Skip to content
2000
image of Nanomedicine in Management of Cerebral Infarction and Brain Cancer: Role of Inflammation

Abstract

Introduction

Cerebral infarction, the blockage of blood vessels in the brain, is generally an age-related illness. Factors such as unhealthy diets, stressful behaviours and decreased environmental consistency with physiological barriers also contribute to increased casualties. Long-term brain function reconstruction and successful drug therapy are needed. The most frequent malignant brain tumour, glioblastoma, has been linked to variations in mitochondrial ROS, chaperone-mediated autophagy, and the interaction between lncRNA (BC200) and miRNA. Glioblastoma stem cells express high levels of ATP/P2X7 receptors, promoting survival by activating M2 muscarinic receptors.

Areas Covered

This expert opinion provides an overview of the latest experimental drug therapies aimed at protecting against and restoring cerebral stroke.

Expert Opinion

Nanomedicine overcomes the challenges associated with traditional therapy and physiological obstacles in the treatment of cerebral infarction by improving stroke management, including diagnosis, imaging, and treatment, addressing a diverse range of associated factors.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673306668240829144324
2024-09-13
2024-11-26
Loading full text...

Full text loading...

References

  1. Zhu W. Gao Y. Wan J. Lan X. Han X. Zhu S. Zang W. Chen X. Ziai W. Hanley D.F. Russo S.J. Jorge R.E. Wang J. Changes in motor function, cognition, and emotion-related behavior after right hemispheric intracerebral hemorrhage in various brain regions of mouse. Brain Behav. Immun. 2018 69 568 581 10.1016/j.bbi.2018.02.004 29458197
    [Google Scholar]
  2. Dalgleish T. The emotional brain. Nat. Rev. Neurosci. 2004 5 7 583 589 10.1038/nrn1432 15208700
    [Google Scholar]
  3. Benbrika S. Desgranges B. Eustache F. Viader F. Cognitive, emotional and psychological manifestations in amyotrophic lateral sclerosis at baseline and overtime: A review. Front. Neurosci. 2019 13 951 10.3389/fnins.2019.00951 31551700
    [Google Scholar]
  4. Benbrika S. Doidy F. Carluer L. Mondou A. Pélerin A. Eustache F. Viader F. Desgranges B. Longitudinal study of cognitive and emotional alterations in amyotrophic lateral sclerosis: Clinical and imaging data. Front. Neurol. 2021 12 620198 10.3389/fneur.2021.620198 34305771
    [Google Scholar]
  5. Shen Y. Gu J. Liu Z. Xu C. Qian S. Zhang X. Zhou B. Guan Q. Sun Y. Wang Y. Jin X. Inhibition of HIF-1α reduced blood brain barrier damage by regulating MMP-2 and VEGF during acute cerebral ischemia. Front. Cell. Neurosci. 2018 12 288 10.3389/fncel.2018.00288
    [Google Scholar]
  6. Azami S Shahriari Z Asgharzade S Farkhondeh T Sadeghi M Ahmadi F Therapeutic potential of saffron (Crocus sativus L.) in ischemic stroke. Evid. Based Complement. Alternat. Med. 2021 2021
    [Google Scholar]
  7. Duca A. Jagoda A. Transient ischemic attacks. Emerg. Med. Clin. North Am. 2016 34 4 811 835 10.1016/j.emc.2016.06.007 27741990
    [Google Scholar]
  8. Sparaco M. Ciolli L. Zini A. Posterior circulation ischemic stroke—a review part II: Imaging and acute treatment. Neurol. Sci. 2019 40 10 2007 2015 10.1007/s10072‑019‑03936‑x 31127426
    [Google Scholar]
  9. Stegner D. Klaus V. Nieswandt B. Platelets as modulators of cerebral ischemia/reperfusion injury. Front. Immunol. 2019 10 2505 10.3389/fimmu.2019.02505 31736950
    [Google Scholar]
  10. Toyoda K. Yoshimura S. Nakai M. Koga M. Sasahara Y. Sonoda K. Kamiyama K. Yazawa Y. Kawada S. Sasaki M. Terasaki T. Miwa K. Koge J. Ishigami A. Wada S. Iwanaga Y. Miyamoto Y. Minematsu K. Kobayashi S. Iihara K. Itabashi R. Kitazono T. Ogasawara K. Nogawa S. Uno M. Ikawa F. Yamaguchi S. Ito A. Japan Stroke Data Bank Investigators Twenty-year change in severity and outcome of ischemic and hemorrhagic strokes. JAMA Neurol. 2022 79 1 61 69 10.1001/jamaneurol.2021.4346 34870689
    [Google Scholar]
  11. Heras-González L. Latorre J.A. Martinez-Bebia M. Espino D. Olea-Serrano F. Mariscal-Arcas M. The relationship of obesity with lifestyle and dietary exposure to endocrine-disrupting chemicals. Food Chem. Toxicol. 2020 136 110983 10.1016/j.fct.2019.110983 31759064
    [Google Scholar]
  12. Barthels D Das H Current advances in ischemic stroke research and therapies. Biochim. Biophys. Acta - Mol. Basis Dis. 2020 1866 10.1016/j.bbadis.2018.09.012
    [Google Scholar]
  13. Nikitin D. Choi S. Mican J. Toul M. Ryu W.S. Damborsky J. Mikulik R. Kim D.E. Development and testing of thrombolytics in stroke. J. Stroke 2021 23 1 12 36 10.5853/jos.2020.03349 33600700
    [Google Scholar]
  14. Pilato F. Calandrelli R. Capone F. Alessiani M. Ferrante M. Iaccarino G. Di Lazzaro V. New perspectives in stroke management: Old issues and new pathways. Brain Sci. 2021 11 6 767 10.3390/brainsci11060767 34207637
    [Google Scholar]
  15. Knight-Greenfield A. Nario J.J.Q. Gupta A. Causes of acute stroke. Radiol. Clin. North Am. 2019 57 6 1093 1108 10.1016/j.rcl.2019.07.007 31582037
    [Google Scholar]
  16. Liang Z. Currais A. Soriano-Castell D. Schubert D. Maher P. Natural products targeting mitochondria: Emerging therapeutics for age-associated neurological disorders. Pharmacol. Ther. 2021 221 107749 10.1016/j.pharmthera.2020.107749 33227325
    [Google Scholar]
  17. Cabral-Costa J.V. Kowaltowski A.J. Neurological disorders and mitochondria. Mol. Aspects Med. 2020 71 100826 10.1016/j.mam.2019.10.003 31630771
    [Google Scholar]
  18. Albers G.W. Bates V.E. Clark W.M. Bell R. Verro P. Hamilton S.A. Intravenous tissue-type plasminogen activator for treatment of acute stroke: The Standard Treatment with Alteplase to Reverse Stroke (STARS) study. JAMA 2000 283 9 1145 1150 10.1001/jama.283.9.1145 10703776
