abstract

The use of current anticancer drugs is hampered by significant side effects and high costs. In the pursuit of safer, more effective, and affordable options, researchers have turned to nature as a valuable source of potential anticancer compounds. Quassinoids, a class of natural terpenoids, have garnered attention for their anticancer properties. This comprehensive review aims to shed light on natural quassinoids and their anticancer effects, offering valuable insights for researchers dedicated to the development of novel anticancer therapeutics.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673313760240911160930
2024-10-04
2024-11-26
Loading full text...

Full text loading...

References

  1. Park J.H. Pyun W.Y. Park H.W. Cancer metabolism: Phenotype, signaling and therapeutic targets. Cells 2020 9 10 2308 10.3390/cells9102308 33081387
    [Google Scholar]
  2. Pavlova N.N. Thompson C.B. The emerging hallmarks of cancer metabolism. Cell Metab. 2016 23 1 27 47 10.1016/j.cmet.2015.12.006 26771115
    [Google Scholar]
  3. Bray F. Ferlay J. Soerjomataram I. Siegel R.L. Torre L.A. Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018 68 6 394 424 10.3322/caac.21492 30207593
    [Google Scholar]
  4. Fang X. Di Y.T. Zhang Y. Xu Z.P. Lu Y. Chen Q.Q. Zheng Q.T. Hao X.J. Unprecedented quassinoids with promising biological activity from Harrisonia perforata. Angew. Chem. Int. Ed. 2015 54 19 5592 5595 10.1002/anie.201412126 25810025
    [Google Scholar]
  5. Polonsky J. Quassinoid bitter principles. II. Fortschr. Chem. Org. Naturst. 1985 47 221 264 10.1007/978‑3‑7091‑8790‑6_4 3896993
    [Google Scholar]
  6. Xu Y. Liu J. Wu Y. Guo Q. Sun H. Chen G. Natural products against hematological malignancies and identification of their targets. Sci. China Life Sci. 2015 58 12 1191 1201 10.1007/s11427‑015‑4922‑4 26566803
    [Google Scholar]
  7. Morita H. Kishi E. Takeya K. Itokawa H. Iitaka Y. Highly oxygenated quassinoids from Eurycoma longifolia. Phytochemistry 1993 33 3 691 696 10.1016/0031‑9422(93)85475‑7
    [Google Scholar]
  8. Rosati A. Quaranta E. Ammirante M. Turco M.C. Leone A. De Feo V. Quassinoids can induce mitochondrial membrane depolarisation and caspase 3 activation in human cells. Cell Death Differ. 2004 11 S2 Suppl. 2 S216 S218 10.1038/sj.cdd.4401534 15608695
    [Google Scholar]
  9. Wei C. Chen C. Cheng Y. Zhu L. Wang Y. Luo C. He Y. Yang Z. Ji Z. Ailanthone induces autophagic and apoptotic cell death in human promyelocytic leukemia HL‑60 cells. Oncol. Lett. 2018 16 3 3569 3576 10.3892/ol.2018.9101 30127963
    [Google Scholar]
  10. Han F. Liu G. Sun C. Wei J. Ailanthone reverses multidrug resistance by inhibiting the P-glycoprotein-mediated efflux in resistant K562/A02 cells. Cell. Mol. Biol. 2018 64 15 55 61 10.14715/cmb/2017.64.15.9 30672437
    [Google Scholar]
  11. Kupchan S.M. Lacadie J.A. Tumor inhibitors. 101. Dehydroailanthinone, a new antileukemic quassinoid from Pierreodendron kerstingii. J. Org. Chem. 1975 40 5 654 656 10.1021/jo00893a024 1133628
    [Google Scholar]
  12. Hall I.H. Lee K.H. Elgebaly S.A. Imakura Y. Sumida Y. Wu R.Y. Antitumor agents. XXXIV: Mechanism of action of bruceoside A and brusatol on nucleic acid metabolism of P-388 lymphocytic leukemia cells. J. Pharm. Sci. 1979 68 7 883 887 10.1002/jps.2600680726 458610
    [Google Scholar]
  13. Hall I.H. Lee K.H. Okano M. Sims D. Ibuka T. Liou Y.F. Imakura Y. Antitumor agents XLII: Comparison of antileukemic activity of helenalin, brusatol, and bruceantin and their esters on different strains of P-388 lymphocytic leukemic cells. J. Pharm. Sci. 1981 70 10 1147 1150 10.1002/jps.2600701014 7299649
    [Google Scholar]
  14. Hall I.H. Liou Y.F. Okano M. Lee K.H. Antitumor agents XLVI: In vitro effects of esters of brusatol, bisbrusatol, and related compounds on nucleic acid and protein synthesis of P-388 lymphocytic leukemia cells. J. Pharm. Sci. 1982 71 3 345 348 10.1002/jps.2600710321 7069596
    [Google Scholar]
  15. Hall I.H. Liou Y.F. Lee K.H. Chaney S.G. Willingham W. Jr Antitumor agents LIX: Effects of quassinoids on protein synthesis of a number of murine tumors and normal cells. J. Pharm. Sci. 1983 72 6 626 630 10.1002/jps.2600720612 6875823
    [Google Scholar]
  16. Elgebaly S.A. Hall I.H. Lee K.H. Sumida Y. Imakura Y. Wu R.Y. Antitumor agents. XXXV: Effects of brusatol, bruceoside A, and bruceantin on P-388 lymphocytic leukemia cell respiration. J. Pharm. Sci. 1979 68 7 887 890 10.1002/jps.2600680727 222889
    [Google Scholar]
  17. Liou Y.F. Hall I.H. Okano M. Lee K.H. Chaney S.G. Antitumor agents XLVIII: Structure-activity relationships of quassinoids as in vitro protein synthesis inhibitors of P-388 lymphocytic leukemia tumor cell metabolism. J. Pharm. Sci. 1982 71 4 430 435 10.1002/jps.2600710414 7086652
    [Google Scholar]
  18. Lee K.H. Okano M. Hall I.H. Brent D.A. Soltmann B. Antitumor agents XLV: Bisbrusatolyl and brusatolyl esters and related compounds as novel potent antileukemic agents. J. Pharm. Sci. 1982 71 3 338 345 10.1002/jps.2600710320 7069595
    [Google Scholar]
  19. Lee K.H. Imakura Y. Huang H.C. Bruceoside-A, a novel antileukaemic quassinoid glycoside from Brucea javanica. J. Chem. Soc. Chem. Commun. 1977 2 69 69 10.1039/c39770000069
    [Google Scholar]
  20. Lee K.H. Imakura Y. Sumida Y. Wu R.Y. Hall I.H. Huang H.C. Antitumor agents. 33. Isolation and structural elucidation of bruceoside -A and -B, novel antileukemic quassinoid glycosides, and brucein -D and -E from Brucea javanica. J. Org. Chem. 1979 44 13 2180 2185 10.1021/jo01327a031
    [Google Scholar]
  21. Kupchan S.M. Britton R.W. Ziegler M.F. Sigel C.W. Bruceantin, a new potent antileukemic simaroubolide from Brucea antidysenterica. J. Org. Chem. 1973 38 1 178 179 10.1021/jo00941a049 4682660
    [Google Scholar]
  22. Kupchan S.M. Britton R.W. Lacadie J.A. Ziegler M.F. Sigel C.W. Tumor inhibitors. 100. Isolation and structural elucidation of bruceantin and bruceantinol, new potent antileukemic quassinoids from Brucea antidysenterica. J. Org. Chem. 1975 40 5 648 654 10.1021/jo00893a023 1133627
    [Google Scholar]
  23. Luyengi L. Suh N. Fong H.H.S. Pezzuto J.M. Kinghorn A.D. A lignan and four terpenoids from Brucea javanica that induce differentiation with cultured HL-60 promyelocytic leukemia cells. Phytochemistry 1996 43 2 409 412 10.1016/0031‑9422(96)00258‑0 8862033
    [Google Scholar]
  24. Mata-Greenwood E. Daeuble J.F. Grieco P.A. Dou J. McChesney J.D. Mehta R.G. Kinghorn A.D. Pezzuto J.M. Novel esters of glaucarubolone as inducers of terminal differentiation of promyelocytic HL-60 cells and inhibitors of 7,12-dimethylbenz[a]anthracene-induced preneoplastic lesion formation in mouse mammary organ culture. J. Nat. Prod. 2001 64 12 1509 1513 10.1021/np010212p 11754601
    [Google Scholar]
  25. Mata-Greenwood E. Cuendet M. Sher D. Gustin D. Stock W. Pezzuto J.M. Brusatol-mediated induction of leukemic cell differentiation and G1 arrest is associated with down-regulation of c-myc. Leukemia 2002 16 11 2275 2284 10.1038/sj.leu.2402696 12399973
    [Google Scholar]
