Skip to content
2000
image of Trends in the Treatment of Chronic Wounds

Abstract

Chronic wounds remain one of the significant burdens to health across the world, mainly in view of diabetes and its natural consequences. This category of lesions includes pressure ulcers, vascular diseases, and surgery-related wounds, which affect millions and pose a major challenge to the healthcare industry. The paper reviews the various physiological mechanisms of wound healing, factors that impede it, and some new treatments emerging at this moment. In contrast, current developments include surgical and non-surgical alternatives like topical dressings, medicated formulations, and skin substitutes. Advanced wound care today covers tissue-engineered skin substitutes, 3D-printed wound dressings, topical medicated formulations, and growth factor-based therapies. These are non-invasive, biocompatible methods that are cost-effective, user-friendly, and more conducive to natural healing than traditional therapies. Hydrogel dressings have high water content to create a moist environment that encourages healing. They also reflect excellent physicochemical and biological properties, which enhance autolytic debridement and reduction of pain due to the moisture retention, biocompatibility, and non-toxicity conferred. Tissue-engineered skin substitutes, comprising allogeneic or autologous cells, wound-healing enhancement bioengineered allogeneic cellular therapies are like the natural skin and encourage regeneration. 3D printing allows the production of customized dressings to aid in better treatment. Newer therapies, including bioengineered allogeneic cellular therapies and fish skin grafting, require more clinical trials to confirm safety and efficacy. With such innovations in wound healing technologies and therapies, the future looks quite promising in managing chronic wounds, enhancing healing, reducing healthcare expenditure, and promoting a better quality of life for patients.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673312649240829103906
2024-09-13
2024-11-26
Loading full text...

Full text loading...

References

  1. Rondas A.A.L.M. Schols J.M.G.A. Stobberingh E.E. Halfens R.J.G. Prevalence of chronic wounds and structural quality indicators of chronic wound care in Dutch nursing homes. Int. Wound J. 2015 12 6 630 635 10.1111/iwj.12172 24164755
    [Google Scholar]
  2. Driver V.R. Blume P.A. Evaluation of wound care and health-care use costs in patients with diabetic foot ulcers treated with negative pressure wound therapy versus advanced moist wound therapy. J. Am. Podiatr. Med. Assoc. 2014 104 2 147 153 10.7547/0003‑0538‑104.2.147 24725034
    [Google Scholar]
  3. Rice J.B. Desai U. Cummings A.K.G. Birnbaum H.G. Skornicki M. Parsons N.B. Burden of diabetic foot ulcers for medicare and private insurers. Diabetes Care 2014 37 3 651 658 10.2337/dc13‑2176 24186882
    [Google Scholar]
  4. Kerr M. Barron E. Chadwick P. Evans T. Kong W.M. Rayman G. Sutton-Smith M. Todd G. Young B. Jeffcoate W.J. The cost of diabetic foot ulcers and amputations to the National Health Service in England. Diabet. Med. 2019 36 8 995 1002 10.1111/dme.13973 31004370
    [Google Scholar]
  5. Chen H.Y. Kuo S. Su P.F. Wu J.S. Ou H.T. Health care costs associated with macrovascular, microvascular, and metabolic complications of type 2 diabetes across time: estimates from a population-based cohort of more than 0.8 million individuals with up to 15 years of follow-up. Diabetes Care 2020 43 8 1732 1740 10.2337/dc20‑0072 32444454
    [Google Scholar]
  6. Su H.Y. Yang C.Y. Ou H.T. Chen S.G. Chen J.C. Ho H.J. Kuo S. Cost-effectiveness of novel macrophage-regulating treatment for wound healing in patients with diabetic foot ulcers from the taiwan health care sector perspective. JAMA Netw. Open 2023 6 1 e2250639 10.1001/jamanetworkopen.2022.50639 36633847
    [Google Scholar]
  7. Matoori S. Breakthrough technologies in diagnosis and therapy of chronic wounds. ACS Appl. Bio Mater. 2023 6 6 2014 2016 10.1021/acsabm.3c00225 37162061
    [Google Scholar]
  8. Schultz G.S. Sibbald R.G. Falanga V. Ayello E.A. Dowsett C. Harding K. Romanelli M. Stacey M.C. Teot L. Vanscheidt W. Wound bed preparation: a systematic approach to wound management. Wound Repair Regen. 2003 11 s1 Suppl. 1 S1 S28 10.1046/j.1524‑475X.11.s2.1.x 12654015
    [Google Scholar]
  9. Eriksson E. Liu P.Y. Schultz G.S. Martins-Green M.M. Tanaka R. Weir D. Gould L.J. Armstrong D.G. Gibbons G.W. Wolcott R. Olutoye O.O. Kirsner R.S. Gurtner G.C. Chronic wounds: Treatment consensus. Wound Repair Regen. 2022 30 2 156 171 10.1111/wrr.12994 35130362
    [Google Scholar]
  10. Patry J. Blanchette V. Enzymatic debridement with collagenase in wounds and ulcers: a systematic review and meta‐analysis. Int. Wound J. 2017 14 6 1055 1065 10.1111/iwj.12760 28440050
    [Google Scholar]
  11. Thomas D.C. Tsu C.L. Nain R.A. Arsat N. Fun S.S. Sahid Nik Lah N.A. The role of debridement in wound bed preparation in chronic wound: A narrative review. Ann. Med. Surg. (Lond.) 2021 71 102876 10.1016/j.amsu.2021.102876 34745599
    [Google Scholar]
  12. Wilkinson H.N. Hardman M.J. Wound healing: cellular mechanisms and pathological outcomes. Open Biol. 2020 10 9 200223 10.1098/rsob.200223 32993416
    [Google Scholar]
  13. Zhu S. Yu Y. Ren Y. Xu L. Wang H. Ling X. Jin L. Hu Y. Zhang H. Miao C. Guo K. The emerging roles of neutrophil extracellular traps in wound healing. Cell Death Dis. 2021 12 11 984 10.1038/s41419‑021‑04294‑3 34686654
    [Google Scholar]
  14. Xiao T. Yan Z. Xiao S. Xia Y. Proinflammatory cytokines regulate epidermal stem cells in wound epithelialization. Stem Cell Res. Ther. 2020 11 1 232 10.1186/s13287‑020‑01755‑y 32527289
    [Google Scholar]
  15. Wang W. Yan X. Lin Y. Ge H. Tan Q. Wnt7a promotes wound healing by regulation of angiogenesis and inflammation: Issues on diabetes and obesity. J. Dermatol. Sci. 2018 91 2 124 133 10.1016/j.jdermsci.2018.02.007 29853224
    [Google Scholar]
  16. Shi Y. Shi H. Nomi A. Lei-lei Z.H.A.N.G. Zhang B. Qian H. Mesenchymal stem cell–derived extracellular vesicles: a new impetus of promoting angiogenesis in tissue regeneration. Cytotherapy 2019 21 5 497 508 10.1016/j.jcyt.2018.11.012 31079806
    [Google Scholar]
  17. Gushiken L.F.S. Beserra F.P. Bastos J.K. Jackson C.J. Pellizzon C.H. Cutaneous wound healing: An update from physiopathology to current therapies. Life (Basel) 2021 11 7 665 10.3390/life11070665 34357037
    [Google Scholar]