    [Google Scholar]
  19. L L X W. Ischemia-reperfusion Injury in the Brain: Mechanisms and Potential Therapeutic Strategies. Biochem Pharmacol Open Access 2016 5
    [Google Scholar]
  20. Chen W. Zhang H.T. Qin S.C. Neuroprotective effects of molecular hydrogen: A critical review. Neurosci. Bull. 2021 37 3 389 404 10.1007/s12264‑020‑00597‑1 33078374
    [Google Scholar]
  21. Wang Y. Xiao G. He S. Liu X. Zhu L. Yang X. Zhang Y. Orgah J. Feng Y. Wang X. Zhang B. Zhu Y. Protection against acute cerebral ischemia/reperfusion injury by QiShenYiQi via neuroinflammatory network mobilization. Biomed. Pharmacother. 2020 125 109945 10.1016/j.biopha.2020.109945 32028240
    [Google Scholar]
  22. Palachai N Wattanathorn J Muchimapura S Thukham-Mee W. Phytosome loading the combined extract of mulberry fruit and ginger protects against cerebral ischemia in metabolic syndrome rats. Oxid. Med. Cell. Longev. 2020 2020 10.1155/2020/5305437
    [Google Scholar]
  23. Jiang J. Yu Y. Small molecules targeting cyclooxygenase/prostanoid cascade in experimental brain ischemia: Do they translate? Med. Res. Rev. 2021 41 2 828 857 10.1002/med.21744 33094540
    [Google Scholar]
  24. Nirmala M.J. Kizhuveetil U. Johnson A. G B. Nagarajan R. Muthuvijayan V. Cancer nanomedicine: A review of nano-therapeutics and challenges ahead. RSC Advances 2023 13 13 8606 8629 10.1039/D2RA07863E 36926304
    [Google Scholar]
  25. Itoo A.M. Paul M. Padaga S.G. Ghosh B. Biswas S. Nanotherapeutic intervention in photodynamic therapy for cancer. ACS Omega 2022 7 50 45882 45909 10.1021/acsomega.2c05852 36570217
    [Google Scholar]
  26. Bodunde O.P. Ikumapayi O.M. Akinlabi E.T. Oladapo B.I. Adeoye A.O.M. Fatoba S.O. A futuristic insight into a “nano-doctor”: A clinical review on medical diagnosis and devices using nanotechnology. Materials Today. Proceedings 2021 1144 1153 10.1016/j.matpr.2020.11.232
    [Google Scholar]
  27. Kumar V. Rahman M. Gahtori P. Al-Abbasi F. Anwar F. Kim H.S. Current status and future directions of hepatocellular carcinoma-targeted nanoparticles and nanomedicine. Expert Opin. Drug Deliv. 2021 18 6 673 694 10.1080/17425247.2021.1860939 33295218
    [Google Scholar]
  28. Rahman M. Almalki W.H. Alrobaian M. Iqbal J. Alghamdi S. Alharbi K.S. Alruwaili N.K. Hafeez A. Shaharyar A. Singh T. Waris M. Kumar V. Beg S. Nanocarriers-loaded with natural actives as newer therapeutic interventions for treatment of hepatocellular carcinoma. Expert Opin. Drug Deliv. 2021 18 4 489 513 10.1080/17425247.2021.1854223 33225771
    [Google Scholar]
  29. Tzeng S.Y. Green J.J. Therapeutic nanomedicine for brain cancer. Ther. Deliv. 2013 4 6 687 704 10.4155/tde.13.38 23738667
    [Google Scholar]
  30. Garbayo E. Pascual-Gil S. Rodríguez-Nogales C. Saludas L. Estella-Hermoso de Mendoza A. Blanco-Prieto M.J. Nanomedicine and drug delivery systems in cancer and regenerative medicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020 12 5 e1637 10.1002/wnan.1637 32351045
    [Google Scholar]
  31. Harrup R. White V.M. Coory M. Walker R. Anazodo A. Skaczkowski G. Bibby H. Osborn M. Phillips M.B. Conyers R. Thompson K. Orme L.M. Pinkerton R. Nicholls W. Treatment and outcomes for central nervous system tumors in australian adolescents and young adults: A population-based national study. J. Adolesc. Young Adult Oncol. 2021 10 2 202 208 10.1089/jayao.2020.0074 32856982
    [Google Scholar]
  32. Weller M. van den Bent M. Preusser M. Le Rhun E. Tonn J.C. Minniti G. Bendszus M. Balana C. Chinot O. Dirven L. French P. Hegi M.E. Jakola A.S. Platten M. Roth P. Rudà R. Short S. Smits M. Taphoorn M.J.B. von Deimling A. Westphal M. Soffietti R. Reifenberger G. Wick W. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat. Rev. Clin. Oncol. 2021 18 3 170 186 10.1038/s41571‑020‑00447‑z 33293629
    [Google Scholar]
  33. Collins K.L. Pollack I.F. Pediatric low-grade gliomas. Cancers 2020 12 5 1152 10.3390/cancers12051152 32375301
    [Google Scholar]
  34. Birzu C. French P. Caccese M. Cerretti G. Idbaih A. Zagonel V. Lombardi G. Recurrent glioblastoma: From molecular landscape to new treatment perspectives. Cancers 2020 13 1 47 10.3390/cancers13010047 33375286
    [Google Scholar]
  35. Cernea D.M. Halasag S. Stahiescu R. Todor N. Florian S. Cernea V.I. P17.16 * Primary central nervous system tumors in young adults: Pathology and treatment results. Neuro-oncol. 2014 16 Suppl. 2 ii90 ii90 10.1093/neuonc/nou174.346
    [Google Scholar]
  36. Sandler C.X. Matsuyama M. Jones T.L. Bashford J. Langbecker D. Hayes S.C. Physical activity and exercise in adults diagnosed with primary brain cancer: A systematic review. J. Neurooncol. 2021 153 1 1 14 10.1007/s11060‑021‑03745‑3 33907968
    [Google Scholar]
  37. Sheshe S.M. Bello H.J. Labbo A.M. Maigoro A.Y. Heat shock proteins in brain cancer : A mini review. Holist Approaches Oncotherapy. 2017 1 16 22
    [Google Scholar]
  38. Morgan A.J. Giannoudis A. Palmieri C. The genomic landscape of breast cancer brain metastases: A systematic review. Lancet Oncol. 2021 22 1 e7 e17 10.1016/S1470‑2045(20)30556‑8 33387511
    [Google Scholar]
  39. Haque S. Norbert C.C. Patra C.R. Nanomedicine: Future therapy for brain cancers. Nano Drug Delivery Strategies for the Treatment of Cancers Science direct 2021 34 74 10.1016/B978‑0‑12‑819793‑6.00003‑5
    [Google Scholar]
  40. Sabra S. Agwa M.M. Lactoferrin, a unique molecule with diverse therapeutical and nanotechnological applications. Int. J. Biol. Macromol. 2020 164 1046 1060 10.1016/j.ijbiomac.2020.07.167 32707283
    [Google Scholar]