  26. Cuendet M. Gills J.J. Pezzuto J.M. Brusatol-induced HL-60 cell differentiation involves NF-κB activation. Cancer Lett. 2004 206 1 43 50 10.1016/j.canlet.2003.11.011 15019158
    [Google Scholar]
  27. Karathedath S. Rajamani B.M. Musheer Aalam S.M. Abraham A. Varatharajan S. Krishnamurthy P. Mathews V. Velayudhan S.R. Balasubramanian P. Role of NF-E2 related factor 2 (Nrf2) on chemotherapy resistance in acute myeloid leukemia (AML) and the effect of pharmacological inhibition of Nrf2. PLoS One 2017 12 5 e0177227 10.1371/journal.pone.0177227 28505160
    [Google Scholar]
  28. Pei Y. Hwang N. Lang F. Zhou L. Wong J.H. Singh R.K. Jha H.C. El-Deiry W.S. Du Y. Robertson E.S. Quassinoid analogs with enhanced efficacy for treatment of hematologic malignancies target the PI3Kγ isoform. Commun. Biol. 2020 3 1 267 10.1038/s42003‑020‑0996‑z 32461675
    [Google Scholar]
  29. Cuendet M. Christov K. Lantvit D.D. Deng Y. Hedayat S. Helson L. McChesney J.D. Pezzuto J.M. Multiple myeloma regression mediated by bruceantin. Clin. Cancer Res. 2004 10 3 1170 1179 10.1158/1078‑0432.CCR‑0362‑3 14871997
    [Google Scholar]
  30. Cuendet M. Pezzuto J.M. Antitumor activity of bruceantin: An old drug with new promise. J. Nat. Prod. 2004 67 2 269 272 10.1021/np030304+ 14987068
    [Google Scholar]
  31. Issa M.E. Berndt S. Carpentier G. Pezzuto J.M. Cuendet M. Bruceantin inhibits multiple myeloma cancer stem cell proliferation. Cancer Biol. Ther. 2016 17 9 966 975 10.1080/15384047.2016.1210737 27434731
    [Google Scholar]
  32. Okano M. Fukamiya N. Aratani T. Juichi M. Lee K.H. Antitumor agents, 74. Bruceanol-A and -B, two new antileukemic quassinoids from Brucea antidysenterica. J. Nat. Prod. 1985 48 6 972 975 10.1021/np50042a017 3841557
    [Google Scholar]
  33. Okano M. Lee K.H. Hall I.H. Boettner F.E. Antitumor agents. 39. Bruceantinoside-A and -B, novel antileukemic quassinoid glucosides from Brucea antidysenterica. J. Nat. Prod. 1981 44 4 470 474 10.1021/np50016a013 7288443
    [Google Scholar]
  34. Sakaki T. Yoshimura S. Tsuyuki T. Takahashi T. Honda T. Yadanzioside P, a new antileukemic quassinoid glycoside from Brucea javanica (L.) merr with the 3-O-(.BETA.-D-glucopyranosyl)bruceantin structure. Chem. Pharm. Bull. 1986 34 10 4447 4450 10.1248/cpb.34.4447 3829175
    [Google Scholar]
  35. Sakaki T. Yoshimura S. Tsuyuki T. Takahashi T. Honda T. Nakanishi T. Structures of Yadanziosides K, M, N, and O, new quassinoid glycosides from Brucea javanica (L.) Merr. Bull. Chem. Soc. Jpn. 1986 59 11 3541 3546 10.1246/bcsj.59.3541
    [Google Scholar]
  36. Sakaki T. Yoshimura S. Ishibashi M. Tsuyuki T. Takahashi T. Honda T. Nakanishi T. Structures of new quassinoid glycosides, Yadanziosides A, B, C, D, E, G, H, and new quassinoids, dehydrobrusatol and dehydrobruceantinol from Brucea javanica (L.) Merr. Bull. Chem. Soc. Jpn. 1985 58 9 2680 2686 10.1246/bcsj.58.2680
    [Google Scholar]
  37. Yoshimura S. Sakaki T. Ishibashi M. Tsuyuki T. Takahashi T. Honda T. Constituents of seeds of Brucea javanica. Structures of new bitter principles, Yadanziolides A, B, C, Yadanziosides F, I, J, and L. Bull. Chem. Soc. Jpn. 1985 58 9 2673 2679 10.1246/bcsj.58.2673
    [Google Scholar]
  38. Fukamiya N. Okano M. Tagahara K. Aratani T. Muramoto Y. Lee K.H. Antitumor agents, 90. Bruceantinoside C, a new cytotoxic quassinoid glycoside from Brucea antidysenterica. J. Nat. Prod. 1987 50 6 1075 1079 10.1021/np50054a010 3443857
    [Google Scholar]
  39. Okano M. Fukamiya N. Toyota T. Tagahara K. Lee K.H. Antitumor agents, 104. Isolation of yadanziosides M and P from Brucea antidysenterica and identification of bruceantinoside B as a mixture of yadanzioside P and bruceantinoside C. J. Nat. Prod. 1989 52 2 398 401 10.1021/np50062a033 2746262
    [Google Scholar]
  40. Su B.N. Chang L.C. Park E.J. Cuendet M. Santarsiero B.D. Mesecar A.D. Mehta R.G. Fong H.H. Pezzuto J.M. Kinghorn A.D. Bioactive constituents of the seeds of Brucea javanica. Planta Med. 2002 68 8 730 733 10.1055/s‑2002‑33798 12221597
    [Google Scholar]
  41. Zhang J.Y. Lin M.T. Tung H.Y. Tang S.L. Yi T. Zhang Y.Z. Tang Y.N. Zhao Z.Z. Chen H.B. Bruceine D. Bruceine D induces apoptosis in human chronic myeloid leukemia K562 cells via mitochondrial pathway. Am. J. Cancer Res. 2016 6 4 819 826 27186433
    [Google Scholar]
  42. Seida A.A. Kinghorn A.D. Cordell G.A. Farnsworth N.R. Potential anticancer agents IX. Isolation of a new simaroubolide, 6alpha-tigloyloxychaparrinone, from Ailanthus integrifolia ssp. calycina (Simaroubaceae). Lloydia 1978 41 6 584 587 732541
    [Google Scholar]
  43. Polonsky J. Varon Z. Moretti C. Pettit G.R. Herald C.L. Rideout J.A. Saha S.B. Khastgir H.N. The antineoplastic quassinoids of Simaba cuspidata spruce and Ailanthus grandis Prain. J. Nat. Prod. 1980 43 4 503 509 10.1021/np50010a012 7431025
    [Google Scholar]
  44. Moretti C. Bhatnagar S. Beloeil J.C. Polonsky J. Two new quassinoids from Simaba multiflora fruits. J. Nat. Prod. 1986 49 3 440 444 10.1021/np50045a009 3760884
    [Google Scholar]
  45. François G. Diakanamwa C. Timperman G. Bringmann G. Steenackers T. Atassi G. Van Looveren M. Holenz J. Tassin J.P. AkéAssi L. Vanhaelen-Fastré R. Vanhaelen M. Antimalarial and cytotoxic potential of four quassinoids from Hannoa chlorantha and Hannoa klaineana, and their structure-activity relationships. Int. J. Parasitol. 1998 28 4 635 640 10.1016/S0020‑7519(98)00008‑3 9602388
    [Google Scholar]
  46. Ozeki A. Hitotsuyanagi Y. Hashimoto E. Itokawa H. Takeya K. de Mello Alves S. Cytotoxic quassinoids from Simaba cedron. J. Nat. Prod. 1998 61 6 776 780 10.1021/np980023f 9644063
    [Google Scholar]
  47. Hitotsuyanagi Y. Ozeki A. Itokawa H. de Mello Alves S. Takeya K. Cedronolactone E, a novel C(19) quassinoid from Simaba cedron. J. Nat. Prod. 2001 64 12 1583 1584 10.1021/np010364k 11754621
    [Google Scholar]
  48. Hajjouli S. Chateauvieux S. Teiten M.H. Orlikova B. Schumacher M. Dicato M. Choo C.Y. Diederich M. Eurycomanone and eurycomanol from Eurycoma longifolia Jack as regulators of signaling pathways involved in proliferation, cell death and inflammation. Molecules 2014 19 9 14649 14666 10.3390/molecules190914649 25230121
    [Google Scholar]
  49. Kupchan S.M. Lacadie J.A. Howie G.A. Sickles B.R. Structural requirements for biological activity among antileukemic glaucarubolone ester quassinoids. J. Med. Chem. 1976 19 9 1130 1133 10.1021/jm00231a009 978677
    [Google Scholar]
  50. Polonsky J. Varon Z. Jacquemin H. Pettit G.R. The isolation and structure of 13,18-dehydroglaucarubinone, a new antineoplastic quassinoid fromSimarouba amara. Experientia 1978 34 9 1122 1123 10.1007/BF01922904 720499
    [Google Scholar]
  51. Kim I.H. Suzuki R. Hitotsuyanagi Y. Takeya K. Three novel quassinoids, javanicolides A and B, and javanicoside A, from seeds of Brucea javanica. Tetrahedron 2003 59 50 9985 9989 10.1016/j.tet.2003.10.048
    [Google Scholar]
  52. Kim I.H. Takashima S. Hitotsuyanagi Y. Hasuda T. Takeya K. New quassinoids, javanicolides C and D and javanicosides B--F, from seeds of Brucea javanica. J. Nat. Prod. 2004 67 5 863 868 10.1021/np030484n 15165151
    [Google Scholar]