  18. Matar D.Y. Ng B. Darwish O. Wu M. Orgill D.P. Panayi A.C. Skin inflammation with a focus on wound healing. Adv. Wound Care (New Rochelle) 2023 12 5 269 287 10.1089/wound.2021.0126 35287486
    [Google Scholar]
  19. Winkler J. Abisoye-Ogunniyan A. Metcalf K.J. Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat. Commun. 2020 11 1 5120 10.1038/s41467‑020‑18794‑x 33037194
    [Google Scholar]
  20. Ren L.L. Li X.J. Duan T.T. Li Z.H. Yang J.Z. Zhang Y.M. Zhao Y.Y. Transforming growth factor-β signaling: from tissue fibrosis to therapeutic opportunities. Chem. Biol. Interact. 2022 110289 10.1016/j.cbi.2022.110289 36455676
    [Google Scholar]
  21. de Castro Brás L.E. Frangogiannis N.G. Extracellular matrix-derived peptides in tissue remodeling and fibrosis. Matrix Biol. 2020 91-92 176 187 10.1016/j.matbio.2020.04.006 32438055
    [Google Scholar]
  22. Eming S.A. Martin P. Tomic-Canic M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 2014 6 265 265sr6 10.1126/scitranslmed.3009337 25473038
    [Google Scholar]
  23. Bonora M. Patergnani S. Rimessi A. De Marchi E. Suski J.M. Bononi A. Giorgi C. Marchi S. Missiroli S. Poletti F. Wieckowski M.R. Pinton P. ATP synthesis and storage. Purinergic Signal. 2012 8 3 343 357 10.1007/s11302‑012‑9305‑8 22528680
    [Google Scholar]
  24. Guo S. DiPietro L.A. Factors affecting wound healing. J. Dent. Res. 2010 89 3 219 229 10.1177/0022034509359125 20139336
    [Google Scholar]
  25. Hong W.X. Hu M.S. Esquivel M. Liang G.Y. Rennert R.C. McArdle A. Paik K.J. Duscher D. Gurtner G.C. Lorenz H.P. Longaker M.T. The role of hypoxia-inducible factor in wound healing. Adv. Wound Care (New Rochelle) 2014 3 5 390 399 10.1089/wound.2013.0520 24804159
    [Google Scholar]
  26. Schreml S. Szeimies R.M. Prantl L. Karrer S. Landthaler M. Babilas P. Oxygen in acute and chronic wound healing. Br. J. Dermatol. 2010 163 2 257 268 10.1111/j.1365‑2133.2010.09804.x 20394633
    [Google Scholar]
  27. Wild T. Rahbarnia A. Kellner M. Sobotka L. Eberlein T. Basics in nutrition and wound healing. Nutrition 2010 26 9 862 866 10.1016/j.nut.2010.05.008 20692599
    [Google Scholar]
  28. Stechmiller J.K. Understanding the role of nutrition and wound healing. Nutr. Clin. Pract. 2010 25 1 61 68 10.1177/0884533609358997 20130158
    [Google Scholar]
  29. Shields B. Diet in Wound Care: Can Nutrition Impact Healing? Cutis 2021 108 6 325 328 10.12788/cutis.0407 35167786
    [Google Scholar]
  30. Edwards R. Harding K.G. Bacteria and wound healing. Curr. Opin. Infect. Dis. 2004 17 2 91 96 10.1097/00001432‑200404000‑00004 15021046
    [Google Scholar]
  31. Mihai M.M. Dima M.B. Dima B. Holban A.M. Nanomaterials for wound healing and infection control. Materials (Basel) 2019 12 13 2176 10.3390/ma12132176 31284587
    [Google Scholar]
  32. Gouin J.P. Kiecolt-Glaser J.K. The impact of psychological stress on wound healing: methods and mechanisms. Immunol. Allergy Clin. North Am. 2011 31 1 81 93 10.1016/j.iac.2010.09.010 21094925
    [Google Scholar]
  33. Gosain A. DiPietro L.A. Aging and wound healing. World J. Surg. 2004 28 3 321 326 10.1007/s00268‑003‑7397‑6 14961191
    [Google Scholar]
  34. Blair M.J. Jones J.D. Woessner A.E. Quinn K.P. Skin structure–function relationships and the wound healing response to intrinsic aging. Adv. Wound Care (New Rochelle) 2020 9 3 127 143 10.1089/wound.2019.1021 31993254
    [Google Scholar]
  35. Horng H.C. Chang W.H. Yeh C.C. Huang B.S. Chang C.P. Chen Y.J. Tsui K.H. Wang P.H. Estrogen effects on wound healing. Int. J. Mol. Sci. 2017 18 11 2325 10.3390/ijms18112325 29099810
    [Google Scholar]
  36. Gilliver S.C. Ashworth J.J. Ashcroft G.S. The hormonal regulation of cutaneous wound healing. Clin. Dermatol. 2007 25 1 56 62 10.1016/j.clindermatol.2006.09.012 17276202
    [Google Scholar]
  37. Eming S.A. Murray P.J. Pearce E.J. Metabolic orchestration of the wound healing response. Cell Metab. 2021 33 9 1726 1743 10.1016/j.cmet.2021.07.017 34384520
    [Google Scholar]
  38. Anderson K. Hamm R.L. Factors that impair wound healing. J. Am. Coll. Clin. Wound Spec. 2012 4 4 84 91 10.1016/j.jccw.2014.03.001 26199879
    [Google Scholar]
  39. Wang A.S. Armstrong E.J. Armstrong A.W. Corticosteroids and wound healing: clinical considerations in the perioperative period. Am. J. Surg. 2013 206 3 410 417 10.1016/j.amjsurg.2012.11.018 23759697
    [Google Scholar]
  40. Xia N. Morteza A. Yang F. Cao H. Wang A. Review of the role of cigarette smoking in diabetic foot. J. Diabetes Investig. 2019 10 2 202 215 10.1111/jdi.12952 30300476
    [Google Scholar]
  41. Cohen A.J. Nikbakht N. Uitto J. Keloid disorder: genetic basis, gene expression profiles, and immunological modulation of the fibrotic processes in the skin. Cold Spring Harb. Perspect. Biol. 2023 15 7 a041245 10.1101/cshperspect.a041245 36411063
    [Google Scholar]
  42. Obagi Z. Damiani G. Grada A. Falanga V. Principles of wound dressings: a review. Surg. Technol. Int. 2019 35 50 57 31480092
    [Google Scholar]
  43. Kus K.J.B. Ruiz E.S. Wound dressings–a practical review. Curr. Dermatol. Rep. 2020 9 4 298 308 10.1007/s13671‑020‑00319‑w
    [Google Scholar]
  44. Akbar A.R. Su S. Amjad B. Cai Y. Lin L. Effect of bamboo viscose on the wicking and moisture management properties of gauze. IOP Conf. Ser.: Mater. Sci. Eng. 2017 275 012042 10.1088/1757‑899X/275/1/012042
    [Google Scholar]
  45. Powers J.G. Morton L.M. Phillips T.J. Dressings for chronic wounds. Dermatol. Ther. 2013 26 3 197 206 10.1111/dth.12055 23742280
    [Google Scholar]
  46. Dabiri G. Damstetter E. Phillips T. Choosing a wound dressing based on common wound characteristics. Adv. Wound Care (New Rochelle) 2016 5 1 32 41 10.1089/wound.2014.0586 26858913
    [Google Scholar]
  47. Ahmed E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015 6 2 105 121 10.1016/j.jare.2013.07.006 25750745
    [Google Scholar]
  48. Ullah F. Othman M.B.H. Javed F. Ahmad Z. Akil H.M. Classification, processing and application of hydrogels: A review. Mater. Sci. Eng. C 2015 57 414 433 10.1016/j.msec.2015.07.053 26354282
    [Google Scholar]
  49. Shamloo A. Aghababaie Z. Afjoul H. Jami M. Bidgoli M.R. Vossoughi M. Ramazani A. Kamyabhesari K. Fabrication and evaluation of chitosan/gelatin/PVA hydrogel incorporating honey for wound healing applications: An in vitro, in vivo study. Int. J. Pharm. 2021 592 120068 10.1016/j.ijpharm.2020.120068 33188894
    [Google Scholar]
  50. Chopra H. Bibi S. Kumar S. Khan M.S. Kumar P. Singh I. Preparation and evaluation of chitosan/PVA based hydrogel films loaded with honey for wound healing application. Gels 2022 8 2 111 10.3390/gels8020111 35200493