  41. Kandell R.M. Waggoner L.E. Kwon E.J. Nanomedicine for acute brain injuries: Insight from decades of cancer nanomedicine. Mol. Pharm. 2021 18 2 522 538 10.1021/acs.molpharmaceut.0c00287 32584042
    [Google Scholar]
  42. Bhargav A.G. Mondal S.K. Garcia C.A. Green J.J. Quiñones-Hinojosa A. Nanomedicine revisited: Next generation therapies for brain cancer. Adv. Ther. 2020 ••• 3
    [Google Scholar]
  43. Jain K.K. A critical overview of targeted therapies for glioblastoma. Front. Oncol. 2018 8 419 10.3389/fonc.2018.00419 30374421
    [Google Scholar]
  44. Latour M. Her N.G. Kesari S. Nurmemmedov E. WNT signaling as a therapeutic target for glioblastoma. Int. J. Mol. Sci. 2021 22 16 8428 10.3390/ijms22168428 34445128
    [Google Scholar]
  45. Horská A. Barker P.B. Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin. N. Am. 2010 20 3 293 310 10.1016/j.nic.2010.04.003 20708548
    [Google Scholar]
  46. Overcast W.B. Davis K.M. Ho C.Y. Hutchins G.D. Green M.A. Graner B.D. Veronesi M.C. Advanced imaging techniques for neuro-oncologic tumor diagnosis, with an emphasis on PET-MRI imaging of malignant brain tumors. Curr. Oncol. Rep. 2021 23 3 34 10.1007/s11912‑021‑01020‑2 33599882
    [Google Scholar]
  47. Straathof M. Meerwaldt A.E. De Feyter H.M. de Graaf R.A. Dijkhuizen R.M. Deuterium metabolic imaging of the healthy and diseased brain. Neuroscience 2021 474 94 99 10.1016/j.neuroscience.2021.01.023 33493618
    [Google Scholar]
  48. Franco P. Würtemberger U. Dacca K. Hübschle I. Beck J. Schnell O. Mader I. Binder H. Urbach H. Heiland D.H. SPectroscOpic prediction of bRain Tumours (SPORT): Study protocol of a prospective imaging trial. BMC Med. Imaging 2020 20 1 123 10.1186/s12880‑020‑00522‑y 33228567
    [Google Scholar]
  49. Mazur J. Roy K. Kanwar J.R. Recent advances in nanomedicine and survivin targeting in brain cancers. Nanomedicine 2018 13 1 105 137 10.2217/nnm‑2017‑0286 29161215
    [Google Scholar]
  50. Javed I. Cui X. Wang X. Mortimer M. Andrikopoulos N. Li Y. Davis T.P. Zhao Y. Ke P.C. Chen C. Implications of the human gut-brain and gut-cancer axes for future nanomedicine. ACS Nano 2020 14 11 14391 14416 10.1021/acsnano.0c07258 33138351
    [Google Scholar]
  51. Bozzato E. Bastiancich C. Préat V. Nanomedicine: A useful tool against glioma stem cells. Cancers 2020 13 1 9 10.3390/cancers13010009 33375034
    [Google Scholar]
  52. Lungu I.I. Grumezescu A.M. Volceanov A. Andronescu E. Nanobiomaterials used in cancer therapy: An up-to-date overview. Molecules 2019 24 19 3547 10.3390/molecules24193547 31574993
    [Google Scholar]
  53. Zottel A. Videtič Paska A. Jovčevska I. Nanotechnology meets oncology: Nanomaterials in brain cancer research, diagnosis and therapy. Materials 2019 12 10 1588 10.3390/ma12101588 31096609
    [Google Scholar]
  54. Mukhtar M. Bilal M. Rahdar A. Barani M. Arshad R. Behl T. Brisc C. Banica F. Bungau S. Nanomaterials for diagnosis and treatment of brain cancer: Recent updates. Chemosensors 2020 8 4 117 10.3390/chemosensors8040117
    [Google Scholar]
  55. Meng H. Jin W. Yu L. Xu S. Wan H. He Y. Protective effects of polysaccharides on cerebral ischemia: A mini-review of the mechanisms. Int. J. Biol. Macromol. 2021 169 463 472 10.1016/j.ijbiomac.2020.12.124 33347928
    [Google Scholar]
  56. Bernier T.D. Schontz M.J. Izzy S. Chung D.Y. Nelson S.E. Leslie-Mazwi T.M. Henderson G.V. Dasenbrock H. Patel N. Aziz-Sultan M.A. Feske S. Du R. Abulhasan Y.B. Angle M.R. Treatment of subarachnoid hemorrhage-associated delayed cerebral ischemia with milrinone: A review and proposal. J. Neurosurg. Anesthesiol. 2021 33 3 195 202 10.1097/ANA.0000000000000755 33480639
    [Google Scholar]
  57. Xie Q. Li H. Lu D. Yuan J. Ma R. Li J. Ren M. Li Y. Chen H. Wang J. Gong D. Neuroprotective effect for cerebral ischemia by natural products: A review. Front. Pharmacol. 2021 12 607412 10.3389/fphar.2021.607412 33967750
    [Google Scholar]
  58. Li C. Sun T. Jiang C. Recent advances in nanomedicines for the treatment of ischemic stroke. Acta Pharm. Sin. B 2021 11 7 1767 1788 10.1016/j.apsb.2020.11.019 34386320
    [Google Scholar]
  59. Ludewig P. Graeser M. Forkert N.D. Thieben F. Rández-Garbayo J. Rieckhoff J. Lessmann K. Förger F. Szwargulski P. Magnus T. Knopp T. Magnetic particle imaging for assessment of cerebral perfusion and ischemia. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022 14 1 e1757 10.1002/wnan.1757 34617413
    [Google Scholar]
  60. Bonferoni M.C. Rassu G. Gavini E. Sorrenti M. Catenacci L. Giunchedi P. Nose-to-brain delivery of antioxidants as a potential tool for the therapy of neurological diseases. Pharmaceutics 2020 12 12 1246 10.3390/pharmaceutics12121246 33371285
    [Google Scholar]
  61. Alrushaid N. Khan F.A. Al-Suhaimi E.A. Elaissari A. Nanotechnology in cancer diagnosis and treatment. Pharmaceutics 2023 15 3 1025 10.3390/pharmaceutics15031025 36986885
    [Google Scholar]
  62. Kumar A Shah SR Jayeoye TJ Kumar A Parihar A Prajapati B Biogenic metallic nanoparticles: Biomedical, analytical, food preservation, and applications in other consumable products. Front. Nanotechnol. 2023 5 10.3389/fnano.2023.1175149
    [Google Scholar]
  63. Khursheed R. Dua K. Vishwas S. Gulati M. Jha N.K. Aldhafeeri G.M. Alanazi F.G. Goh B.H. Gupta G. Paudel K.R. Hansbro P.M. Chellappan D.K. Singh S.K. Biomedical applications of metallic nanoparticles in cancer: Current status and future perspectives. Biomed. Pharmacother. 2022 150 112951 10.1016/j.biopha.2022.112951 35447546
    [Google Scholar]
  64. Baranwal J. Barse B. Di Petrillo A. Gatto G. Pilia L. Kumar A. Nanoparticles in cancer diagnosis and treatment. Materials 2023 16 15 5354 10.3390/ma16155354 37570057
    [Google Scholar]
  65. Chen Y. Zhou F. Wang C. Hu L. Guo P. Nanostructures as photothermal agents in tumor treatment. Molecules 2022 28 1 277 10.3390/molecules28010277 36615470