  53. Kim I.H. Hitotsuyanagi Y. Takeya K. Quassinoid glucosides from seeds of Brucea amarissima. Phytochemistry 2004 65 23 3167 3173 10.1016/j.phytochem.2004.08.029 15541747
    [Google Scholar]
  54. Polonsky J. Bhatnagar S. Moretti C. 15-Deacetylsergeolide, a potent antileukemic quassinoid from Picrolemma pseudocoffea. J. Nat. Prod. 1984 47 6 994 996 10.1021/np50036a014 6533270
    [Google Scholar]
  55. Cavalcanti B.C. da Costa P.M. Carvalho A.A. Rodrigues F.A.R. Amorim R.C.N. Silva E.C.C. Pohlit A.M. Costa-Lotufo L.V. Moraes M.O. Pessoa C. Involvement of intrinsic mitochondrial pathway in neosergeolide-induced apoptosis of human HL-60 leukemia cells: The role of mitochondrial permeability transition pore and DNA damage. Pharm. Biol. 2012 50 8 980 993 10.3109/13880209.2012.654921 22775415
    [Google Scholar]
  56. Polonsky M.V.T.J. Merienne C. Sevenet T. Sevenet T. Soularubinone, a new antileukemic quassionoid from Soulamea tomentosa. J. Nat. Prod. 1981 44 3 279 284 10.1021/np50015a007 7264678
    [Google Scholar]
  57. Zhao M. Lau S.T. Leung P.S. Che C.T. Lin Z.X. Seven quassinoids from Fructus Bruceae with cytotoxic effects on pancreatic adenocarcinoma cell lines. Phytother. Res. 2011 25 12 1796 1800 10.1002/ptr.3477 21480411
    [Google Scholar]
  58. Lu Z. Lai Z.Q. Leung A.W.N. Leung P.S. Li Z.S. Lin Z.X. Exploring brusatol as a new anti-pancreatic cancer adjuvant: biological evaluation and mechanistic studies. Oncotarget 2017 8 49 84974 84985 10.18632/oncotarget.17761 29156697
    [Google Scholar]
  59. Xiang Y. Ye W. Huang C. Lou B. Zhang J. Yu D. Huang X. Chen B. Zhou M. Brusatol inhibits growth and induces apoptosis in pancreatic cancer cells via JNK/p38 MAPK/NF-κb/Stat3/Bcl-2 signaling pathway. Biochem. Biophys. Res. Commun. 2017 487 4 820 826 10.1016/j.bbrc.2017.04.133 28455228
    [Google Scholar]
  60. Xiang Y. Ye W. Huang C. Yu D. Chen H. Deng T. Zhang F. Lou B. Zhang J. Shi K. Chen B. Zhou M. Brusatol enhances the chemotherapy efficacy of gemcitabine in pancreatic cancer via the Nrf2 signalling pathway. Oxid. Med. Cell. Longev. 2018 2018 1 10 10.1155/2018/2360427 29849873
    [Google Scholar]
  61. Lau S.T. Lin Z.X. Liao Y. Zhao M. Cheng C.H.K. Leung P.S. Brucein D. Brucein D induces apoptosis in pancreatic adenocarcinoma cell line PANC-1 through the activation of p38-mitogen activated protein kinase. Cancer Lett. 2009 281 1 42 52 10.1016/j.canlet.2009.02.017 19286308
    [Google Scholar]
  62. Lau S.T. Lin Z.X. Leung P.S. Role of reactive oxygen species in brucein D-mediated p38-mitogen-activated protein kinase and nuclear factor-κB signalling pathways in human pancreatic adenocarcinoma cells. Br. J. Cancer 2010 102 3 583 593 10.1038/sj.bjc.6605487 20068565
    [Google Scholar]
  63. Lin Z-X. Lin Z.X. Leung P.S. Chen L.H. Zhao M. Liang J. Involvement of the mitochondrial pathway in bruceine D-induced apoptosis in Capan-2 human pancreatic adenocarcinoma cells. Int. J. Mol. Med. 2012 30 1 93 99 10.3892/ijmm.2012.980 22552257
    [Google Scholar]
  64. Lai Z.Q. Ip S.P. Liao H.J. Lu Z. Xie J.H. Su Z.R. Chen Y.L. Xian Y.F. Leung P.S. Lin Z.X. Brucein D, a naturally occurring tetracyclic triterpene quassinoid, induces apoptosis in pancreatic cancer through ROS-associated PI3K/Akt signaling pathway. Front. Pharmacol. 2017 8 936 10.3389/fphar.2017.00936 29311937
    [Google Scholar]
  65. Zhang P. Tao W. Lu C. Fan L. Jiang Q. Yang C. Shang E. Cheng H. Che C. Duan J. Zhao M. Bruceine A induces cell growth inhibition and apoptosis through PFKFB4/GSK3β signaling in pancreatic cancer. Pharmacol. Res. 2021 169 105658 105658 10.1016/j.phrs.2021.105658 33992797
    [Google Scholar]
  66. Lu C. Fan L. Zhang P.F. Tao W.W. Yang C.B. Shang E.X. Chen F.Y. Che C.T. Cheng H.B. Duan J.A. Zhao M. A novel P38α MAPK activator Bruceine A exhibits potent anti-pancreatic cancer activity. Comput. Struct. Biotechnol. J. 2021 19 3437 3450 10.1016/j.csbj.2021.06.011 34194669
    [Google Scholar]
  67. Yeo D. Huynh N. Beutler J.A. Christophi C. Shulkes A. Baldwin G.S. Nikfarjam M. He H. Glaucarubinone and gemcitabine synergistically reduce pancreatic cancer growth via down-regulation of P21-activated kinases. Cancer Lett. 2014 346 2 264 272 10.1016/j.canlet.2014.01.001 24491405
    [Google Scholar]
  68. Yeo D. Huynh N. Beutler J.A. Baldwin G.S. He H. Nikfarjam M. Glaucarubinone combined with gemcitabine improves pancreatic cancer survival in an immunocompetent orthotopic murine model. J. Invest. Surg. 2016 29 6 366 372 10.3109/08941939.2016.1160167 27027695
    [Google Scholar]
  69. Wang Y. Wang W.J. Su C. Zhang D.M. Xu L.P. He R.R. Wang L. Zhang J. Zhang X.Q. Ye W.C. Cytotoxic quassinoids from Ailanthus altissima. Bioorg. Med. Chem. Lett. 2013 23 3 654 657 10.1016/j.bmcl.2012.11.116 23290052
    [Google Scholar]
  70. Zhuo Z. Hu J. Yang X. Chen M. Lei X. Deng L. Yao N. Peng Q. Chen Z. Ye W. Zhang D. Ailanthone inhibits Huh7 cancer cell growth via cell cycle arrest and apoptosis in vitro and in vivo. Sci. Rep. 2015 5 1 16185 10.1038/srep16185 26525771
    [Google Scholar]
  71. Olayanju A. Copple I.M. Bryan H.K. Edge G.T. Sison R.L. Wong M.W. Lai Z.Q. Lin Z.X. Dunn K. Sanderson C.M. Alghanem A.F. Cross M.J. Ellis E.C. Ingelman-Sundberg M. Malik H.Z. Kitteringham N.R. Goldring C.E. Park B.K. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity—implications for therapeutic targeting of Nrf2. Free Radic. Biol. Med. 2015 78 202 212 10.1016/j.freeradbiomed.2014.11.003 25445704
    [Google Scholar]
  72. Ye R. Dai N. He Q. Guo P. Xiang Y. Zhang Q. Hong Z. Zhang Q. Comprehensive anti-tumor effect of brusatol through inhibition of cell viability and promotion of apoptosis caused by autophagy via the PI3K/Akt/MTOR pathway in hepatocellular carcinoma. Biomed. Pharm. J. 2018 105 962 973 10.1016/j.biopha.2018.06.065
    [Google Scholar]
  73. Murakami Y. Sugiyama K. Ebinuma H. Nakamoto N. Ojiro K. Chu P. Taniki N. Saito Y. Teratani T. Koda Y. Suzuki T. Saito K. Fukasawa M. Ikeda M. Kato N. Kanai T. Saito H. Dual effects of the Nrf2 inhibitor for inhibition of hepatitis C virus and hepatic cancer cells. BMC Cancer 2018 18 1 680 10.1186/s12885‑018‑4588‑y 29940898
    [Google Scholar]
  74. Lee J.H. Mohan C.D. Deivasigamani A. Jung Y.Y. Rangappa S. Basappa S. Chinnathambi A. Alahmadi T.A. Alharbi S.A. Garg M. Lin Z.X. Rangappa K.S. Sethi G. Hui K.M. Ahn K.S. Brusatol suppresses STAT3-driven metastasis by downregulating epithelial-mesenchymal transition in hepatocellular carcinoma. J. Adv. Res. 2020 26 83 94 10.1016/j.jare.2020.07.004 33133685
    [Google Scholar]
  75. Wang T. Dou Y. Lin G. Li Q. Nie J. Chen B. Xie J. Su Z. Zeng H. Chen J. Xie Y. The anti-hepatocellular carcinoma effect of Brucea javanica oil in ascitic tumor-bearing mice: The detection of brusatol and its role. Biomed. Pharmacother. 2021 134 111122 111122 10.1016/j.biopha.2020.111122 33341052
    [Google Scholar]
  76. Xiao Z. Ching Chow S. Han Li C. Chun Tang S. Tsui S.K.W. Lin Z. Chen Y. Role of microRNA-95 in the anticancer activity of Brucein D in hepatocellular carcinoma. Eur. J. Pharmacol. 2014 728 141 150 10.1016/j.ejphar.2014.02.002 24530415
    [Google Scholar]