    [Google Scholar]
  51. El-Kased R.F. Amer R.I. Attia D. Elmazar M.M. Honey-based hydrogel: In vitro and comparative In vivo evaluation for burn wound healing. Sci. Rep. 2017 7 1 9692 10.1038/s41598‑017‑08771‑8 28851905
    [Google Scholar]
  52. Şalva E. Akdağ A.E. Alan S. Arısoy S. Akbuğa F.J. Evaluation of the Effect of Honey-Containing Chitosan/Hyaluronic Acid Hydrogels on Wound Healing. Gels 2023 9 11 856 10.3390/gels9110856 37998945
    [Google Scholar]
  53. Xiao J. Zhou Y. Ye M. An Y. Wang K. Wu Q. Song L. Zhang J. He H. Zhang Q. Wu J. Freeze‐thawing chitosan/ions hydrogel coated gauzes releasing multiple metal ions on demand for improved infected wound healing. Adv. Healthc. Mater. 2021 10 6 2001591 10.1002/adhm.202001591 33320448
    [Google Scholar]
  54. Farasati Far B. Naimi-Jamal M.R. Jahanbakhshi M. Hadizadeh A. Dehghan S. Hadizadeh S. Enhanced antibacterial activity of porous chitosan-based hydrogels crosslinked with gelatin and metal ions. Sci. Rep. 2024 14 1 7505 10.1038/s41598‑024‑58174‑9 38553565
    [Google Scholar]
  55. Masood N. Ahmed R. Tariq M. Ahmed Z. Masoud M.S. Ali I. Asghar R. Andleeb A. Hasan A. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int. J. Pharm. 2019 559 23 36 10.1016/j.ijpharm.2019.01.019 30668991
    [Google Scholar]
  56. He X. Liu X. Yang J. Du H. Chai N. Sha Z. Geng M. Zhou X. He C. Tannic acid-reinforced methacrylated chitosan/methacrylated silk fibroin hydrogels with multifunctionality for accelerating wound healing. Carbohydr. Polym. 2020 247 116689 10.1016/j.carbpol.2020.116689 32829817
    [Google Scholar]
  57. Liu S. Jiang N. Chi Y. Peng Q. Dai G. Qian L. Xu K. Zhong W. Yue W. Injectable and self-healing hydrogel based on chitosan-tannic acid and oxidized hyaluronic acid for wound healing. ACS Biomater. Sci. Eng. 2022 8 9 3754 3764 10.1021/acsbiomaterials.2c00321 35993819
    [Google Scholar]
  58. Gupta A. Briffa S.M. Swingler S. Gibson H. Kannappan V. Adamus G. Kowalczuk M. Martin C. Radecka I. Synthesis of silver nanoparticles using curcumin-cyclodextrins loaded into bacterial cellulose-based hydrogels for wound dressing applications. Biomacromolecules 2020 21 5 1802 1811 10.1021/acs.biomac.9b01724 31967794
    [Google Scholar]
  59. Deng L. Li F. Han Z. Qu X. Li J. Zhou Z. Chen S. Wang H. Lv X. Bacterial cellulose-based hydrogel with regulated rehydration and enhanced antibacterial activity for wound healing. Int. J. Biol. Macromol. 2024 267 Pt 1 131291 10.1016/j.ijbiomac.2024.131291 38583839
    [Google Scholar]
  60. Pagano C. Ceccarini M.R. Faieta M. di Michele A. Blasi F. Cossignani L. Beccari T. Oliva E. Pittia P. Sergi M. Primavilla S. Serafini D. Benedetti L. Ricci M. Perioli L. Starch-based sustainable hydrogel loaded with Crocus sativus petals extract: A new product for wound care. Int. J. Pharm. 2022 625 122067 10.1016/j.ijpharm.2022.122067 35931396
    [Google Scholar]
  61. Zhang M. Zhao X. Alginate hydrogel dressings for advanced wound management. Int. J. Biol. Macromol. 2020 162 1414 1428 10.1016/j.ijbiomac.2020.07.311 32777428
    [Google Scholar]
  62. Ying H. Zhou J. Wang M. Su D. Ma Q. Lv G. Chen J. In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing. Mater. Sci. Eng. C 2019 101 487 498 10.1016/j.msec.2019.03.093 31029343
    [Google Scholar]
  63. Wang D. Xu P. Wang S. Li W. Liu W. Rapidly curable hyaluronic acid-catechol hydrogels inspired by scallops as tissue adhesives for hemostasis and wound healing. Eur. Polym. J. 2020 134 109763 10.1016/j.eurpolymj.2020.109763
    [Google Scholar]
  64. Ng J.Y. Zhu X. Mukherjee D. Zhang C. Hong S. Kumar Y. Gokhale R. Ee P.L.R. Pristine gellan gum–collagen interpenetrating network hydrogels as mechanically enhanced anti-inflammatory biologic wound dressings for burn wound therapy. ACS Appl. Bio Mater. 2021 4 2 1470 1482 10.1021/acsabm.0c01363 35014496
    [Google Scholar]
  65. Mahmood H. Khan I.U. Asif M. Khan R.U. Asghar S. Khalid I. Khalid S.H. Irfan M. Rehman F. Shahzad Y. Yousaf A.M. Younus A. Niazi Z.R. Asim M. In vitro and in vivo evaluation of gellan gum hydrogel films: Assessing the co impact of therapeutic oils and ofloxacin on wound healing. Int. J. Biol. Macromol. 2021 166 483 495 10.1016/j.ijbiomac.2020.10.206 33130262
    [Google Scholar]
  66. Chatterjee N.S. Sukumaran H.G. Dara P.K. Ganesan B. Ashraf M. Anandan R. Mathew S. Nagarajarao R.C. Nano-encapsulation of curcumin in fish collagen grafted succinyl chitosan hydrogel accelerates wound healing process in experimental rats. Food Hydrocolloids for Health 2022 2 100061 10.1016/j.fhfh.2022.100061
    [Google Scholar]
  67. Flora T. de Torre I.G. Alonso M. Rodríguez-Cabello J.C. Tethering QK peptide to enhance angiogenesis in elastin-like recombinamer (ELR) hydrogels. J. Mater. Sci. Mater. Med. 2019 30 2 30 10.1007/s10856‑019‑6232‑z 30762134
    [Google Scholar]
  68. Norahan M.H. Pedroza-González S.C. Sánchez-Salazar M.G. Álvarez M.M. Trujillo de Santiago G. Structural and biological engineering of 3D hydrogels for wound healing. Bioact. Mater. 2023 24 197 235 10.1016/j.bioactmat.2022.11.019 36606250
    [Google Scholar]
  69. Firlar I. Altunbek M. McCarthy C. Ramalingam M. Camci-Unal G. Functional hydrogels for treatment of chronic wounds. Gels 2022 8 2 127 10.3390/gels8020127 35200508
    [Google Scholar]
  70. Kharaziha M. Baidya A. Annabi N. Rational design of immunomodulatory hydrogels for chronic wound healing. Adv. Mater. 2021 33 39 2100176 10.1002/adma.202100176 34251690
    [Google Scholar]
  71. Gao Y. Li Z. Huang J. Zhao M. Wu J. In situ formation of injectable hydrogels for chronic wound healing. J. Mater. Chem. B Mater. Biol. Med. 2020 8 38 8768 8780 10.1039/D0TB01074J 33026387
    [Google Scholar]
  72. Solanki D. Vinchhi P. Patel M.M. Design Considerations, Formulation Approaches, and Strategic Advances of Hydrogel Dressings for Chronic Wound Management. ACS Omega 2023 8 9 8172 8189 10.1021/acsomega.2c06806 36910992
    [Google Scholar]
  73. Ji J.Y. Ren D.Y. Weng Y.Z. Efficiency of multifunctional antibacterial hydrogels for chronic wound healing in Diabetes: A comprehensive review. Int. J. Nanomed. 2022 2022 3163 3176 10.2147/IJN.S363827
    [Google Scholar]
  74. Liu W.S. Liu Y. Gao J. Zheng H. Lu Z.M. Li M. Biomembrane-based nanostructure-and microstructure-loaded hydrogels for promoting chronic wound healing. Int. J. Nanomed. 2023 2023 385 411 10.2147/IJN.S387382
    [Google Scholar]
  75. Raina N. Pahwa R. Thakur V.K. Gupta M. Polysaccharide-based hydrogels: New insights and futuristic prospects in wound healing. Int. J. Biol. Macromol. 2022 223 Pt A 1586 1603 10.1016/j.ijbiomac.2022.11.115 36395945