    [Google Scholar]
  66. Raja G. Cao S. Kim D.H. Kim T.J. Mechanoregulation of titanium dioxide nanoparticles in cancer therapy. Mater. Sci. Eng. C 2020 107 110303 10.1016/j.msec.2019.110303 31761191
    [Google Scholar]
  67. Singh T.A. Das J. Sil P.C. Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks. Adv. Colloid Interface Sci. 2020 286 102317 10.1016/j.cis.2020.102317 33212389
    [Google Scholar]
  68. Anjum S. Hashim M. Malik S.A. Khan M. Lorenzo J.M. Abbasi B.H. Hano C. Recent advances in zinc oxide nanoparticles (Zno nps) for cancer diagnosis, target drug delivery, and treatment. Cancers 2021 13 18 4570 10.3390/cancers13184570 34572797
    [Google Scholar]
  69. Hamidian K. Sarani M. Sheikhi E. Khatami M. Cytotoxicity evaluation of green synthesized ZnO and Ag-doped ZnO nanoparticles on brain glioblastoma cells. J. Mol. Struct. 2022 1251 131962 10.1016/j.molstruc.2021.131962
    [Google Scholar]
  70. Kaviarasi S. Yuba E. Harada A. Krishnan U.M. Emerging paradigms in nanotechnology for imaging and treatment of cerebral ischemia. J. Control. Release 2019 300 22 45 10.1016/j.jconrel.2019.02.031 30802476
    [Google Scholar]
  71. Alavian F. Shams N. Oral and intra-nasal administration of nanoparticles in the cerebral ischemia treatment in animal experiments: Considering its advantages and disadvantages. Curr. Clin. Pharmacol. 2020 15 1 20 29 10.2174/22123938OTkzpOTU1TcVY 31272358
    [Google Scholar]
  72. Ma H. Jiang Z. Xu J. Liu J. Guo Z.N. Targeted nano-delivery strategies for facilitating thrombolysis treatment in ischemic stroke. Drug Deliv. 2021 28 1 357 371 10.1080/10717544.2021.1879315 33517820
    [Google Scholar]
  73. Peter-Derex L. Derex L. Wake-up stroke: From pathophysiology to management. Sleep Med. Rev. 2019 48 101212 10.1016/j.smrv.2019.101212 31600679
    [Google Scholar]
  74. Elfil M. Eldokmak M. Baratloo A. Ahmed N. Amin H.P. Koo B.B. Pathophysiologic mechanisms, neuroimaging and treatment in wake-up stroke. CNS Spectr. 2019 31511119
    [Google Scholar]
  75. Deitmer J.W. Theparambil S.M. Ruminot I. Noor S.I. Becker H.M. Energy dynamics in the brain: Contributions of astrocytes to metabolism and pH homeostasis. Front. Neurosci. 2019 13 1301 10.3389/fnins.2019.01301 31866811
    [Google Scholar]
  76. Jokivarsi K.T. Gröhn H.I. Gröhn O.H. Kauppinen R.A. Proton transfer ratio, lactate, and intracellular pH in acute cerebral ischemia. Magn. Reson. Med. 2007 57 4 647 653 10.1002/mrm.21181 17390356
    [Google Scholar]
  77. Huguet G. Joglekar A. Messi L.M. Buckalew R. Wong S. Terman D. Neuroprotective role of gap junctions in a neuron astrocyte network model. Biophys. J. 2016 111 2 452 462 10.1016/j.bpj.2016.05.051 27463146
    [Google Scholar]
  78. Trachootham D. Lu W. Ogasawara M.A. Valle N.R-D. Huang P. Redox regulation of cell survival. Antioxid. Redox Signal. 2008 10 8 1343 1374 10.1089/ars.2007.1957 18522489
    [Google Scholar]
  79. Le Roy L. Letondor A. Le Roux C. Amara A. Timsit S. Cellular and molecular mechanisms of r/s-roscovitine and cdks related inhibition under both focal and global cerebral ischemia: A focus on neurovascular unit and immune cells. Cells 2021 10 1 104 10.3390/cells10010104 33429982
    [Google Scholar]
  80. Shi K. Tian D.C. Li Z.G. Ducruet A.F. Lawton M.T. Shi F.D. Global brain inflammation in stroke. Lancet Neurol. 2019 18 11 1058 1066 10.1016/S1474‑4422(19)30078‑X 31296369
    [Google Scholar]
  81. Beucler N. Sellier A. Bernard C. Joubert C. Desse N. Dagain A. Brain metastases in endometrial cancer: A systematic review of the surgical prognostic factors. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021 258 240 252 10.1016/j.ejogrb.2021.01.007 33482458
    [Google Scholar]
  82. Mustafa Y.F. Abdulaziz N.T. Hymecromone and its products as cytotoxic candidates for brain cancer: A brief review. Neuroquantology 2021 19 7 175 186 10.14704/nq.2021.19.7.NQ21101
    [Google Scholar]
  83. Kiskova T. Kubatka P. Büsselberg D. Kassayova M. The plant-derived compound resveratrol in brain cancer: A review. Biomolecules 2020 10 1 161 10.3390/biom10010161 31963897
    [Google Scholar]
  84. Brenneman R.J. Gay H.A. Christodouleas J.P. Sargos P. Arora V. Fischer-Valuck B. Huang J. Knoche E. Pachynski R. Picus J. Reimers M. Roth B. Michalski J.M. Baumann B.C. Review: Brain metastases in bladder cancer. Bladder Cancer 2020 6 3 237 248 10.3233/BLC‑200304
    [Google Scholar]
  85. Bolcaen J. Kleynhans J. Nair S. Verhoeven J. Goethals I. Sathekge M. Vandevoorde C. Ebenhan T. A perspective on the radiopharmaceutical requirements for imaging and therapy of glioblastoma. Theranostics 2021 11 16 7911 7947 10.7150/thno.56639 34335972
    [Google Scholar]
  86. Parrella E. Gussago C. Porrini V. Benarese M. Pizzi M. From preclinical stroke models to humans: Polyphenols in the prevention and treatment of stroke. Nutrients 2020 13 1 85 10.3390/nu13010085 33383852
    [Google Scholar]
  87. Zhang W. Mehta A. Tong Z. Esser L. Voelcker N.H. Development of polymeric nanoparticles for blood–brain barrier transfer—strategies and challenges. Adv. Sci. 2021 8 10 2003937 10.1002/advs.202003937 34026447
    [Google Scholar]
  88. Kim K. Lee J.H. Risk factors and biomarkers of ischemic stroke in cancer patients. J. Stroke 2014 16 2 91 96 10.5853/jos.2014.16.2.91 24949315
    [Google Scholar]
  89. Cestari D.M. Weine D.M. Panageas K.S. Segal A.Z. DeAngelis L.M. Stroke in patients with cancer. Neurology 2004 62 11 2025 2030 10.1212/01.WNL.0000129912.56486.2B 15184609
    [Google Scholar]