  77. Cheng Z. Yuan X. Qu Y. Li X. Wu G. Li C. Zu X. Yang N. Ke X. Zhou J. Xie N. Xu X. Liu S. Shen Y. Li H. Zhang W. Bruceine D. Bruceine D inhibits hepatocellular carcinoma growth by targeting β-catenin/jagged1 pathways. Cancer Lett. 2017 403 195 205 10.1016/j.canlet.2017.06.014 28645563
    [Google Scholar]
  78. Zakaria Y. Rahmat A. Pihie A. Abdullah N. Houghton P.J. Eurycomanone induce apoptosis in HepG2 cells via up-regulation of p53. Cancer Cell Int. 2009 9 1 16 10.1186/1475‑2867‑9‑16 19508737
    [Google Scholar]
  79. Seo J. Ha J. Kang E. Yoon H. Lee S. Ryu S.Y. Kim K. Cho S. Anti-cancer effects of glaucarubinone in the Hepatocellular Carcinoma cell line Huh7 via regulation of the epithelial-to-mesenchymal transition-associated transcription factor twist1. Int. J. Mol. Sci. 2021 22 4 1700 10.3390/ijms22041700 33567682
    [Google Scholar]
  80. Pei X.D. He S.Q. Shen L.Q. Wei J.C. Li X.S. Wei Y.Y. Zhang Y.M. Wang X.Y. Lin F. He Z.L. Jiang L.H. 14,15β-dihydroxyklaineanone inhibits HepG2 cell proliferation and migration through p38MAPK pathway. J. Pharm. Pharmacol. 2020 72 9 1165 1175 10.1111/jphp.13289 32419149
    [Google Scholar]
  81. Du Y.Q. Bai M. Yu X.Q. Lv T.M. Lin B. Huang X.X. Song S.J. Quassinoids from the root barks of Ailanthus altissima : Isolation, configurational assignment, and cytotoxic activities. Chin. J. Chem. 2021 39 4 879 886 10.1002/cjoc.202000558
    [Google Scholar]
  82. Sharma A. Mishra T. Thacker G. Mishra M. Narender T. Trivedi A.K. Chebulinic acid inhibits MDA‐MB‐231 breast cancer metastasis and promotes cell death through down regulation of SOD1 and induction of autophagy. Cell Biol. Int. 2020 44 12 2553 2569 10.1002/cbin.11463 32902904
    [Google Scholar]
  83. Ferlay J. Colombet M. Soerjomataram I. Parkin D.M. Piñeros M. Znaor A. Bray F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021 149 4 778 789 10.1002/ijc.33588 33818764
    [Google Scholar]
  84. Al-Mahmood S. Sapiezynski J. Garbuzenko O.B. Minko T. Metastatic and triple-negative breast cancer: Challenges and treatment options. Drug Deliv. Transl. Res. 2018 8 5 1483 1507 10.1007/s13346‑018‑0551‑3 29978332
    [Google Scholar]
  85. Wang R. Lu Y. Li H. Sun L. Yang N. Zhao M. Zhang M. Shi Q. Antitumor activity of the Ailanthus altissima bark phytochemical ailanthone against breast cancer MCF‑7 cells. Oncol. Lett. 2018 15 4 6022 6028 10.3892/ol.2018.8039 29552229
    [Google Scholar]
  86. Ye Q.M. Bai L.L. Hu S.Z. Tian H.Y. Ruan L.J. Tan Y.F. Hu L.P. Ye W.C. Zhang D.M. Jiang R.W. Isolation, chemotaxonomic significance and cytotoxic effects of quassinoids from Brucea javanica. Fitoterapia 2015 105 66 72 10.1016/j.fitote.2015.06.004 26071073
    [Google Scholar]
  87. Chandrasekaran J. Balasubramaniam J. Sellamuthu A. Ravi A. An in vitro study on the reversal of epithelial to mesenchymal transition by brusatol and its synergistic properties in triple-negative breast cancer cells. J. Pharm. Pharmacol. 2021 73 6 749 757 10.1093/jpp/rgab018 33769483
    [Google Scholar]
  88. do Amaral L.A. de Souza G.H.O. Santos M.R. Said Y.L.V. de Souza B.B. Oliveira R.J. dos Santos E.F. Walker-256 tumor: Experimental model, implantation sites and number of cells for ascitic and solid tumor development. Brazil. Arch. Biol. Technol. 2019 62
    [Google Scholar]
  89. Luo C. Wang Y. Wei C. Chen Y. Ji Z. The anti‑migration and anti‑invasion effects of Bruceine D in human triple‑negative breast cancer MDA‑MB‑231 cells. Exp. Ther. Med. 2019 19 1 273 279 10.3892/etm.2019.8187 31853299
    [Google Scholar]
  90. Tian S. Jing R. Zhang W. Network-based approach to identify the antiproliferative mechanisms of Bruceine D in breast cancer from the cancer genome Atlas. Front. Oncol. 2020 10 1001 10.3389/fonc.2020.01001 32714860
    [Google Scholar]
  91. Mohan C.D. Liew Y.Y. Jung Y.Y. Rangappa S. Preetham H.D. Chinnathambi A. Alahmadi T.A. Alharbi S.A. Lin Z.X. Rangappa K.S. Ahn K.S. Brucein D. Brucein D modulates MAPK signaling cascade to exert multi-faceted anti-neoplastic actions against breast cancer cells. Biochimie 2021 182 140 151 10.1016/j.biochi.2021.01.009 33484785
    [Google Scholar]
  92. Badal S.A.M. Asuncion Valenzuela M.M. Zylstra D. Huang G. Vendantam P. Francis S. Quitugua A. Amis L.H. Davis W. Tzeng T.R.J. Jacobs H. Gangemi D.J. Raner G. Rowland L. Wooten J. Campbell P. Brantley E. Delgoda R. Glaucarubulone glucoside from Castela macrophylla suppresses MCF‐7 breast cancer cell growth and attenuates benzo[ a ]pyrene‐mediated CYP1A gene induction. J. Appl. Toxicol. 2017 37 7 873 883 10.1002/jat.3436 28138972
    [Google Scholar]
  93. Cachet N. Ho-A-Kwie F. Rivaud M. Houël E. Deharo E. Bourdy G. Jullian V. Picrasin K, a new quassinoid from Quassia amara L. (Simaroubaceae). Phytochem. Lett. 2012 5 1 162 164 10.1016/j.phytol.2011.12.001
    [Google Scholar]
  94. Ni Z. Yao C. Zhu X. Gong C. Xu Z. Wang L. Li S. Zou C. Zhu S. Ailanthone inhibits non-small cell lung cancer cell growth through repressing DNA replication via downregulating RPA1. Br. J. Cancer 2017 117 11 1621 1630 10.1038/bjc.2017.319 29024939
    [Google Scholar]
  95. Zhou Y. Li Y. Ni H.M. Ding W.X. Zhong H. Nrf2 but not autophagy inhibition is associated with the survival of wild-type epidermal growth factor receptor non-small cell lung cancer cells. Toxicol. Appl. Pharmacol. 2016 310 140 149 10.1016/j.taap.2016.09.010 27639429
    [Google Scholar]
  96. Sun X. Wang Q. Wang Y. Du L. Xu C. Liu Q. Brusatol enhances the radiosensitivity of A549 cells by promoting ROS production and enhancing DNA damage. Int. J. Mol. Sci. 2016 17 7 997 10.3390/ijms17070997 27347930
    [Google Scholar]
  97. Vartanian S. Ma T.P. Lee J. Haverty P.M. Kirkpatrick D.S. Yu K. Stokoe D. Application of mass spectrometry profiling to establish brusatol as an inhibitor of global protein synthesis. Mol. Cell. Proteomics 2016 15 4 1220 1231 10.1074/mcp.M115.055509 26711467
    [Google Scholar]
  98. Harder B. Tian W. La Clair J.J. Tan A.C. Ooi A. Chapman E. Zhang D.D. Brusatol overcomes chemoresistance through inhibition of protein translation. Mol. Carcinog. 2017 56 5 1493 1500 10.1002/mc.22609 28019675
    [Google Scholar]
  99. Liu P. Wu D. Duan J. Xiao H. Zhou Y. Zhao L. Feng Y. NRF2 regulates the sensitivity of human NSCLC cells to cystine deprivation-induced ferroptosis via FOCAD-FAK signaling pathway. Redox Biol. 2020 37 101702 10.1016/j.redox.2020.101702 32898818
    [Google Scholar]
  100. Sun X. Wang Y. Ji K. Liu Y. Kong Y. Nie S. Li N. Hao J. Xie Y. Xu C. Du L. Liu Q. NRF2 preserves genomic integrity by facilitating ATR activation and G2 cell cycle arrest. Nucleic Acids Res. 2020 48 16 9109 9123 10.1093/nar/gkaa631 32729622
    [Google Scholar]
  101. Xie J. Lai Z. Zheng X. Liao H. Xian Y. Li Q. Wu J. Ip S. Xie Y. Chen J. Su Z. Lin Z. Yang X. Apoptotic activities of brusatol in human non-small cell lung cancer cells: Involvement of ROS-mediated mitochondrial-dependent pathway and inhibition of Nrf2-mediated antioxidant response. Toxicology 2021 451 152680 10.1016/j.tox.2021.152680 33465425
    [Google Scholar]
  102. Tan B. Huang Y. Lan L. Zhang B. Ye L. Yan W. Wang F. Lin N. Bruceine D. Bruceine D induces apoptosis in human non-small cell lung cancer cells through regulating JNK pathway. Biomed. Pharmacother. 2019 117 109089 109089 10.1016/j.biopha.2019.109089 31226632