    [Google Scholar]
  76. Huang C. Dong L. Zhao B. Lu Y. Huang S. Yuan Z. Luo G. Xu Y. Qian W. Anti‐inflammatory hydrogel dressings and skin wound healing. Clin. Transl. Med. 2022 12 11 e1094 10.1002/ctm2.1094 36354147
    [Google Scholar]
  77. He J.J. McCarthy C. Camci-Unal G. Development of Hydrogel‐Based Sprayable Wound Dressings for Second‐ and Third‐Degree Burns. Adv. NanoBiomed Res. 2021 1 6 2100004 10.1002/anbr.202100004
    [Google Scholar]
  78. Maaz Arif M. Khan S.M. Gull N. Tabish T.A. Zia S. Ullah Khan R. Awais S.M. Arif Butt M. Polymer-based biomaterials for chronic wound management: Promises and challenges. Int. J. Pharm. 2021 598 120270 10.1016/j.ijpharm.2021.120270 33486030
    [Google Scholar]
  79. Hu H. Xu F.J. Rational design and latest advances of polysaccharide-based hydrogels for wound healing. Biomater. Sci. 2020 8 8 2084 2101 10.1039/D0BM00055H 32118241
    [Google Scholar]
  80. Tang Y. Zhang X. Li X. Ma C. Chu X. Wang L. Xu W. A review on recent advances of Protein-Polymer hydrogels. Eur. Polym. J. 2022 162 110881 10.1016/j.eurpolymj.2021.110881
    [Google Scholar]
  81. Sanjanwala D. Londhe V. Trivedi R. Bonde S. Sawarkar S. Kale V. Patravale V. Polysaccharide-based hydrogels for drug delivery and wound management: a review. Expert Opin. Drug Deliv. 2022 19 12 1664 1695 10.1080/17425247.2022.2152791 36440488
    [Google Scholar]
  82. Cheng J. Liu J. Li M. Liu Z. Wang X. Zhang L. Wang Z. Hydrogel-based biomaterials engineered from natural-derived polysaccharides and proteins for hemostasis and wound healing. Front. Bioeng. Biotechnol. 2021 9 780187 10.3389/fbioe.2021.780187 34881238
    [Google Scholar]
  83. Lazaridou M. Bikiaris D.N. Lamprou D.A. 3D bioprinted chitosan-based hydrogel scaffolds in tissue engineering and localised drug delivery. Pharmaceutics 2022 14 9 1978 10.3390/pharmaceutics14091978 36145727
    [Google Scholar]
  84. Alven S. Aderibigbe B.A. Chitosan and cellulose-based hydrogels for wound management. Int. J. Mol. Sci. 2020 21 24 9656 10.3390/ijms21249656 33352826
    [Google Scholar]
  85. Xiong Y. Zhang X. Ma X. Wang W. Yan F. Zhao X. Chu X. Xu W. Sun C. A review of the properties and applications of bioadhesive hydrogels. Polym. Chem. 2021 12 26 3721 3739 10.1039/D1PY00282A
    [Google Scholar]
  86. Byrne M. Aly A. The surgical suture. Aesthet. Surg. J. 2019 39 Suppl. 2 S67 S72 10.1093/asj/sjz036 30869751
    [Google Scholar]
  87. Bao Z. Xian C. Yuan Q. Liu G. Wu J. Natural polymer‐based hydrogels with enhanced mechanical performances: preparation, structure, and property. Adv. Healthc. Mater. 2019 8 17 1900670 10.1002/adhm.201900670 31364824
    [Google Scholar]
  88. Gowda A.H.J. Bu Y. Kudina O. Krishna K.V. Bohara R.A. Eglin D. Pandit A. Design of tunable gelatin-dopamine based bioadhesives. Int. J. Biol. Macromol. 2020 164 1384 1391 10.1016/j.ijbiomac.2020.07.195 32721461
    [Google Scholar]
  89. Shao Q. Zhang W. Qi J. Liao H. Guo H. Tan X. Chi B. Laponite stabilized endogenous antibacterial hydrogel as wet-tissue adhesive. J. Mech. Behav. Biomed. Mater. 2023 145 145 106009 10.1016/j.jmbbm.2023.106009 37423008
    [Google Scholar]
  90. Jiang Y. Zhang X. Zhang W. Wang M. Yan L. Wang K. Han L. Lu X. Infant skin friendly adhesive hydrogel patch activated at body temperature for bioelectronics securing and diabetic wound healing. ACS Nano 2022 16 6 8662 8676 10.1021/acsnano.2c00662 35549213
    [Google Scholar]
  91. Han L. Lu X. Liu K. Wang K. Fang L. Weng L.T. Zhang H. Tang Y. Ren F. Zhao C. Sun G. Liang R. Li Z. Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS Nano 2017 11 3 2561 2574 10.1021/acsnano.6b05318 28245107
    [Google Scholar]
  92. Liu K. Zhang C. Chang R. He Y. Guan F. Yao M. Ultra-stretchable, tissue-adhesive, shape-adaptive, self-healing, on-demand removable hydrogel dressings with multiple functions for infected wound healing in regions of high mobility. Acta Biomater. 2023 166 224 240 10.1016/j.actbio.2023.05.025 37207743
    [Google Scholar]
  93. Falanga V. Isseroff R.R. Soulika A.M. Romanelli M. Margolis D. Kapp S. Granick M. Harding K. Chronic wounds. Nat. Rev. Dis. Primers 2022 8 1 50 10.1038/s41572‑022‑00377‑3 35864102
    [Google Scholar]
  94. Kalelkar P.P. Riddick M. García A.J. Biomaterial-based antimicrobial therapies for the treatment of bacterial infections. Nat. Rev. Mater. 2021 7 1 39 54 10.1038/s41578‑021‑00362‑4 35330939
    [Google Scholar]
  95. Jia B. Li G. Cao E. Luo J. Zhao X. Huang H. Recent progress of antibacterial hydrogels in wound dressings. Mater. Today Bio 2023 19 100582 10.1016/j.mtbio.2023.100582 36896416
    [Google Scholar]
  96. Wang W. Ummartyotin S. Narain R. Advances and challenges on hydrogels for wound dressing. Curr. Opin. Biomed. Eng. 2023 26 100443 10.1016/j.cobme.2022.100443
    [Google Scholar]
  97. Salehi M. Ehterami A. Farzamfar S. Vaez A. Ebrahimi-Barough S. Accelerating healing of excisional wound with alginate hydrogel containing naringenin in rat model. Drug Deliv. Transl. Res. 2021 11 1 142 153 10.1007/s13346‑020‑00731‑6 32086788
    [Google Scholar]
  98. Kubiczek D. Raber H. Gonzalez-García M. Morales-Vicente F. Staendker L. Otero-Gonzalez A.J. Rosenau F. Derivates of the antifungal peptide Cm-p5 inhibit development of Candida auris biofilms in vitro. Antibiotics (Basel) 2020 9 7 363 10.3390/antibiotics9070363 32605024
    [Google Scholar]
  99. Zhong Y. Xiao H. Seidi F. Jin Y. Natural polymer-based antimicrobial hydrogels without synthetic antibiotics as wound dressings. Biomacromolecules 2020 21 8 2983 3006 10.1021/acs.biomac.0c00760 32672446
    [Google Scholar]
  100. Tamahkar E. Özkahraman B. Süloğlu A.K. İdil N. Perçin I. A novel multilayer hydrogel wound dressing for antibiotic release. J. Drug Deliv. Sci. Technol. 2020 58 101536 10.1016/j.jddst.2020.101536
    [Google Scholar]
  101. Thapa R.K. Winther-Larsen H.C. Ovchinnikov K. Carlsen H. Diep D.B. Tønnesen H.H. Hybrid hydrogels for bacteriocin delivery to infected wounds. Eur. J. Pharm. Sci. 2021 166 105990 10.1016/j.ejps.2021.105990 34481880
    [Google Scholar]
  102. Haidari H. Bright R. Garg S. Vasilev K. Cowin A.J. Kopecki Z. Eradication of mature bacterial biofilms with concurrent improvement in chronic wound healing using silver nanoparticle hydrogel treatment. Biomedicines 2021 9 9 1182 10.3390/biomedicines9091182 34572368
    [Google Scholar]