  90. Chen C.W. Cheng T.J. Ho C.H. Wang J.J. Weng S.F. Hou Y.C. Cheng H.C. Chio C.C. Shan Y.S. Chang W.T. Increased risk of brain cancer incidence in stroke patients: A clinical case series, population-based and longitudinal follow-up study. Oncotarget 2017 8 65 108989 108999 10.18632/oncotarget.22480 29312585
    [Google Scholar]
  91. Ghosh M.K. Chakraborty D. Sarkar S. Bhowmik A. Basu M. The interrelationship between cerebral ischemic stroke and glioma: A comprehensive study of recent reports. Signal Transduct. Target. Ther. 2019 4 1 42 10.1038/s41392‑019‑0075‑4 31637020
    [Google Scholar]
  92. Gerhartl A. Pracser N. Vladetic A. Hendrikx S. Friedl H.P. Neuhaus W. The pivotal role of micro-environmental cells in a human blood–brain barrier in vitro model of cerebral ischemia: Functional and transcriptomic analysis. Fluids Barriers CNS 2020 17 1 19 10.1186/s12987‑020‑00179‑3 32138745
    [Google Scholar]
  93. Burnstock G. Introduction to purinergic signalling in the brain. Adv. Exp. Med. Biol. 2013 986 1 12 10.1007/978‑3‑030‑30651‑9_1
    [Google Scholar]
  94. Cortés H. Alcalá-Alcalá S. Caballero-Florán I.H. Bernal-Chávez S.A. Ávalos-Fuentes A. González-Torres M. González-Del Carmen M. Figueroa-González G. Reyes-Hernández O.D. Floran B. Del Prado-Audelo M.L. Leyva-Gómez G. A reevaluation of chitosan-decorated nanoparticles to cross the blood-brain barrier. Membranes 2020 10 9 212 10.3390/membranes10090212 32872576
    [Google Scholar]
  95. Liang W. Huang X. Chen W. The effects of Baicalin and Baicalein on cerebral ischemia: A review. Aging Dis. 2017 8 6 850 867 10.14336/AD.2017.0829 29344420
    [Google Scholar]
  96. Ma R. Xie Q. Li Y. Chen Z. Ren M. Chen H. Li H. Li J. Wang J. Animal models of cerebral ischemia: A review. Biomed. Pharmacother. 2020 131 110686 10.1016/j.biopha.2020.110686 32937247
    [Google Scholar]
  97. Panahi Y. Sahebkar A. Naderi Y. Barreto G.E. Neuroprotective effects of minocycline on focal cerebral ischemia injury: A systematic review. Neural Regen. Res. 2020 15 5 773 782 10.4103/1673‑5374.268898 31719236
    [Google Scholar]
  98. Fukuta T. Asai T. Oku N. Development of a liposomal drug delivery system for the treatment of ischemic stroke. Drug Deliv. Syst. 2015 30 4 309 316 10.2745/dds.30.309
    [Google Scholar]
  99. Fukuta T. Ishii T. Asai T. Sato A. Kikuchi T. Shimizu K. Minamino T. Oku N. Treatment of stroke with liposomal neuroprotective agents under cerebral ischemia conditions. Eur. J. Pharm. Biopharm. 2015 97 Pt A 1 7 10.1016/j.ejpb.2015.09.020 26455340
    [Google Scholar]
  100. Carmona P. Mendez N. Ili C.G. Brebi P. The role of clock genes in fibrinolysis regulation: Circadian disturbance and its effect on fibrinolytic activity. Front. Physiol. 2020 11 129 10.3389/fphys.2020.00129 32231582
    [Google Scholar]
  101. Layne K. Ferro A. Antiplatelet therapy in acute coronary syndrome. Eur. Cardiol. 2017 12 1 33 37 10.15420/ecr.2016:34:2 30416549
    [Google Scholar]
  102. Kamran H. Jneid H. Kayani W.T. Virani S.S. Levine G.N. Nambi V. Khalid U. Oral antiplatelet therapy after acute coronary syndrome. JAMA 2021 325 15 1545 1555 10.1001/jama.2021.0716 33877270
    [Google Scholar]
  103. Verdoia M Camaro C Kedhi E Marcolongo M Suryapranata H De Luca G. Dual antiplatelet therapy duration in acute coronary syndrome patients: The state of the art and open issues. Cardiovasc. Ther. 2020 2020
    [Google Scholar]
  104. Kim B.G. Park M.K. Lee P.H. Lee S.H. Hong J. Aung M.M.M. Moe K.T. Han N.Y. Jang A.S. Effects of nanoparticles on neuroinflammation in a mouse model of asthma. Respir. Physiol. Neurobiol. 2020 271 103292 10.1016/j.resp.2019.103292 31542455
    [Google Scholar]
  105. Zhu F.D. Hu Y.J. Yu L. Zhou X.G. Wu J.M. Tang Y. Qin D.L. Fan Q.Z. Wu A.G. Nanoparticles: A hope for the treatment of inflammation in CNS. Front. Pharmacol. 2021 12 683935 10.3389/fphar.2021.683935 34122112
    [Google Scholar]
  106. Griauzde J. Ravindra V.M. Chaudhary N. Gemmete J.J. Pandey A.S. Neuroprotection for ischemic stroke in the endovascular era: A brief report on the future of intra-arterial therapy. J. Clin. Neurosci. 2019 69 289 291 10.1016/j.jocn.2019.08.001 31431407
    [Google Scholar]
  107. Dong H. Zhao H-Y. Wang J-W. Han J-X. Observation on therapeutic effect and mechanism research of acupuncture on headache in the recovery phase of ischemic stroke. Zhongguo Zhenjiu 2019 39 1149 1153
    [Google Scholar]
  108. Zhu B. Pan Y. Jing J. Meng X. Zhao X. Liu L. Wang Y. Wang Y. Wang Z. Stress hyperglycemia and outcome of non-diabetic patients after acute ischemic stroke. Front. Neurol. 2019 10 1003 10.3389/fneur.2019.01003 31620074
    [Google Scholar]
  109. Paciaroni M. Bogousslavsky J. Trafermin for stroke recovery: is it time for another randomized clinical trial? Expert Opin. Biol. Ther. 2011 11 11 1533 1541 10.1517/14712598.2011.616888 21883031
    [Google Scholar]
  110. Wallner S. Peters S. Pitzer C. Resch H. Bogdahn U. Schneider A. The Granulocyte-colony stimulating factor has a dual role in neuronal and vascular plasticity. Front. Cell Dev. Biol. 2015 3 48 10.3389/fcell.2015.00048 26301221
    [Google Scholar]
  111. Liu J Zhang J Wang LN Gamma aminobutyric acid (GABA) receptor agonists for acute stroke. Cochrane Database Syst. Rev. 2018 2018
    [Google Scholar]
  112. Di Renzo G. Pignataro G. Annunziato L. Why have Ionotropic and Metabotropic Glutamate Antagonists Failed in Stroke Therapy? New Strategies in Stroke Intervention Springer 2009 13 25 10.1007/978‑1‑60761‑280‑3_2
    [Google Scholar]
  113. Pellegrini L Bonfio C Chadwick J Begum F Skehel M Lancaster MA Human CNS barrier-forming organoids with cerebrospinal fluid production. Science 2020 369 10.1126/science.aaz5626
    [Google Scholar]
  114. Pulicherla K.K. Verma M.K. Targeting therapeutics across the blood brain barrier (BBB), prerequisite towards thrombolytic therapy for cerebrovascular disorders-an overview and advancements. AAPS PharmSciTech 2015 16 2 223 233 10.1208/s12249‑015‑0287‑z 25613561