    [Google Scholar]
  103. Xie J.H. Lai Z.Q. Zheng X.H. Xian Y.F. Li Q. Ip S.P. Xie Y.L. Chen J.N. Su Z.R. Lin Z.X. Yang X.B. Apoptosis induced by bruceine�D in human non‑small‑cell lung cancer cells involves mitochondrial ROS‑mediated death signaling. Int. J. Mol. Med. 2019 44 6 2015 2026 10.3892/ijmm.2019.4363 31638181
    [Google Scholar]
  104. Fan J. Ren D. Wang J. Liu X. Zhang H. Wu M. Yang G. Bruceine D. Bruceine D induces lung cancer cell apoptosis and autophagy via the ROS/MAPK signaling pathway in vitro and in vivo. Cell Death Dis. 2020 11 2 126 10.1038/s41419‑020‑2317‑3 32071301
    [Google Scholar]
  105. Zhao L. Wen Q. Yang G. Huang Z. Shen T. Li H. Ren D. Apoptosis induction of dehydrobruceine B on two kinds of human lung cancer cell lines through mitochondrial-dependent pathway. Phytomedicine 2016 23 2 114 122 10.1016/j.phymed.2015.12.019 26926172
    [Google Scholar]
  106. Huang Z. Yang G. Shen T. Wang X. Li H. Ren D. Dehydrobruceine B. Dehydrobruceine B enhances the cisplatin-induced cytotoxicity through regulation of the mitochondrial apoptotic pathway in lung cancer A549 cells. Biomed. Pharmacother. 2017 89 623 631 10.1016/j.biopha.2017.02.055 28262615
    [Google Scholar]
  107. Wong P.F. Cheong W.F. Shu M.H. Teh C.H. Chan K.L. AbuBakar S. Eurycomanone suppresses expression of lung cancer cell tumor markers, prohibitin, annexin 1 and endoplasmic reticulum protein 28. Phytomedicine 2012 19 2 138 144 10.1016/j.phymed.2011.07.001 21903368
    [Google Scholar]
  108. Dukaew N. Chairatvit K. Pitchakarn P. Imsumran A. Karinchai J. Tuntiwechapikul W. Wongnoppavich A. Inactivation of AKT/NF‑κB signaling by eurycomalactone decreases human NSCLC cell viability and improves the chemosensitivity to cisplatin. Oncol. Rep. 2020 44 4 1441 1454 10.3892/or.2020.7710 32945500
    [Google Scholar]
  109. Dukaew N. Konishi T. Chairatvit K. Autsavapromporn N. Soonthornchareonnon N. Wongnoppavich A. Enhancement of Radiosensitivity by Eurycomalactone in Human NSCLC Cells Through G 2/M Cell Cycle Arrest and Delayed DNA Double-Strand Break Repair. Oncol. Res. 2020 28 2 161 175 10.3727/096504019X15736439848765 31727206
    [Google Scholar]
  110. Dutt S.S. Gao A.C. Molecular mechanisms of castration-resistant prostate cancer progression. Future Oncol. 2009 5 9 1403 1413 10.2217/fon.09.117 19903068
    [Google Scholar]
  111. He Y. Peng S. Wang J. Chen H. Cong X. Chen A. Hu M. Qin M. Wu H. Gao S. Wang L. Wang X. Yi Z. Liu M. Ailanthone targets p23 to overcome MDV3100 resistance in castration-resistant prostate cancer. Nat. Commun. 2016 7 1 13122 10.1038/ncomms13122 27959342
    [Google Scholar]
  112. Peng S. Yi Z. Liu M. Ailanthone: A new potential drug for castration-resistant prostate cancer. Chin. J. Cancer 2017 36 1 25 10.1186/s40880‑017‑0194‑7 28257652
    [Google Scholar]
  113. Sk A. Te R. Nanoparticle Formulation of Brusatol: A Novel Therapeutic Option for Cancers. J. Pharm. Drug Deliv. Res. 2018 7 1 10.4172/2325‑9604.1000174
    [Google Scholar]
  114. Moon S.J. Jeong B.C. Kim H.J. Lim J.E. Kim H.J. Kwon G.Y. Jackman J.A. Kim J.H. Bruceantin targets HSP90 to overcome resistance to hormone therapy in castration-resistant prostate cancer. Theranostics 2021 11 2 958 973 10.7150/thno.51478 33391515
    [Google Scholar]
  115. Moladje Donkwe S. Happi E. Wansi J. Ndjakou Lenta B. Devkota K. Neumann B. Stammler H.G. Sewald N. Oxidative burst inhibitory and cytotoxic activity of constituents of the fruits of Odyendyea gabonensis. Planta Med. 2012 78 18 1949 1956 10.1055/s‑0032‑1327878 23136063
    [Google Scholar]
  116. Chen Y. Zhu L. Yang X. Wei C. Chen C. He Y. Ji Z. Ailanthone induces G2/M cell cycle arrest and apoptosis of SGC-7901 human gastric cancer cells. Mol. Med. Rep. 2017 16 5 6821 6827 10.3892/mmr.2017.7491 28901518
    [Google Scholar]
  117. Chen H. Jiang T. Chen H. Su J. Wang X. Cao Y. Li Q. Brusatol reverses lipopolysaccharide-induced epithelial-mesenchymal transformation and induces apoptosis through PI3K/Akt/NF-кB pathway in human gastric cancer SGC-7901 cells. Anticancer Drugs 2021 32 4 394 404 10.1097/CAD.0000000000001022 33229902
    [Google Scholar]
  118. Huang Y. Yang Y. Xu Y. Ma Q. Guo F. Zhao Y. Tao Y. Li M. Guo J. Nrf2/HO-1 axis regulates the angiogenesis of gastric cancer via targeting VEGF. Cancer Manag. Res. 2021 13 3155 3169 10.2147/CMAR.S292461 33889021
    [Google Scholar]
  119. Li L. Dong Z. Shi P. Tan L. Xu J. Huang P. Wang Z. Cui H. Yang L. Bruceine D. Bruceine D inhibits cell proliferation through downregulating LINC01667/MicroRNA-138-5p/Cyclin E1 axis in gastric cancer. Front. Pharmacol. 2020 11 584960 10.3389/fphar.2020.584960 33390953
    [Google Scholar]
  120. Semenza G.L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 2003 3 10 721 732 10.1038/nrc1187 13130303
    [Google Scholar]
  121. Lu Y. Wang B. Shi Q. Wang X. Wang D. Zhu L. Brusatol inhibits HIF-1 signaling pathway and suppresses glucose uptake under hypoxic conditions in HCT116 cells. Sci. Rep. 2016 6 1 39123 10.1038/srep39123 27982118
    [Google Scholar]
  122. Oh E.T. Kim C.W. Kim H.G. Lee J.S. Park H.J. Brusatol-mediated inhibition of c-Myc increases HIF-1α degradation and causes cell death in colorectal cancer under hypoxia. Theranostics 2017 7 14 3415 3431 10.7150/thno.20861 28912885
    [Google Scholar]
  123. Pollard P. Yang M. Su H. Soga T. Kranc K. Prolyl hydroxylase domain enzymes: Important regulators of cancer metabolism. Hypoxia 2014 2 127 142 10.2147/HP.S47968 27774472
    [Google Scholar]
  124. Chen H.M. Lai Z.Q. Liao H.J. Xie J.H. Xian Y.F. Chen Y.L. Ip S.P. Lin Z.X. Su Z.R. Synergistic antitumor effect of brusatol combined with cisplatin on colorectal cancer cells. Int. J. Mol. Med. 2018 41 3 1447 1454 10.3892/ijmm.2018.3372 29328398
    [Google Scholar]
  125. Evans J.P. Winiarski B.K. Sutton P.A. Jones R.P. Ressel L. Duckworth C.A. Pritchard D.M. Lin Z.X. Fretwell V.L. Tweedle E.M. Costello E. Goldring C.E. Copple I.M. Park B.K. Palmer D.H. Kitteringham N.R. The Nrf2 inhibitor brusatol is a potent antitumour agent in an orthotopic mouse model of colorectal cancer. Oncotarget 2018 9 43 27104 27116 10.18632/oncotarget.25497 29930754
    [Google Scholar]
  126. Verdina A. Di Segni M. Amoreo C. Sperduti I. Buglioni S. Mottolese M. Di Rocco G. Soddu S. HIPK2 is a potential predictive marker of a favorable response for adjuvant chemotherapy in stage II colorectal cancer. Oncol. Rep. 2020 45 3 899 910 10.3892/or.2020.7912 33650652
    [Google Scholar]
  127. Wei N. Li J. Fang C. Chang J. Xirou V. Syrigos N.K. Marks B.J. Chu E. Schmitz J.C. Targeting colon cancer with the novel STAT3 inhibitor bruceantinol. Oncogene 2019 38 10 1676 1687 10.1038/s41388‑018‑0547‑y 30348989
    [Google Scholar]
  128. Huynh N. Beutler J.A. Shulkes A. Baldwin G.S. He H. Glaucarubinone inhibits colorectal cancer growth by suppression of hypoxia-inducible factor 1α and β-catenin via a p-21 activated kinase 1-dependent pathway. Biochim. Biophys. Acta Mol. Cell Res. 2015 1853 1 157 165 10.1016/j.bbamcr.2014.10.013 25409929