  103. Wang J. Chen X.Y. Zhao Y. Yang Y. Wang W. Wu C. Yang B. Zhang Z. Zhang L. Liu Y. Du X. Li W. Qiu L. Jiang P. Mou X.Z. Li Y.Q. pH-switchable antimicrobial nanofiber networks of hydrogel eradicate biofilm and rescue stalled healing in chronic wounds. ACS Nano 2019 13 10 11686 11697 10.1021/acsnano.9b05608 31490650
    [Google Scholar]
  104. Khoshnood S. Heidary M. Asadi A. Soleimani S. Motahar M. Savari M. Saki M. Abdi M. A review on mechanism of action, resistance, synergism, and clinical implications of mupirocin against Staphylococcus aureus. Biomed. Pharmacother. 2019 109 1809 1818 10.1016/j.biopha.2018.10.131 30551435
    [Google Scholar]
  105. Hurler J. Sørensen K.K. Fallarero A. Vuorela P. Škalko-Basnet N. Liposomes-in-hydrogel delivery system with mupirocin: in vitro antibiofilm studies and in vivo evaluation in mice burn model. BioMed Res. Int. 2013 2013 1 8 10.1155/2013/498485 24369533
    [Google Scholar]
  106. Huang W.C. Ying R. Wang W. Guo Y. He Y. Mo X. Xue C. Mao X. A macroporous hydrogel dressing with enhanced antibacterial and anti-inflammatory capabilities for accelerated wound healing. Adv. Funct. Mater. 2020 30 21 2000644 10.1002/adfm.202000644
    [Google Scholar]
  107. Urciuolo F. Casale C. Imparato G. Netti P.A. Bioengineered skin substitutes: the role of extracellular matrix and vascularization in the healing of deep wounds. J. Clin. Med. 2019 8 12 2083 10.3390/jcm8122083 31805652
    [Google Scholar]
  108. Tavakoli S. Klar A.S. Bioengineered skin substitutes: Advances and future trends. Appl. Sci. (Basel) 2021 11 4 1493 10.3390/app11041493
    [Google Scholar]
  109. Aleemardani M. Trikić M.Z. Green N.H. Claeyssens F. The importance of mimicking dermal-epidermal junction for skin tissue engineering: a review. Bioengineering (Basel) 2021 8 11 148 10.3390/bioengineering8110148 34821714
    [Google Scholar]
  110. Da L.C. Huang Y.Z. Xie H.Q. Zheng B.H. Huang Y.C. Du S.R. Membranous extracellular matrix-based scaffolds for skin wound healing. Pharmaceutics 2021 13 11 1796 10.3390/pharmaceutics13111796 34834211
    [Google Scholar]
  111. Kaur G. Narayanan G. Garg D. Sachdev A. Matai I. Biomaterials-based regenerative strategies for skin tissue wound healing. ACS Appl. Bio Mater. 2022 5 5 2069 2106 10.1021/acsabm.2c00035 35451829
    [Google Scholar]
  112. Moreira H.R. Marques A.P. Vascularization in skin wound healing: where do we stand and where do we go? Curr. Opin. Biotechnol. 2022 73 253 262 10.1016/j.copbio.2021.08.019 34555561
    [Google Scholar]
  113. Dixit S. Baganizi D.R. Sahu R. Dosunmu E. Chaudhari A. Vig K. Pillai S.R. Singh S.R. Dennis V.A. Immunological challenges associated with artificial skin grafts: available solutions and stem cells in future design of synthetic skin. J. Biol. Eng. 2017 11 1 49 10.1186/s13036‑017‑0089‑9 29255480
    [Google Scholar]
  114. Oualla-Bachiri W. Fernández-González A. Quiñones-Vico M.I. Arias-Santiago S. From grafts to human bioengineered vascularized skin substitutes. Int. J. Mol. Sci. 2020 21 21 8197 10.3390/ijms21218197 33147759
    [Google Scholar]
  115. Piejko M. Radziun K. Bobis-Wozowicz S. Waligórska A. Zimoląg E. Nessler M. Chrapusta A. Madeja Z. Drukała J. Adipose-derived stromal cells seeded on integra® dermal regeneration template improve post-burn wound reconstruction. Bioengineering (Basel) 2020 7 3 67 10.3390/bioengineering7030067 32630660
    [Google Scholar]
  116. Ababzadeh S. Farzin A. Goodarzi A. Karimi R. Sagharjoghi Farahani M. Eslami Farsani M. Gharibzad K. Zahiri M. Ai J. High porous electrospun poly(ε‐caprolactone)/gelatin/ MgO scaffolds preseeded with endometrial stem cells promote tissue regeneration in full‐thickness skin wounds: An in vivo study. J. Biomed. Mater. Res. B Appl. Biomater. 2020 108 7 2961 2970 10.1002/jbm.b.34626 32386283
    [Google Scholar]
  117. Arslan-Yildiz A. Assal R.E. Chen P. Guven S. Inci F. Demirci U. Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication 2016 8 1 014103 10.1088/1758‑5090/8/1/014103 26930133
    [Google Scholar]
  118. Tappa K. Jammalamadaka U. Novel biomaterials used in medical 3D printing techniques. J. Funct. Biomater. 2018 9 1 17 10.3390/jfb9010017 29414913
    [Google Scholar]
  119. Raza F. Zafar H. Zhu Y. Ren Y. -Ullah A. Khan A. He X. Han H. Aquib M. Boakye-Yiadom K. Ge L. -Ullah, A.; Khan, A. U.; Ge, L. A review on recent advances in stabilizing peptides/proteins upon fabrication in hydrogels from biodegradable polymers. Pharmaceutics 2018 10 1 16 10.3390/pharmaceutics10010016 29346275
    [Google Scholar]
  120. Ibanez R.I.R. do Amaral R.J.F.C. Simpson C.R. Casey S.M. Reis R.L. Marques A.P. Murphy C.M. O’Brien F.J. 3D printed scaffolds incorporated with platelet‐rich plasma show enhanced angiogenic potential while not inducing fibrosis. Adv. Funct. Mater. 2022 32 10 2109915 https://doi.org/ 10.1002/adfm.202109915
    [Google Scholar]
  121. Radmanesh S. Shabangiz S. Koupaei N. Hassanzadeh-Tabrizi S.A. 3D printed bio polymeric materials as a new perspective for wound dressing and skin tissue engineering applications: a review. J. Polym. Res. 2022 29 2 50 10.1007/s10965‑022‑02899‑6
    [Google Scholar]
  122. Yang X. Li S. Ren Y. Qiang L. Liu Y. Wang J. Dai K. 3D printed hydrogel for articular cartilage regeneration. Compos., Part B Eng. 2022 237 109863 10.1016/j.compositesb.2022.109863
    [Google Scholar]
  123. Li L. Wang Z. Wang K. Fu S. Li D. Wang M. Cao Y. Zhu H. Li Z. Weng L. Li Z. Ding X. Wang L. Paintable bioactive extracellular vesicle ink for Wound Healing. ACS Appl. Mater. Interfaces 2023 15 21 25427 25436 10.1021/acsami.3c03630 37204052
    [Google Scholar]
  124. Yang P. Ju Y. Hu Y. Xie X. Fang B. Lei L. Emerging 3D bioprinting applications in plastic surgery. Biomater. Res. 2023 27 1 1 10.1186/s40824‑022‑00338‑7 36597149
    [Google Scholar]
  125. Jorgensen A.M. Varkey M. Gorkun A. Clouse C. Xu L. Chou Z. Murphy S.V. Molnar J. Lee S.J. Yoo J.J. Soker S. Atala A. Bioprinted skin recapitulates normal collagen remodeling in full-thickness wounds. Tissue Eng. Part A 2020 26 9-10 512 526 10.1089/ten.tea.2019.0319 31861970
    [Google Scholar]
  126. Baltazar T. Merola J. Catarino C. Xie C.B. Kirkiles-Smith N.C. Lee V. Hotta S. Dai G. Xu X. Ferreira F.C. Saltzman W.M. Pober J.S. Karande P. Three dimensional bioprinting of a vascularized and perfusable skin graft using human keratinocytes, fibroblasts, pericytes, and endothelial cells. Tissue Eng. Part A 2020 26 5-6 227 238 10.1089/ten.tea.2019.0201 31672103
    [Google Scholar]
  127. Roshangar L. Rad J.S. Kheirjou R. Khosroshahi A.F. Using 3D‐bioprinting scaffold loaded with adipose‐derived stem cells to burns wound healing. J. Tissue Eng. Regen. Med. 2021 15 6 546 555 10.1002/term.3194 33779071