    [Google Scholar]
  115. Zharkinbekov N. Chronic cerebral ischemia: Review of published works, pathogenetic approaches to therapy. J. Medicine 2020 3–4 64 73
    [Google Scholar]
  116. Dodd W.S. Laurent D. Dumont A.S. Hasan D.M. Jabbour P.M. Starke R.M. Hosaka K. Polifka A.J. Hoh B.L. Chalouhi N. Pathophysiology of delayed cerebral ischemia after subarachnoid hemorrhage: A review. J. Am. Heart Assoc. 2021 10 15 e021845 10.1161/JAHA.121.021845 34325514
    [Google Scholar]
  117. Agrawal M. Saraf S. Saraf S. Dubey S.K. Puri A. Patel R.J. Ajazuddin Ravichandiran V. Murty U.S. Alexander A. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. J. Control. Release 2020 321 372 415 10.1016/j.jconrel.2020.02.020 32061621
    [Google Scholar]
  118. Lu J. Ma Y. Wu J. Huang H. Wang X. Chen Z. Chen J. He H. Huang C. A review for the neuroprotective effects of andrographolide in the central nervous system. Biomed. Pharmacother. 2019 117 109078 10.1016/j.biopha.2019.109078 31181444
    [Google Scholar]
  119. Jiao F Gong Z. The beneficial roles of SIRT1 in neuroinflammation-related diseases. Oxid. Med. Cell. Longev. 2020 2020 10.1155/2020/6782872
    [Google Scholar]
  120. Gelosa P Colazzo F Tremoli E Sironi L Castiglioni L. Cysteinyl leukotrienes as potential pharmacological targets for cerebral diseases. Mediators Inflamm. 2017 2017 3454243 10.1155/2017/3454212
    [Google Scholar]
  121. Moghaddam A.H. Mokhtari Sangdehi S.R. Ranjbar M. Hasantabar V. Preventive effect of silymarin-loaded chitosan nanoparticles against global cerebral ischemia/reperfusion injury in rats. Eur. J. Pharmacol. 2020 877 173066 10.1016/j.ejphar.2020.173066 32171791
    [Google Scholar]
  122. Wang L. Xu L. Du J. Zhao X. Liu M. Feng J. Hu K. Nose-to-brain delivery of borneol modified tanshinone IIA nanoparticles in prevention of cerebral ischemia/reperfusion injury. Drug Deliv. 2021 28 1 1363 1375 10.1080/10717544.2021.1943058 34180761
    [Google Scholar]
  123. Basuthakur P. Patra C.R. Zinc oxide nanoparticles: Future therapy for cerebral ischemia. Nanomedicine 2020 15 28 2729 2732 10.2217/nnm‑2020‑0322 33079006
    [Google Scholar]
  124. Hu S.H. Chen S.Y. Gao X. Multifunctional nanocapsules for simultaneous encapsulation of hydrophilic and hydrophobic compounds and on-demand release. ACS Nano 2012 6 3 2558 2565 10.1021/nn205023w 22339040
    [Google Scholar]
  125. Menzfeld C. John M. van Rossum D. Regen T. Scheffel J. Janova H. Götz A. Ribes S. Nau R. Borisch A. Boutin P. Neumann K. Bremes V. Wienands J. Reichardt H.M. Lühder F. Tischner D. Waetzig V. Herdegen T. Teismann P. Greig I. Müller M. Pukrop T. Mildner A. Kettenmann H. Brück W. Prinz M. Rotshenker S. Weber M.S. Hanisch U.K. Tyrphostin AG126 exerts neuroprotection in CNS inflammation by a dual mechanism. Glia 2015 63 6 1083 1099 10.1002/glia.22803 25731696
    [Google Scholar]
  126. Reddy M.K. Labhasetwar V. Nanoparticle-mediated delivery of superoxide dismutase to the brain: An effective strategy to reduce ischemia-reperfusion injury. FASEB J. 2009 23 5 1384 1395 10.1096/fj.08‑116947 19124559
    [Google Scholar]
  127. Zhao Y. Jiang Y. Lv W. Wang Z. Lv L. Wang B. Liu X. Liu Y. Hu Q. Sun W. Xu Q. Xin H. Gu Z. Dual targeted nanocarrier for brain ischemic stroke treatment. J. Control. Release 2016 233 64 71 10.1016/j.jconrel.2016.04.038 27142584
    [Google Scholar]
  128. Dong X. Gao J. Su Y. Wang Z. Nanomedicine for ischemic stroke. Int. J. Mol. Sci. 2020 21 20 7600 10.3390/ijms21207600 33066616
    [Google Scholar]
  129. Correa-Paz C. da Silva-Candal A. Polo E. Parcq J. Vivien D. Maysinger D. Pelaz B. Campos F. New approaches in nanomedicine for ischemic stroke. Pharmaceutics 2021 13 5 757 10.3390/pharmaceutics13050757 34065179
    [Google Scholar]
  130. Fabian R.H. Derry P.J. Rea H.C. Dalmeida W.V. Nilewski L.G. Sikkema W.K.A. Mandava P. Tsai A.L. Mendoza K. Berka V. Tour J.M. Kent T.A. Efficacy of novel carbon nanoparticle antioxidant therapy in a severe model of Reversible middle cerebral artery stroke in acutely hyperglycemic rats. Front. Neurol. 2018 9 199 10.3389/fneur.2018.00199 29686642
    [Google Scholar]
  131. Doggui S. Sahni J.K. Arseneault M. Dao L. Ramassamy C. Neuronal uptake and neuroprotective effect of curcumin-loaded PLGA nanoparticles on the human SK-N-SH cell line. J. Alzheimers Dis. 2012 30 2 377 392 10.3233/JAD‑2012‑112141 22426019
    [Google Scholar]
  132. Djiokeng Paka G. Doggui S. Zaghmi A. Safar R. Dao L. Reisch A. Klymchenko A. Roullin V.G. Joubert O. Ramassamy C. Neuronal Uptake and Neuroprotective Properties of Curcumin-Loaded Nanoparticles on SK-N-SH Cell Line: Role of Poly(lactide- co -glycolide) Polymeric Matrix Composition. Mol. Pharm. 2016 13 2 391 403 10.1021/acs.molpharmaceut.5b00611 26618861
    [Google Scholar]
  133. Johnson G.V.W. Stoothoff W.H. Tau phosphorylation in neuronal cell function and dysfunction. J. Cell Sci. 2004 117 24 5721 5729 10.1242/jcs.01558 15537830
    [Google Scholar]
  134. Guo T. Dakkak D. Rodriguez-Martin T. Noble W. Hanger D.P. A pathogenic tau fragment compromises microtubules, disrupts insulin signaling and induces the unfolded protein response. Acta Neuropathol. Commun. 2019 7 1 2 10.1186/s40478‑018‑0651‑9 30606258
    [Google Scholar]
  135. Canepa E. Fossati S. Impact of Tau on Neurovascular Pathology in Alzheimer’s Disease. Front. Neurol. 2021 11 573324 10.3389/fneur.2020.573324 33488493
    [Google Scholar]
  136. Ahmad N. Ahmad I. Umar S. Iqbal Z. Samim M. Ahmad F.J. RETRACTED ARTICLE: PNIPAM nanoparticles for targeted and enhanced nose-to-brain delivery of curcuminoids: UPLC/ESI-Q-ToF-MS/MS-based pharmacokinetics and pharmacodynamic evaluation in cerebral ischemia model. Drug Deliv. 2016 23 7 2095 2114 10.3109/10717544.2014.941076 25237726