    [Google Scholar]
  129. Grieco P.A. Moher E.D. Seya M. Huffman J.C. Grieco H.J. A quassinoid (peninsularinone) and a steroid from Castela peninsularis. Phytochemistry 1994 37 5 1451 1454 10.1016/S0031‑9422(00)90431‑X
    [Google Scholar]
  130. Yan F. Subramanian B. Nakeff A. Barder T.J. Parus S.J. Lubman D.M. A comparison of drug-treated and untreated HCT-116 human colon adenocarcinoma cells using a 2-D liquid separation mapping method based upon chromatofocusing PI fractionation. Anal. Chem. 2003 75 10 2299 2308 10.1021/ac020678s 12918970
    [Google Scholar]
  131. Subramanian B. Media J. Nakeff A. Valeriote F. Protein informatics-based analysis of the mechanism of action of peninsularinone: A novel solid-tumor selective anticancer drug. Cancer Res. 2006 66 327 327
    [Google Scholar]
  132. O’Neill M.J. Bray D.H. Boardman P. Phillipson J.D. Warhurst D.C. Peters W. Suffness M. Plants as sources of antimalarial drugs: in vitro antimalarial activities of some quassinoids. Antimicrob. Agents Chemother. 1986 30 1 101 104 10.1128/AAC.30.1.101 3530122
    [Google Scholar]
  133. Lee J.H. Rangappa S. Mohan C.D. Basappa Sethi G. Lin Z-X. Rangappa K.S. Ahn K.S. Basappa Brusatol, a Nrf2 inhibitor targets STAT3 signaling cascade in head and neck squamous cell carcinoma. Biomolecules 2019 9 10 550 10.3390/biom9100550 31575007
    [Google Scholar]
  134. Guo S. Zhang J. Wei C. Lu Z. Cai R. Pan D. Zhang H. Liang B. Zhang Z. Anticancer effects of brusatol in nasopharyngeal carcinoma through suppression of the Akt/mTOR signaling pathway. Cancer Chemother. Pharmacol. 2020 85 6 1097 1108 10.1007/s00280‑020‑04083‑3 32449143
    [Google Scholar]
  135. Chumkaew P. Srisawat T. Antimalarial and cytotoxic quassinoids from the roots of Brucea javanica. J. Asian Nat. Prod. Res. 2017 19 3 247 253 10.1080/10286020.2016.1205040 27380205
    [Google Scholar]
  136. Anderson M. O’Neill M. Phillipson J. Warhurst D. In vitro cytotoxicity of a series of quassinoids from Brucea javanica fruits against KB cells. Planta Med. 1991 57 1 62 64 10.1055/s‑2006‑960020 2062960
    [Google Scholar]
  137. Karthikeyan S. Hoti S.L. Nazeer Y. Hegde H.V. Glaucarubinone sensitizes KB cells to paclitaxel by inhibiting ABC transporters via ROS-dependent and p53-mediated activation of apoptotic signaling pathways. Oncotarget 2106 7 27 42353 42373 10.18632/oncotarget.9865 27304668
    [Google Scholar]
  138. Moretti C. Deharo E. Sauvain M. Jardel C. Timon David P. Gasquet M. Antimalarial activity of cedronin. J. Ethnopharmacol. 1994 43 1 57 61 10.1016/0378‑8741(94)90117‑1 7967650
    [Google Scholar]
  139. Kitagawa I. Mahmud T. Yokota K. Nakagawa S. Mayumi T. Kobayashi M. Shibuya H. Indonesian medicinal plants. XVII. Characterization of quassinoids from the stems of Quassia indica. Chem. Pharm. Bull. (Tokyo) 1996 44 11 2009 2014 10.1248/cpb.44.2009 8945767
    [Google Scholar]
  140. Weller M. Wick W. Aldape K. Brada M. Berger M. Pfister S.M. Nishikawa R. Rosenthal M. Wen P.Y. Stupp R. Reifenberger G. Glioma. Nat. Rev. Dis. Primers 2015 1 1 15017 10.1038/nrdp.2015.17 27188790
    [Google Scholar]
  141. Devkota K.P. Wilson J.A. Henrich C.J. McMahon J.B. Reilly K.M. Beutler J.A. Compounds from Simarouba berteroana which inhibit proliferation of NF1-defective cancer cells. Phytochem. Lett. 2014 7 42 45 10.1016/j.phytol.2013.09.007 24443661
    [Google Scholar]
  142. Wang R. Xu Q. Liu L. Liang X. Cheng L. Zhang M. Shi Q. Antitumour activity of 2-dihydroailanthone from the bark of Ailanthus altissima against U251. Pharm. Biol. 2016 54 9 1641 1648 10.3109/13880209.2015.1110827 26956770
    [Google Scholar]
  143. Yang P. Sun D. Jiang F. Ailanthone promotes human vestibular schwannoma cell apoptosis and autophagy by downregulation of miR-21. Oncol. Res. 2018 26 6 941 948 10.3727/096504018X15149775533331 29298734
    [Google Scholar]
  144. Liu X. Xu H. Zhang Y. Wang P. Gao W. Brusatol inhibits amyloid‐β‐induced neurotoxicity in U‐251 cells via regulating the Nrf2/HO‐1 pathway. J. Cell. Biochem. 2019 120 6 10556 10563 10.1002/jcb.28341 30629288
    [Google Scholar]
  145. Liu Y. Lu Y. Celiku O. Li A. Wu Q. Zhou Y. Yang C. Targeting IDH1-mutated malignancies with NRF2 blockade. J. Natl. Cancer Inst. 2019 111 10 1033 1041 10.1093/jnci/djy230 30759236
    [Google Scholar]
  146. Wang S. Hu H. Zhong B. Shi D. Qing X. Cheng C. Deng X. Zhang Z. Shao Z. Bruceine D. Bruceine D inhibits tumor growth and stem cell‐like traits of osteosarcoma through inhibition of STAT3 signaling pathway. Cancer Med. 2019 8 17 7345 7358 10.1002/cam4.2612 31631559
    [Google Scholar]
  147. Miyake K. Tezuka Y. Awale S. Li F. Kadota S. Quassinoids from Eurycoma longifolia. J. Nat. Prod. 2009 72 12 2135 2140 10.1021/np900486f 19919052
    [Google Scholar]
  148. Daga M. Pizzimenti S. Dianzani C. Cucci M.A. Cavalli R. Grattarola M. Ferrara B. Scariot V. Trotta F. Barrera G. Ailanthone inhibits cell growth and migration of cisplatin resistant bladder cancer cells through down-regulation of Nrf2, YAP, and c-Myc expression. Phytomedicine 2019 56 156 164 10.1016/j.phymed.2018.10.034 30668336
    [Google Scholar]
  149. Oukil S. Kasmi R. Mokrani K. García-Zapirain B. Automatic segmentation and melanoma detection based on color and texture features in dermoscopic images. Skin Res. Technol. 2022 28 2 203 211 10.1111/srt.13111 34779062
    [Google Scholar]
  150. Wang M. Shi G. Bian C. Nisar M.F. Guo Y. Wu Y. Li W. Huang X. Jiang X. Bartsch J.W. Ji P. Zhong J.L. UVA irradiation enhances brusatol-mediated inhibition of melanoma growth by downregulation of the Nrf2-mediated antioxidant response. Oxid. Med. Cell. Longev. 2018 2018 1 15 10.1155/2018/9742154 29670684
    [Google Scholar]
  151. Wang Y. Wang Y. Zhang Z. Park J.Y. Guo D. Liao H. Yi X. Zheng Y. Zhang D. Chambers S.K. Zheng W. Mechanism of progestin resistance in endometrial precancer/cancer through Nrf2-AKR1C1 pathway. Oncotarget 2016 7 9 10363 10372 10.18632/oncotarget.7004 26824415
    [Google Scholar]
  152. Neumann H.P.H. Young W.F. Jr Eng C. Pheochromocytoma and Paraganglioma. N. Engl. J. Med. 2019 381 6 552 565 10.1056/NEJMra1806651 31390501
    [Google Scholar]
  153. Liu Y. Pang Y. Caisova V. Ding J. Yu D. Zhou Y. Huynh T.T. Ghayee H. Pacak K. Yang C. Targeting NRF2-governed glutathione synthesis for SDHB-mutated pheochromocytoma and paraganglioma. Cancers 2020 12 2 280 10.3390/cancers12020280 31979226
    [Google Scholar]
  154. Fukamiya N. Lee K.H. Muhammad I. Murakami C. Okano M. Harvey I. Pelletier J. Structure–activity relationships of quassinoids for eukaryotic protein synthesis. Cancer Lett. 2005 220 1 37 48 10.1016/j.canlet.2004.04.023 15737686
    [Google Scholar]
  155. Itokawa H. Kishi E. Morita H. Takeya K. Cytotoxic quassinoids and tirucallane-type triterpenes from the woods of eurycoma longifolia. Chem. Pharm. Bull. 1992 40 4 1053 1055 10.1248/cpb.40.1053 1525934
    [Google Scholar]
  156. Yang X.L. Yuan Y.L. Zhang D.M. Li F. Ye W.C. Shinjulactone O, a new quassinoid from the root bark of Ailanthus altissima. Nat. Prod. Res. 2014 28 18 1432 1437 10.1080/14786419.2014.909418 24967875
    [Google Scholar]