    [Google Scholar]
  128. Manso G.M.C. Elias-Oliveira J. Guimarães J.B. Pereira Í.S. Rodrigues V.F. Burger B. Fantacini D.M.C. de Souza L.E.B. Rodrigues H.G. Bonato V.L.D. Silva J.S. Ramos S.G. Tostes R.C. Manfiolli A.O. Caliari-Oliveira C. Carlos D. Xenogeneic mesenchymal stem cell biocurative improves skin wounds healing in diabetic mice by increasing mast cells and the regenerative profile. Regen. Ther. 2023 22 79 89 10.1016/j.reth.2022.12.006 36712958
    [Google Scholar]
  129. Abaci H.E. Guo Z. Coffman A. Gillette B. Lee W. Sia S.K. Christiano A.M. Human skin constructs with spatially controlled vasculature using primary and iPSC‐derived endothelial cells. Adv. Healthc. Mater. 2016 5 14 1800 1807 10.1002/adhm.201500936 27333469
    [Google Scholar]
  130. Sierra-Sánchez Á. Fernández-González A. Lizana-Moreno A. Espinosa-Ibáñez O. Martinez-Lopez A. Guerrero-Calvo J. Fernández-Porcel N. Ruiz-García A. Ordóñez-Luque A. Carriel V. Arias-Santiago S. Hyaluronic acid biomaterial for human tissue‐engineered skin substitutes: Preclinical comparative in vivo study of wound healing. J. Eur. Acad. Dermatol. Venereol. 2020 34 10 2414 2427 10.1111/jdv.16342 32173915
    [Google Scholar]
  131. Andriotis E.G. Eleftheriadis G.K. Karavasili C. Fatouros D.G. Development of bio-active patches based on pectin for the treatment of ulcers and wounds using 3D-bioprinting technology. Pharmaceutics 2020 12 1 56 10.3390/pharmaceutics12010056 31936630
    [Google Scholar]
  132. Piola B. Sabbatini M. Gino S. Invernizzi M. Renò F. 3D bioprinting of gelatin–xanthan gum composite hydrogels for growth of human skin cells. Int. J. Mol. Sci. 2022 23 1 539 10.3390/ijms23010539 35008965
    [Google Scholar]
  133. Madni A. Kousar R. Naeem N. Wahid F. Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering. Journal of Bioresources and Bioproducts 2021 6 1 11 25 10.1016/j.jobab.2021.01.002
    [Google Scholar]
  134. Wang X. Wang Q. Xu C. Nanocellulose-based inks for 3d bioprinting: Key aspects in research development and challenging perspectives in applications-A mini review. Bioengineering (Basel) 2020 7 2 40 10.3390/bioengineering7020040 32365578
    [Google Scholar]
  135. Lee J.M. Suen S.K.Q. Ng W.L. Ma W.C. Yeong W.Y. Bioprinting of collagen: considerations, potentials, and applications. Macromol. Biosci. 2021 21 1 2000280 10.1002/mabi.202000280 33073537
    [Google Scholar]
  136. Agarwal T. Costantini M. Maiti T.K. Extrusion 3D printing with Pectin-based ink formulations: Recent trends in tissue engineering and food manufacturing. Biomedical Engineering Advances 2021 2 100018 10.1016/j.bea.2021.100018
    [Google Scholar]
  137. Müller M. Becher J. Schnabelrauch M. Zenobi-Wong M. Nanostructured Pluronic hydrogels as bioinks for 3D bioprinting. Biofabrication 2015 7 3 035006 10.1088/1758‑5090/7/3/035006 26260872
    [Google Scholar]
  138. Chiappone A. Fantino E. Roppolo I. Lorusso M. Manfredi D. Fino P. Pirri C.F. Calignano F. 3D printed PEG-based hybrid nanocomposites obtained by sol–gel technique. ACS Appl. Mater. Interfaces 2016 8 8 5627 5633 10.1021/acsami.5b12578 26871993
    [Google Scholar]
  139. Yin M. Wang X. Yu Z. Wang Y. Wang X. Deng M. Zhao D. Ji S. Jia N. Zhang W. γ-PGA hydrogel loaded with cell-free fat extract promotes the healing of diabetic wounds. J. Mater. Chem. B Mater. Biol. Med. 2020 8 36 8395 8404 10.1039/D0TB01190H 32966542
    [Google Scholar]
  140. Chang T. Yin H. Yu X. Wang L. Fan L. Xin J.H. Yu H. 3D PCL/collagen nanofibrous medical dressing for one-time treatment of diabetic foot ulcers. Colloids Surf. B Biointerfaces 2022 214 112480 10.1016/j.colsurfb.2022.112480 35358884
    [Google Scholar]
  141. Kondej K. Zawrzykraj M. Czerwiec K. Deptuła M. Tymińska A. Pikuła M. Bioengineering Skin Substitutes for Wound Management—Perspectives and Challenges. Int. J. Mol. Sci. 2024 25 7 3702 10.3390/ijms25073702 38612513
    [Google Scholar]
  142. Greaves N.S. Iqbal S.A. Hodgkinson T. Morris J. Benatar B. Alonso-Rasgado T. Baguneid M. Bayat A. Skin substitute‐assisted repair shows reduced dermal fibrosis in acute human wounds validated simultaneously by histology and optical coherence tomography. Wound Repair Regen. 2015 23 4 483 494 10.1111/wrr.12308 26053202
    [Google Scholar]
  143. Kumar P. Gupta A. Updated Classification of Skin Substitutes. Indian J. Plast. Surg. 2023 56 4 388 389 10.1055/s‑0043‑1771292 37705824
    [Google Scholar]
  144. Hansbrough J. Dermagraft-TC for partial-thickness burns: a clinical evaluation. J. Burn Care Rehabil. 1997 18 1 Pt 2 Suppl. 1 s25 s28 10.1097/00004630‑199701001‑00011 9063806
    [Google Scholar]
  145. Tavakoli S. Klar A.S. Advanced Hydrogels as Wound Dressings. Biomolecules 2020 10 8 1169 10.3390/biom10081169 32796593
    [Google Scholar]
  146. See A. Wright S. Denham J.W. A pilot study of dermofilm in acute radiation-induced desquamative skin reactions. Clin. Oncol. (R. Coll. Radiol.) 1998 10 3 182 185 10.1016/S0936‑6555(98)80064‑2 9704181
    [Google Scholar]
  147. Vecin N.M. Kirsner R.S. Skin substitutes as treatment for chronic wounds: current and future directions. Front. Med. (Lausanne) 2023 10 1154567 10.3389/fmed.2023.1154567 37711741
    [Google Scholar]
  148. Takami Y. Yamaguchi R. Ono S. Hyakusoku H. Clinical application and histological properties of autologous tissue-engineered skin equivalents using an acellular dermal matrix. J. Nippon Med. Sch. 2014 81 6 356 363 10.1272/jnms.81.356 25744478
    [Google Scholar]
  149. Carsin H. Ainaud P. Le Bever H. Rives J.M. Lakhel A. Stephanazzi J. Lambert F. Perrot J. Cultured epithelial autografts in extensive burn coverage of severely traumatized patients: a five year single-center experience with 30 patients. Burns 2000 26 4 379 387 10.1016/S0305‑4179(99)00143‑6 10751706
    [Google Scholar]
  150. Johnsen S. Ermuth T. Tanczos E. Bannasch H. Horch R.E. Zschocke I. Peschen M. Schöpf E. Vanscheidt W. Augustin M. Treatment of therapy-refractive ulcera cruris of various origins with autologous keratinocytes in fibrin sealant. Vasa 2005 34 1 25 29 10.1024/0301‑1526.34.1.25 15786934
    [Google Scholar]
  151. Vanscheidt W. Ukat A. Horak V. Brüning H. Hunyadi J. Pavlicek R. Emter M. Hartmann A. Bende J. Zwingers T. Ermuth T. Eberhardt R. Treatment of recalcitrant venous leg ulcers with autologous keratinocytes in fibrin sealant: A multinational randomized controlled clinical trial. Wound Repair Regen. 2007 15 3 308 315 10.1111/j.1524‑475X.2007.00231.x 17537117
    [Google Scholar]