    [Google Scholar]
  137. Ahmad N. Ahmad R. Abbas Naqvi A. Ashafaq M. Alam M.A. Ahmad F.J. Al-Ghamdi M.S. RETRACTED ARTICLE: The effect of safranal loaded mucoadhesive nanoemulsion on oxidative stress markers in cerebral ischemia. Artif. Cells Nanomed. Biotechnol. 2017 45 4 775 787 10.1080/21691401.2016.1228659 27609117
    [Google Scholar]
  138. Zhang W.L. Cao Y.A. Xia J. Tian L. Yang L. Peng C.S. Neuroprotective effect of tanshinone IIA weakens spastic cerebral palsy through inflammation, p38MAPK and VEGF in neonatal rats. Mol. Med. Rep. 2018 17 1 2012 2018 29257210
    [Google Scholar]
  139. Liu X. Ye M. An C. Pan L. Ji L. The effect of cationic albumin-conjugated PEGylated tanshinone IIA nanoparticles on neuronal signal pathways and neuroprotection in cerebral ischemia. Biomaterials 2013 34 28 6893 6905 10.1016/j.biomaterials.2013.05.021 23768781
    [Google Scholar]
  140. Zhao L. Liu A. Yu S. Wang Z. Lin X. Zhai G. Zhang Q. The permeability of puerarin loaded poly(butylcyanoacrylate) nanoparticles coated with polysorbate 80 on the blood-brain barrier and its protective effect against cerebral ischemia/reperfusion injury. Biol. Pharm. Bull. 2013 36 8 1263 1270 10.1248/bpb.b12‑00769 23902970
    [Google Scholar]
  141. Liu Y. Ai K. Ji X. Askhatova D. Du R. Lu L. Shi J. Comprehensive insights into the multi-antioxidative mechanisms of melanin nanoparticles and their application to protect brain from injury in ischemic stroke. J. Am. Chem. Soc. 2017 139 2 856 862 10.1021/jacs.6b11013 27997170
    [Google Scholar]
  142. Hosoo H. Marushima A. Nagasaki Y. Hirayama A. Ito H. Puentes S. Mujagic A. Tsurushima H. Tsuruta W. Suzuki K. Matsui H. Matsumaru Y. Yamamoto T. Matsumura A. Neurovascular unit protection from cerebral ischemia–reperfusion injury by radical-containing nanoparticles in mice. Stroke 2017 48 8 2238 2247 10.1161/STROKEAHA.116.016356 28655813
    [Google Scholar]
  143. Wang Y. Li S.Y. Shen S. Wang J. Protecting neurons from cerebral ischemia/reperfusion injury via nanoparticle-mediated delivery of an siRNA to inhibit microglial neurotoxicity. Biomaterials 2018 161 95 105 10.1016/j.biomaterials.2018.01.039 29421566
    [Google Scholar]
  144. Juenet M. Aid-Launais R. Li B. Berger A. Aerts J. Ollivier V. Nicoletti A. Letourneur D. Chauvierre C. Thrombolytic therapy based on fucoidan-functionalized polymer nanoparticles targeting P-selectin. Biomaterials 2018 156 204 216 10.1016/j.biomaterials.2017.11.047 29216534
    [Google Scholar]
  145. Lavik E. Ustin J. Medicine. Leveraging shear stress to bust clots with nanoparticles. Science 2012 337 6095 658 659 10.1126/science.1227097 22879494
    [Google Scholar]
  146. Marosfoi M.G. Korin N. Gounis M.J. Uzun O. Vedantham S. Langan E.T. Papa A.L. Brooks O.W. Johnson C. Puri A.S. Bhatta D. Kanapathipillai M. Bronstein B.R. Chueh J.Y. Ingber D.E. Wakhloo A.K. Shear-activated nanoparticle aggregates combined with temporary endovascular bypass to treat large vessel occlusion. Stroke 2015 46 12 3507 3513 10.1161/STROKEAHA.115.011063 26493676
    [Google Scholar]
  147. Marsh J.N. Hu G. Scott M.J. Zhang H. Goette M.J. Gaffney P.J. Caruthers S.D. Wickline S.A. Abendschein D. Lanza G.M. A fibrin-specific thrombolytic nanomedicine approach to acute ischemic stroke. Nanomedicine 2011 6 4 605 615 10.2217/nnm.11.21 21506686
    [Google Scholar]
  148. Marsh J.N. Senpan A. Hu G. Scott M.J. Gaffney P.J. Wickline S.A. Lanza G.M. Fibrin-targeted perfluorocarbon nanoparticles for targeted thrombolysis. Nanomedicine 2007 2 4 533 543 10.2217/17435889.2.4.533 17716136
    [Google Scholar]
  149. Mohan A. Narayanan S. Balasubramanian G. Sethuraman S. Krishnan U.M. Dual drug loaded nanoliposomal chemotherapy: A promising strategy for treatment of head and neck squamous cell carcinoma. Eur. J. Pharm. Biopharm. 2016 99 73 83 10.1016/j.ejpb.2015.11.017 26690333
    [Google Scholar]
  150. Xu G. Gu H. Hu B. Tong F. Liu D. Yu X. Zheng Y. Gu J. PEG-b-(PELG-g-PLL) nanoparticles as TNF-α nanocarriers: Potential cerebral ischemia/reperfusion injury therapeutic applications. Int. J. Nanomedicine 2017 12 2243 2254 10.2147/IJN.S130842 28356740
    [Google Scholar]
  151. Yu S. Bi X. Yang L. Wu S. Yu Y. Jiang B. Zhang A. Lan K. Duan S. Co-delivery of paclitaxel and PLK1-targeted siRNA using aptamer-functionalized cationic liposome for synergistic anti-breast cancer effects in vivo. J. Biomed. Nanotechnol. 2019 15 6 1135 1148 10.1166/jbn.2019.2751 31072423
    [Google Scholar]
  152. Yadav K. Singh D. Singh M.R. Pradhan M. Multifaceted targeting of cationic liposomes via co-delivery of anti-IL-17 siRNA and corticosteroid for topical treatment of psoriasis. Med. Hypotheses 2020 145 110322 10.1016/j.mehy.2020.110322 33086162
    [Google Scholar]
  153. Gladkikh D.V. Sen Kova A.V. Chernikov I.V. Kabilova T.O. Popova N.A. Nikolin V.P. Shmendel E.V. Maslov M.A. Vlassov V.V. Zenkova M.A. Chernolovskaya E.L. Folate-equipped cationic liposomes deliver anti-mdr1-sirna to the tumor and increase the efficiency of chemotherapy. Pharmaceutics 2021 13 8 13 10.3390/pharmaceutics13081252 34452213
    [Google Scholar]
  154. Li N. Feng L. Tan Y. Xiang Y. Zhang R. Yang M. Administration in Rats Preparation, characterization, pharmacokinetics and biodistribution of baicalin-loaded liposome on cerebral ischemia-reperfusion after i.v. administration in rats. Molecules 2018 23 7 1747 10.3390/molecules23071747 30018228
    [Google Scholar]
  155. Muralikrishna Adibhatla R. Hatcher J.F. Tureyen K. CDP-choline liposomes provide significant reduction in infarction over free CDP-choline in stroke. Brain Res. 2005 1058 1-2 193 197 10.1016/j.brainres.2005.07.067 16153613