  157. Cucci M.A. Grattarola M. Dianzani C. Damia G. Ricci F. Roetto A. Trotta F. Barrera G. Pizzimenti S. Ailanthone increases oxidative stress in CDDP-resistant ovarian and bladder cancer cells by inhibiting of Nrf2 and YAP expression through a post-translational mechanism. Free Radic. Biol. Med. 2020 150 125 135 10.1016/j.freeradbiomed.2020.02.021 32101771
    [Google Scholar]
  158. Ren D. Villeneuve N.F. Jiang T. Wu T. Lau A. Toppin H.A. Zhang D.D. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc. Natl. Acad. Sci. USA 2011 108 4 1433 1438 10.1073/pnas.1014275108 21205897
    [Google Scholar]
  159. Liu J.Q. Wang C.F. Li X.Y. Chen J.C. Li Y. Qiu M.H. One new pregnane glycoside from the seeds of cultivated Brucea javanica. Arch. Pharm. Res. 2011 34 8 1297 1300 10.1007/s12272‑011‑0809‑5 21910051
    [Google Scholar]
  160. Yang Y. Tian Z. Guo R. Ren F. Nrf2 inhibitor, brusatol in combination with trastuzumab exerts synergistic antitumor activity in HER2-positive cancers by inhibiting Nrf2/HO-1 and HER2-AKT/ERK1/2 pathways. Oxid. Med. Cell. Longev. 2020 2020 1 14 10.1155/2020/9867595 32765809
    [Google Scholar]
  161. Zhang J. Fang X. Li Z. Chan H.F. Lin Z. Wang Y. Chen M. Redox-sensitive micelles composed of disulfide-linked Pluronic-linoleic acid for enhanced anticancer efficiency of brusatol. Int. J. Nanomedicine 2018 13 939 956 10.2147/IJN.S130696 29491708
    [Google Scholar]
  162. Chen X. Yin T. Zhang B. Sun B. Chen J. Xiao T. Wang B. Li M. Yang J. Fan X. Inhibitory effects of brusatol delivered using glycosaminoglycan‑placental chondroitin sulfate A‑modified nanoparticles on the proliferation, migration and invasion of cancer cells. Int. J. Mol. Med. 2020 46 2 817 827 10.3892/ijmm.2020.4627 32626948
    [Google Scholar]
  163. Toyota T. Fukamiya N. Okano M. Tagahara K. Chang J.J. Lee K.H. Antitumor agents, 118. The isolation and characterization of bruceanic acid A, its methyl ester, and the new bruceanic acids B, C, and D, from Brucea antidysenterica. J. Nat. Prod. 1990 53 6 1526 1532 10.1021/np50072a020 2089121
    [Google Scholar]
  164. Fukamiya N. Okano M. Tagahara K. Aratani T. Lee K.H. Antitumor agents, 93. Bruceanol C, a new cytotoxic quassinoid from Brucea antidysenterica. J. Nat. Prod. 1988 51 2 349 352 10.1021/np50056a031 3379416
    [Google Scholar]
  165. Imamura K. Fukamiya N. Okano M. Tagahara K. Lee K.H. Bruceanols D. Bruceanols D, E, and F three new cytotoxic quassinoids from Brucea antidysenterica. J. Nat. Prod. 1993 56 12 2091 2097 10.1021/np50102a010 8133299
    [Google Scholar]
  166. Imamura K. Fukamiya N. Nakamura M. Okano M. Tagahara K. Lee K.H. Bruceanols G and H cytotoxic quassinoids from Brucea antidysenterica. J. Nat. Prod. 1995 58 12 1915 1919 10.1021/np50126a019 8691212
    [Google Scholar]
  167. Pan L. Chin Y.W. Chai H.B. Ninh T.N. Soejarto D.D. Kinghorn A.D. Bioactivity-guided isolation of cytotoxic constituents of Brucea javanica collected in Vietnam. Bioorg. Med. Chem. 2009 17 6 2219 2224 10.1016/j.bmc.2008.10.076 19026551
    [Google Scholar]
  168. Kim J.A. Lau E.K. Pan L. De Blanco E.J. NF-kappaB inhibitors from Brucea javanica exhibiting intracellular effects on reactive oxygen species. Anticancer Res. 2010 30 9 3295 3300 20944100
    [Google Scholar]
  169. Klocke J.A. Arisawa M. Handa S.S. Kinghorn A.D. Cordell G.A. Farnsworth N.R. Growth inhibitory, insecticidal and antifeedant effects of some antileukemic and cytotoxic quassinoids on two species of agricultural pests. Experientia 1985 41 3 379 382 10.1007/BF02004516 3972085
    [Google Scholar]
  170. Chen H. Bai J. Fang Z.F. Yu S.S. Ma S.G. Xu S. Li Y. Qu J. Ren J.H. Li L. Si Y.K. Chen X.G. Indole alkaloids and quassinoids from the stems of Brucea mollis. J. Nat. Prod. 2011 74 11 2438 2445 10.1021/np200712y 22070654
    [Google Scholar]
  171. Su Z. Hao J. Xu Z. Huang R. Zhang N. Qiu S. A new quassinoid from fruits of Brucea javanica. Nat. Prod. Res. 2013 27 21 2016 2021 10.1080/14786419.2013.821119 23886455
    [Google Scholar]
  172. Liu J.H. Zhao N. Zhang G.J. Yu S.S. Wu L.J. Qu J. Ma S.G. Chen X.G. Zhang T.Q. Bai J. Chen H. Fang Z.F. Zhao F. Tang W.B. Bioactive quassinoids from the seeds of Brucea javanica. J. Nat. Prod. 2012 75 4 683 688 10.1021/np200920c 22506620
    [Google Scholar]
  173. Fukamiya N. Okano M. Miyamoto M. Tagahara K. Lee K.H. Antitumor agents, 127. Bruceoside C, a new cytotoxic quassinoid glucoside, and related compounds from Brucea javanica. J. Nat. Prod. 1992 55 4 468 475 10.1021/np50082a011 1512598
    [Google Scholar]
  174. Ohnishi S. Fukamiya N. Okano M. Tagahara K. Lee K.H. Bruceosides D. Bruceosides D, E, and F, three new cytotoxic quassinoid glucosides from Brucea javanica. J. Nat. Prod. 1995 58 7 1032 1038 10.1021/np50121a007 7561896
    [Google Scholar]
  175. Coombes P.H. Naidoo D. Mulholland D.A. Randrianarivelojosia M. Quassinoids from the leaves of the Madagascan Simaroubaceae Samadera madagascariensis. Phytochemistry 2005 66 23 2734 2739 10.1016/j.phytochem.2005.09.005 16253298
    [Google Scholar]
  176. Kardono L.B.S. Angerhofer C.K. Tsauri S. Padmawinata K. Pezzuto J.M. Kinghorn A.D. Cytotoxic and antimalarial constituents of the roots of Eurycoma longifolia. J. Nat. Prod. 1991 54 5 1360 1367 10.1021/np50077a020 1800638
    [Google Scholar]
  177. Kuo P.C. Damu A.G. Lee K.H. Wu T.S. Cytotoxic and antimalarial constituents from the roots of Eurycoma longifolia. Bioorg. Med. Chem. 2004 12 3 537 544 10.1016/j.bmc.2003.11.017 14738962
    [Google Scholar]
  178. Miyake K. Li F. Tezuka Y. Awale S. Kadota S. Cytotoxic activity of quassinoids from Eurycoma longifolia. Nat. Prod. Commun. 2010 5 7 1934578X1000500 10.1177/1934578X1000500704 20734929
    [Google Scholar]
  179. Meng D. Li X. Han L. Zhang L. An W. Li X. Four new quassinoids from the roots of Eurycoma longifolia Jack. Fitoterapia 2014 92 105 110 10.1016/j.fitote.2013.10.009 24513570
    [Google Scholar]
  180. Park S. Nhiem N.X. Kiem P.V. Minh C.V. Tai B.H. Kim N. Yoo H.H. Song J.H. Ko H.J. Kim S.H. Five new quassinoids and cytotoxic constituents from the roots of Eurycoma longifolia. Bioorg. Med. Chem. Lett. 2014 24 16 3835 3840 10.1016/j.bmcl.2014.06.058 25066952
    [Google Scholar]
  181. Handa S.S. Kinghorn A.D. Cordell G.A. Farnsworth N.R. Plant anticancer agents XXV. Constituents of Soulamea soulameoides. J. Nat. Prod. 1983 46 3 359 364 10.1021/np50027a011 6619884
    [Google Scholar]
  182. Dou J. McChesney J.D. Sindelar R.D. Goins D.K. Walker L.A. A new quassinoid from Castela texana. J. Nat. Prod. 1996 59 1 73 76 10.1021/np960013j 8984156
    [Google Scholar]
  183. de Mesquita M.L. de Paula J.E. Pessoa C. de Moraes M.O. Costa-Lotufo L.V. Grougnet R. Michel S. Tillequin F. Espindola L.S. Cytotoxic activity of Brazilian Cerrado plants used in traditional medicine against cancer cell lines. J. Ethnopharmacol. 2009 123 3 439 445 10.1016/j.jep.2009.03.018 19501276
    [Google Scholar]
  184. Usami Y. Nakagawa-Goto K. Lang J.Y. Kim Y. Lai C.Y. Goto M. Sakurai N. Taniguchi M. Akiyama T. Morris-Natschke S.L. Bastow K.F. Cragg G. Newman D.J. Fujitake M. Takeya K. Hung M.C. Lee E.Y.H.P. Lee K.H. Antitumor Agents. 282. 2′-(R)-O-acetylglaucarubinone, a quassinoid from Odyendyea gabonensis as a potential anti-breast and anti-ovarian cancer agent. J. Nat. Prod. 2010 73 9 1553 1558 10.1021/np100406d 20738103