  152. Lam P.K. Chan E.S.Y. To E.W.H. Lau C.H. Yen S.C. King W.W.K. Development and evaluation of a new composite Laserskin graft. J. Trauma Inj. Infect. Crit. Care 1999 47 5 918 922 10.1097/00005373‑199911000‑00017 10568722
    [Google Scholar]
  153. Pajardi G. Rapisarda V. Somalvico F. Scotti A. Russo G.L. Ciancio F. Sgrò A. Nebuloni M. Allevi R. Torre M.L. Trabucchi E. Marazzi M. Skin substitutes based on allogenic fibroblasts or keratinocytes for chronic wounds not responding to conventional therapy: a retrospective observational study. Int. Wound J. 2016 13 1 44 52 10.1111/iwj.12223 24517418
    [Google Scholar]
  154. Przekora A. A Concise Review on Tissue Engineered Artificial Skin Grafts for Chronic Wound Treatment: Can We Reconstruct Functional Skin Tissue In Vitro? Cells 2020 9 7 1622 10.3390/cells9071622 32640572
    [Google Scholar]
  155. Foley E. Robinson A. Maloney M. Skin Substitutes and Dermatology: A Review. Curr. Dermatol. Rep. 2013 2 2 101 112 10.1007/s13671‑013‑0044‑z
    [Google Scholar]
  156. Jackson S.R. Roman S. Matriderm and Split Skin Grafting for Full-Thickness Pediatric Facial Burns. J. Burn Care Res. 2019 40 2 251 254 10.1093/jbcr/irz006 30649378
    [Google Scholar]
  157. Wester J.L. Pittman A.L. Lindau R.H. Wax M.K. AlloDerm with split-thickness skin graft for coverage of the forearm free flap donor site. Otolaryngol. Head Neck Surg. 2014 150 1 47 52 10.1177/0194599813513713 24270163
    [Google Scholar]
  158. Widmyer A.S. Mirhaidari S.J. Wagner D.S. Implant-based Breast Reconstruction Outcomes Comparing Freeze-dried Aseptic Alloderm and Sterile Ready-to-use Alloderm. Plast. Reconstr. Surg. Glob. Open 2019 7 12 e2530 10.1097/GOX.0000000000002530 32537289
    [Google Scholar]
  159. Vyas K. Vasconez H. Wound Healing: Biologics, Skin Substitutes, Biomembranes and Scaffolds. Healthcare (Basel) 2014 2 3 356 400 10.3390/healthcare2030356 27429283
    [Google Scholar]
  160. Still J. Glat P. Silverstein P. Griswold J. Mozingo D. The use of a collagen sponge/living cell composite material to treat donor sites in burn patients. Burns 2003 29 8 837 841 10.1016/S0305‑4179(03)00164‑5 14636761
    [Google Scholar]
  161. Santema T.B.K. Poyck P.P.C. Ubbink D.T. Systematic review and meta‐analysis of skin substitutes in the treatment of diabetic foot ulcers: Highlights of a Cochrane systematic review. Wound Repair Regen. 2016 24 4 737 744 10.1111/wrr.12434 27062201
    [Google Scholar]
  162. Subhan F. Hussain Z. Tauseef I. Shehzad A. Wahid F. A review on recent advances and applications of fish collagen. Crit. Rev. Food Sci. Nutr. 2021 61 6 1027 1037 10.1080/10408398.2020.1751585 32345036
    [Google Scholar]
  163. Pateiro M. Domínguez R. Varzakas T. Munekata P.E.S. Movilla Fierro E. Lorenzo J.M. Omega-3-rich oils from marine side streams and their potential application in food. Mar. Drugs 2021 19 5 233 10.3390/md19050233 33919462
    [Google Scholar]
  164. Kotronoulas A. de Lomana A.L.G. Karvelsson S.T. Heijink M. Stone R. II Giera M. Rolfsson O. Lipid mediator profiles of burn wound healing: Acellular cod fish skin grafts promote the formation of EPA and DHA derived lipid mediators following seven days of treatment. Prostaglandins Leukot. Essent. Fatty Acids 2021 175 102358 10.1016/j.plefa.2021.102358 34753002
    [Google Scholar]
  165. Ibrahim A. Soliman M. Kotb S. Ali M.M. Evaluation of fish skin as a biological dressing for metacarpal wounds in donkeys. BMC Vet. Res. 2020 16 1 472 10.1186/s12917‑020‑02693‑w 33272259
    [Google Scholar]
  166. Michael S. Winters C. Khan M. Acellular Fish Skin Graft Use for Diabetic Lower Extremity Wound Healing: A Retrospective Study of 58 Ulcerations and a Literature Review. Wounds 2019 31 10 262 268 31730505
    [Google Scholar]
  167. Kirsner R.S. Margolis D.J. Baldursson B.T. Petursdottir K. Davidsson O.B. Weir D. Lantis J.C. II Fish skin grafts compared to human amnion/chorion membrane allografts: A double‐blind, prospective, randomized clinical trial of acute wound healing. Wound Repair Regen. 2020 28 1 75 80 10.1111/wrr.12761 31509319
    [Google Scholar]
  168. Stone R. II Saathoff E.C. Larson D.A. Wall J.T. Wienandt N.A. Magnusson S. Kjartansson H. Natesan S. Christy R.J. Accelerated wound closure of deep partial thickness burns with acellular fish skin graft. Int. J. Mol. Sci. 2021 22 4 1590 10.3390/ijms22041590 33557424
    [Google Scholar]
  169. Cao X. Sun L. Luo Z. Lin X. Zhao Y. Aquaculture derived hybrid skin patches for wound healing. Engineered Regeneration 2023 4 1 28 35 10.1016/j.engreg.2022.11.002
    [Google Scholar]
  170. Mohapatra S. Mirza M.A. Hilles A.R. Zakir F. Gomes A.C. Ansari M.J. Iqbal Z. Mahmood S. Biomedical application, patent repository, clinical trial and regulatory updates on hydrogel: An extensive review. Gels 2021 7 4 207 10.3390/gels7040207 34842705
    [Google Scholar]
  171. Seidi K. Ayoubi-Joshaghani M.H. Azizi M. Javaheri T. Jaymand M. Alizadeh E. Webster T.J. Yazdi A.A. Niazi M. Hamblin M.R. Amoozgar Z. Jahanban-Esfahlan R. Bioinspired hydrogels build a bridge from bench to bedside. Nano Today 2021 39 101157 10.1016/j.nantod.2021.101157
    [Google Scholar]
  172. Arshad R. Razlansari M. Maryam Hosseinikhah S. Tiwari Pandey A. Ajalli N. Ezra Manicum A.L. Thorat N. Rahdar A. Zhu Y. Tabish T.A. Antimicrobial and anti-biofilm activities of bio-inspired nanomaterials for wound healing applications. Drug Discov. Today 2023 28 9 103673 10.1016/j.drudis.2023.103673 37331691
    [Google Scholar]
  173. Ma X. Bian Q. Hu J. Gao J. Stem from nature: Bioinspired adhesive formulations for wound healing. J. Control. Release 2022 345 292 305 10.1016/j.jconrel.2022.03.027 35314262
    [Google Scholar]
  174. Xu K. Wu X. Zhang X. Xing M. Bridging wounds: tissue adhesives’ essential mechanisms, synthesis and characterization, bioinspired adhesives and future perspectives. Burns Trauma 2022 10 tkac033 10.1093/burnst/tkac033 36225327
    [Google Scholar]
  175. Cai C. Chen Z. Chen Y. Li H. Yang Z. Liu H. Mechanisms and applications of bioinspired underwater/wet adhesives. J. Polym. Sci. 2021 59 23 2911 2945 10.1002/pol.20210521
    [Google Scholar]
  176. Soleimani K. Arkan E. Derakhshankhah H. Haghshenas B. Jahanban-Esfahlan R. Jaymand M. A novel bioreducible and pH-responsive magnetic nanohydrogel based on β-cyclodextrin for chemo/hyperthermia therapy of cancer. Carbohydr. Polym. 2021 252 117229 10.1016/j.carbpol.2020.117229 33183649
    [Google Scholar]
  177. Kim S. Park J. Kim E.M. Choi J.J. Kim H.N. Chin I.L. Choi Y.S. Moon S.H. Shin H. Lotus seedpod-inspired hydrogels as an all-in-one platform for culture and delivery of stem cell spheroids. Biomaterials 2019 225 119534 10.1016/j.biomaterials.2019.119534 31590118
    [Google Scholar]
  178. Kondaveeti S. Choi G. Veerla S.C. Kim S. Kim J. Lee H.J. Kuzhiumparambil U. Ralph P.J. Yeo J. Jeong H.E. Mussel-inspired resilient hydrogels with strong skin adhesion and high-sensitivity for wearable device. Nano Converg. 2024 11 1 12 10.1186/s40580‑024‑00419‑4 38512587
    [Google Scholar]
  179. Wei K. Senturk B. Matter M.T. Wu X. Herrmann I.K. Rottmar M. Toncelli C. Mussel-inspired injectable hydrogel adhesive formed under mild conditions features near-native tissue properties. ACS Appl. Mater. Interfaces 2019 11 51 47707 47719 10.1021/acsami.9b16465 31765122
    [Google Scholar]
  180. Huang W. Qi C. Gao Y. Injectable self-healable nanocomposite hydrogels with mussel-inspired adhesive properties for 3D printing ink. ACS Appl. Nano Mater. 2019 2 8 5000 5008 10.1021/acsanm.9b00936
    [Google Scholar]
  181. Yan S. Wang W. Li X. Ren J. Yun W. Zhang K. Li G. Yin J. Preparation of mussel-inspired injectable hydrogels based on dual-functionalized alginate with improved adhesive, self-healing, and mechanical properties. J. Mater. Chem. B Mater. Biol. Med. 2018 6 40 6377 6390 10.1039/C8TB01928B 32254646
    [Google Scholar]
  182. Deng J. Tang Y. Zhang Q. Wang C. Liao M. Ji P. Song J. Luo G. Chen L. Ran X. Wei Z. Zheng L. Dang R. Liu X. Zhang H. Zhang Y.S. Zhang X. Tan H. A bioinspired medical adhesive derived from skin secretion of Andrias davidianus for wound healing. Adv. Funct. Mater. 2019 29 31 1809110 10.1002/adfm.201809110
    [Google Scholar]
  183. Guo Y. Wang Y. Zhao X. Li X. Wang Q. Zhong W. Mequanint K. Zhan R. Xing M. Luo G. Snake extract–laden hemostatic bioadhesive gel cross-linked by visible light. Sci. Adv. 2021 7 29 eabf9635 10.1126/sciadv.abf9635 34261653
    [Google Scholar]
  184. Huang L.C. Wang H.C. Chen L.H. Ho C.Y. Hsieh P.H. Huang M.Y. Wu H.C. Wang T.W. Bioinspired self-assembling peptide hydrogel with proteoglycan-assisted growth factor delivery for therapeutic angiogenesis. Theranostics 2019 9 23 7072 7087 10.7150/thno.35803 31660087
    [Google Scholar]
  185. Zheng X. Ding Z. Cheng W. Lu Q. Kong X. Zhou X. Lu G. Kaplan D.L. Microskin‐Inspired Injectable MSC‐Laden Hydrogels for Scarless Wound Healing with Hair Follicles. Adv. Healthc. Mater. 2020 9 10 2000041 10.1002/adhm.202000041 32338466
    [Google Scholar]
  186. Miao F. Li Y. Tai Z. Zhang Y. Gao Y. Hu M. Zhu Q. Antimicrobial peptides: the promising therapeutics for cutaneous wound healing. Macromol. Biosci. 2021 21 10 2100103 10.1002/mabi.202100103 34405955
    [Google Scholar]
  187. de Souza G.S. de Jesus Sonego L. Santos Mundim A.C. de Miranda Moraes J. Sales-Campos H. Lorenzón E.N. Antimicrobial-wound healing peptides: Dual-function molecules for the treatment of skin injuries. Peptides 2022 148 170707 10.1016/j.peptides.2021.170707 34896165
    [Google Scholar]
  188. Niyonsaba F. Kiatsurayanon C. Chieosilapatham P. Ogawa H. Friends or Foes? Host defense (antimicrobial) peptides and proteins in human skin diseases. Exp. Dermatol. 2017 26 11 989 998 10.1111/exd.13314 28191680
    [Google Scholar]
  189. Takahashi M. Umehara Y. Yue H. Trujillo-Paez J.V. Peng G. Nguyen H.L.T. Ikutama R. Okumura K. Ogawa H. Ikeda S. Niyonsaba F. The antimicrobial peptide human β-defensin-3 accelerates wound healing by promoting angiogenesis, cell migration, and proliferation through the FGFR/JAK2/STAT3 signaling pathway. Front. Immunol. 2021 12 712781 10.3389/fimmu.2021.712781 34594328
    [Google Scholar]
  190. Thapa R.K. Diep D.B. Tønnesen H.H. Topical antimicrobial peptide formulations for wound healing: Current developments and future prospects. Acta Biomater. 2020 103 52 67 10.1016/j.actbio.2019.12.025 31874224
    [Google Scholar]
  191. Kanaujia K.A. Mishra N. Rajinikanth P.S. Saraf S.A. Antimicrobial peptides as antimicrobials for wound care management: A comprehensive review. J. Drug Deliv. Sci. Technol. 2024 95 105570 10.1016/j.jddst.2024.105570
    [Google Scholar]
  192. Demirci M. Yigin A. Demir C. Efficacy of antimicrobial peptide LL-37 against biofilm forming Staphylococcus aureus strains obtained from chronic wound infections. Microb. Pathog. 2022 162 105368 10.1016/j.micpath.2021.105368 34942309
    [Google Scholar]
  193. Fahimirad S. Ghaznavi-Rad E. Abtahi H. Sarlak N. Antimicrobial Activity, Stability and Wound Healing Performances of Chitosan Nanoparticles Loaded Recombinant LL37 Antimicrobial Peptide. Int. J. Pept. Res. Ther. 2021 27 4 2505 2515 10.1007/s10989‑021‑10268‑y
    [Google Scholar]
  194. Huelsboemer L. Knoedler L. Kochen A. Yu C.T. Hosseini H. Hollmann K.S. Choi A.E. Stögner V.A. Knoedler S. Hsia H.C. Pomahac B. Kauke-Navarro M. Cellular therapeutics and immunotherapies in wound healing – on the pulse of time? Mil. Med. Res. 2024 11 1 23 10.1186/s40779‑024‑00528‑5 38637905
    [Google Scholar]
  195. Huang Y.Z. Gou M. Da L.C. Zhang W.Q. Xie H.Q. Mesenchymal stem cells for chronic wound healing: current status of preclinical and clinical studies. Tissue Eng. Part B Rev. 2020 26 6 555 570 10.1089/ten.teb.2019.0351 32242479
    [Google Scholar]
  196. Laurano R. Boffito M. Ciardelli G. Chiono V. Wound dressing products: A translational investigation from the bench to the market. Engineered Regeneration 2022 3 2 182 200 10.1016/j.engreg.2022.04.002
    [Google Scholar]
  197. Dwivedi J. Sachan P. Wal P. Wal A. Rai A.K. Current State and Future Perspective of Diabetic Wound Healing Treatment: Present Evidence from Clinical Trials. Curr. Diabetes Rev. 2024 20 5 e280823220405 10.2174/1573399820666230828091708 37641999
    [Google Scholar]
  198. Zens Y. Barth M. Bucher H.C. Dreck K. Felsch M. Groß W. Jaschinski T. Kölsch H. Kromp M. Overesch I. Sauerland S. Gregor S. Negative pressure wound therapy in patients with wounds healing by secondary intention: a systematic review and meta-analysis of randomised controlled trials. Syst. Rev. 2020 9 1 238 10.1186/s13643‑020‑01476‑6 33038929
    [Google Scholar]
  199. Godoi M.M. Reis E.M. Koepp J. Ferreira J. Perspective from developers: Tissue-engineered products for skin wound healing. Int. J. Pharm. 2024 660 124319 10.1016/j.ijpharm.2024.124319 38866084
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673312649240829103906
Loading
/content/journals/cmc/10.2174/0109298673312649240829103906
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: wound healing ; emerging therapies ; tissue regeneration ; fish skin grafting ; 3D printing
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test