    [Google Scholar]
  185. Chen H. Bai J. Fang Z.F. Ma S.G. Yu S.S. Chen X.G. Chemical constituents from stems of Brucea mollis and their cytotoxic activity. Zhongguo Zhongyao Zazhi 2013 38 14 2321 2324 10.4268/cjcmm20131421 24199564
    [Google Scholar]
  186. Tung M.H.T. Duc H.V. Huong T.T. Duong N.T. Phuong T. Thao T. Tai B.H. Kim Y.H. Bach T.T. Cuong N.M. Cytotoxic compounds from Brucea mollis. Sci. Pharm. 2013 81 3 819 831 10.3797/scipharm.1206‑02 24106661
    [Google Scholar]
  187. Tischler M. Cardellina J.H. Ii Boyd M.R. Cragg G.M. Cytotoxic quassinoids from Cedronia granatensis. J. Nat. Prod. 1992 55 5 667 671 10.1021/np50083a018 1517739
    [Google Scholar]
  188. Silva E.C.C. Cavalcanti B.C. Amorim R.C.N. Lucena J.F. Quadros D.S. Tadei W.P. Montenegro R.C. Costa-Lotufo L.V. Pessoa C. Moraes M.O. Nunomura R.C.S. Nunomura S.M. Melo M.R.S. Andrade-Neto V.F. Silva L.F.R. Vieira P.P.R. Pohlit A.M. Biological activity of neosergeolide and isobrucein B (and two semi-synthetic derivatives) isolated from the Amazonian medicinal plant Picrolemma sprucei (Simaroubaceae). Mem. Inst. Oswaldo Cruz 2009 104 1 48 56 10.1590/S0074‑02762009000100008 19274376
    [Google Scholar]
  189. Muhammad I. Bedir E. Khan S.I. Tekwani B.L. Khan I.A. Takamatsu S. Pelletier J. Walker L.A. A new antimalarial quassinoid from Simaba orinocensis. J. Nat. Prod. 2004 67 5 772 777 10.1021/np030524n 15165136
    [Google Scholar]
  190. Kupchan S.M. Streelman D.R. Quassimarin, a new antileukemic quassinoid from Quassia amara. J. Org. Chem. 1976 41 21 3481 3482 10.1021/jo00883a038 978297
    [Google Scholar]
  191. Win N.N. Ngwe H. Abe I. Morita H. Naturally occurring Vpr inhibitors from medicinal plants of Myanmar. J. Nat. Med. 2017 71 4 579 589 10.1007/s11418‑017‑1104‑7 28681118
    [Google Scholar]
  192. Win N.N. Ito T. Ismail Kodama T. Win Y.Y. Tanaka M. Okamoto Y. Imagawa H. Ngwe H. Asakawa Y. Abe I. Morita H. Picrajavanicins H–M, new quassinoids from Picrasma javanica collected in Myanmar and their antiproliferative activities. Tetrahedron 2016 72 5 746 752 10.1016/j.tet.2015.12.030
    [Google Scholar]
  193. Su Z. Ma Z. Liu K. Li T. Zhou B. Quassilactones A and B, structural characterization of a new class of norquassinoids from Brucea javanica. J. Nat. Med. 2020 74 3 599 605 10.1007/s11418‑020‑01407‑8 32279206
    [Google Scholar]
  194. Del Moral I.C. Reyes J. Vivas-Mejia P. Ospina C. Antitumor activity of Simarouba tulae extracts in a panel of cancer cell lines. FASEB J. 2018 32 S1 10.1096/fasebj.2018.32.1_supplement.656.10
    [Google Scholar]
  195. Mendez B. Reyes J. Conde I. Ramos Z. Lozada E. Cruz A.M. Asencio G. Carvajal A. Dharmawardhane S. Piñero-Cruz D.M. Hernández E. Vivas P. Ospina C.A. Simalikalactone D, a potential anticancer compound from Simarouba tulae, an endemic plant of puerto rico. Plants 2020 9 1 93 10.3390/plants9010093 31940804
    [Google Scholar]
  196. Cachet N. Hoakwie F. Bertani S. Bourdy G. Deharo E. Stien D. Houel E. Gornitzka H. Fillaux J. Chevalley S. Valentin A. Jullian V. Antimalarial activity of simalikalactone E, a new quassinoid from Quassia amara L. (Simaroubaceae). Antimicrob. Agents Chemother. 2009 53 10 4393 4398 10.1128/AAC.00951‑09 19667291
    [Google Scholar]
  197. Robert G. Jullian V. Jacquel A. Ginet C. Dufies M. Torino S. Pottier A. Peyrade F. Tartare-Deckert S. Bourdy G. Deharo E. Auberger P. Simalikalactone E. Simalikalactone E (SkE), a new weapon in the armamentarium of drugs targeting cancers that exhibit constitutive activation of the ERK pathway. Oncotarget 2012 3 12 1688 1699 10.18632/oncotarget.791 23518796
    [Google Scholar]
  198. Lumonadio L. Atassi G. Vanhaelen M. Vanhaelen-Fastre R. Antitumor activity of quassinoids from Hannoa klaineana. J. Ethnopharmacol. 1991 31 1 59 65 10.1016/0378‑8741(91)90144‑3 2030594
    [Google Scholar]
  199. Jin X. Jin H.R. Lee D. Lee J.H. Kim S.K. Lee J.J. A quassinoid 6α-tigloyloxychaparrinone inhibits hypoxia-inducible factor-1 pathway by inhibition of eukaryotic translation initiation factor 4E phosphorylation. Eur. J. Pharmacol. 2008 592 1-3 41 47 10.1016/j.ejphar.2008.06.104 18639543
    [Google Scholar]
  200. Wani M.C. Taylor H.L. Thompson J.B. Wall M.E. Plant antitumor agents. XVI. 6alpha-Senecioyloxy-chaparrinone, a new antileukemic quassinoid from Simaba multiflora. Lloydia 1978 41 6 578 583 732540
    [Google Scholar]
  201. Arisawa M. Kinghorn A.D. Cordell G.A. Farnsworth N.R. Plant anticancer agents. XXIII. 6 α-senecioyloxychaparrin, a new antileukemic quassinoid from Simaba multiflora. J. Nat. Prod. 1983 46 2 218 221 10.1021/np50026a015 6875576
    [Google Scholar]
  202. Moher E.D. Reilly M. Grieco P.A. Corbett T.H. Valeriote F.A. Synthetic studies on quassinoids: Transformation of (−)-Glaucarubolone into (−)-Peninsularinone. In vivo antitumor evaluation of (−)-Glaucarubolone, (−)-Chaparrinone, and (−)-Peninsularinone. J. Org. Chem. 1998 63 10 3508 3510 10.1021/jo980039a
    [Google Scholar]
  203. Shoyama Y. Tung N.H. Uto T. Hai N.T. Li G. Quassinoids from the root of Eurycoma longifolia and their antiproliferative activity on human cancer cell lines. Pharmacogn. Mag. 2017 13 51 459 462 10.4103/pm.pm_353_16 28839372
    [Google Scholar]
  204. Liesmann J. Belt R.J. Haas C.D. Hoogstraten B. Phase I study on bruceantin administered on a weekly schedule. Cancer Treat. Rep. 1981 65 9-10 883 885 7273023
    [Google Scholar]
  205. Bedikian A.Y. Valdivieso M. Bodey G.P. Murphy W.K. Freireich E.J. Initial clinical studies with bruceantin. Cancer Treat. Rep. 1979 63 11-12 1843 1847 526918
    [Google Scholar]
  206. Wiseman C.L. Yap H.Y. Bedikian A.Y. Bodey G.P. Blumenschein G.R. Phase II trial of bruceantin in metastatic breast carcinoma. Am. J. Clin. Oncol. 1982 5 4 389 392 10.1097/00000421‑198208000‑00007 7113961
    [Google Scholar]
  207. Arseneau J.C. Wolter J.M. Kuperminc M. Ruckdeschel J.C. A Phase II study of Bruceantin (NSC-165, 563) in advanced malignant melanoma. Invest. New Drugs 1983 1 3 239 242 10.1007/BF00208896 6678872
    [Google Scholar]
  208. Bailly C. Anticancer properties and mechanism of action of the quassinoid ailanthone. Phytother. Res. 2020 34 9 2203 2213 10.1002/ptr.6681 32239572
    [Google Scholar]
  209. He T. Zhou F. Su A. Zhang Y. Xing Z. Mi L. Li Z. Wu W. Brusatol: A potential sensitizing agent for cancer therapy from Brucea javanica. Biomed. Pharm. J. 2023 158 114134 10.1016/j.biopha.2022.114134
    [Google Scholar]
  210. Ding H. Yu X. Hang C. Gao K. Lao X. Jia Y. Yan Z. Ailanthone: A novel potential drug for treating human cancer (Review). Oncol. Lett. 2020 20 2 1489 1503 10.3892/ol.2020.11710 32724391
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673313760240911160930
Loading
/content/journals/cmc/10.2174/0109298673313760240911160930
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: signalling pathways ; cancer ; Simaroubaceae ; cytotoxic ; mechanism ; Quassinoids
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test