    [Google Scholar]
  156. Ransohoff R.M. How neuroinflammation contributes to neurodegeneration. Science 2016 353 6301 777 783 10.1126/science.aag2590 27540165
    [Google Scholar]
  157. Yadav S. Gandham S.K. Panicucci R. Amiji M.M. Intranasal brain delivery of cationic nanoemulsion-encapsulated TNFα siRNA in prevention of experimental neuroinflammation. Nanomedicine 2016 12 4 987 1002 10.1016/j.nano.2015.12.374 26767514
    [Google Scholar]
  158. Montaner J. Cano-Sarabia M. Simats A. Hernández-Guillamon M. Rosell A. Maspoch D. Campos-Martorell M. Charge effect of a liposomal delivery system encapsulating simvastatin to treat experimental ischemic stroke in rats. Int. J. Nanomedicine 2016 11 3035 3048 10.2147/IJN.S107292 27418824
    [Google Scholar]
  159. Yan X. Scherphof G.L. Kamps J.A.A.M. Liposome opsonization. J. Liposome Res. 2005 15 1-2 109 139 10.1081/LPR‑64971 16194930
    [Google Scholar]
  160. Kang X. Chen H. Li S. Jie L. Hu J. Wang X. Qi J. Ying X. Du Y. Magnesium lithospermate B loaded PEGylated solid lipid nanoparticles for improved oral bioavailability. Colloids Surf. B Biointerfaces 2018 161 597 605 10.1016/j.colsurfb.2017.11.008 29156336
    [Google Scholar]
  161. Wang Z. Zhao Y. Jiang Y. Lv W. Wu L. Wang B. Lv L. Xu Q. Xin H. Enhanced anti-ischemic stroke of ZL006 by T7-conjugated PEGylated liposomes drug delivery system. Sci. Rep. 2015 5 1 12651 10.1038/srep12651 26219474
    [Google Scholar]
  162. Lu Y. Mei Huang J. Yun Wang H. Lou X. Fang Liao M. Hua Hong L. Juan Targeted therapy of brain ischaemia using Fas ligand antibody conjugated PEG-lipid nanoparticles Biomaterials 2014 35 530 537
    [Google Scholar]
  163. Hsu H.L. Chen J.P. Preparation of thermosensitive magnetic liposome encapsulated recombinant tissue plasminogen activator for targeted thrombolysis. J. Magn. Magn. Mater. 2017 427 188 194 10.1016/j.jmmm.2016.10.122
    [Google Scholar]
  164. Fukuta T. Asai T. Yanagida Y. Namba M. Koide H. Shimizu K. Oku N. Combination therapy with liposomal neuroprotectants and tissue plasminogen activator for treatment of ischemic stroke. FASEB J. 2017 31 5 1879 1890 10.1096/fj.201601209R 28082354
    [Google Scholar]
  165. Fukuta T. Development of biomembrane-mimetic nanoparticles for the treatment of ischemic stroke. Yakugaku Zasshi 2021 141 9 1071 1078 10.1248/yakushi.21‑00114 34471008
    [Google Scholar]
  166. Li R. The optimal time window for the use and dosage of nimodipine for acute massive cerebral infarction: Study protocol for a randomized controlled trial. Asia Pac. Clin. Transl. Nerv. Syst. Dis. 2016 1 1 1 10.4103/2455‑7765.172998
    [Google Scholar]
  167. Lundy D.J. Nguyễn H. Hsieh P.C.H. Emerging nano-carrier strategies for brain tumor drug delivery and considerations for clinical translation. Pharmaceutics 2021 13 8 1193 10.3390/pharmaceutics13081193 34452156
    [Google Scholar]
  168. Bhardwaj V. Kaushik A. Khatib Z.M. Nair M. McGoron A.J. Recalcitrant issues and new frontiers in nano-pharmacology. Front. Pharmacol. 2019 10 1369 10.3389/fphar.2019.01369 31849645
    [Google Scholar]
  169. Mori E. Minematsu K. Nakagawara J. Yamaguchi T. Sasaki M. Hirano T. Japan Alteplase Clinical Trial II Group Effects of 0.6 mg/kg intravenous alteplase on vascular and clinical outcomes in middle cerebral artery occlusion: Japan Alteplase Clinical Trial II (J-ACT II). Stroke 2010 41 3 461 465 10.1161/STROKEAHA.109.573477 20075341
    [Google Scholar]
  170. Toyoda K. Uchiyama S. Hoshino H. Kimura K. Origasa H. Naritomi H. Minematsu K. Yamaguchi T. CSPS.com Study Investigators Protocol for cilostazol stroke prevention study for antiplatelet combination (CSPS.com): A randomized, open-label, parallel-group trial. Int. J. Stroke 2015 10 2 253 258 10.1111/ijs.12420 25487817
    [Google Scholar]
  171. Barreto A.D. Ford G.A. Shen L. Pedroza C. Tyson J. Cai C. Rahbar M.H. Grotta J.C. Ajani Z. Alexandrov A.V. Cherches I. Coull B. Dawson J. del Junco D. Demchuk A. Devine J. Dickerson A.S. Dixit A. Frey J.L. James M. Khan U. Levine S. MacDonald C. Malkoff M. McColl E. Misra V. Mullen M. Perry R. Piechowski-Jozwiak B. Roffe C. Sangha N. Sisson A. Tsivgoulis G. Volpi J.J. ARTSS-2 Investigators Randomized, multicenter trial of ARTSS-2 (Argatroban with recombinant tissue plasminogen activator for acute stroke). Stroke 2017 48 6 1608 1616 10.1161/STROKEAHA.117.016720 28507269
    [Google Scholar]
  172. Deeds S.I. Barreto A. Elm J. Derdeyn C.P. Berry S. Khatri P. Moy C. Janis S. Broderick J. Grotta J. Adeoye O. The multiarm optimization of stroke thrombolysis phase 3 acute stroke randomized clinical trial: Rationale and methods. Int. J. Stroke 2021 16 7 873 880 10.1177/1747493020978345 33297893
    [Google Scholar]
  173. Molina C.A. Ribo M. Rubiera M. Montaner J. Santamarina E. Delgado-Mederos R. Arenillas J.F. Huertas R. Purroy F. Delgado P. Alvarez-Sabín J. Microbubble administration accelerates clot lysis during continuous 2-MHz ultrasound monitoring in stroke patients treated with intravenous tissue plasminogen activator. Stroke 2006 37 2 425 429 10.1161/01.STR.0000199064.94588.39 16373632
    [Google Scholar]
  174. Alexandrov A.V. Mikulik R. Ribo M. Sharma V.K. Lao A.Y. Tsivgoulis G. Sugg R.M. Barreto A. Sierzenski P. Malkoff M.D. Grotta J.C. A pilot randomized clinical safety study of sonothrombolysis augmentation with ultrasound-activated perflutren-lipid microspheres for acute ischemic stroke. Stroke 2008 39 5 1464 1469 10.1161/STROKEAHA.107.505727 18356546
    [Google Scholar]
  175. Liu W. Huang Z. Wang X. Zhou J. Effects of microbubbles on transcranial Doppler ultrasound-assisted intracranial urokinase thrombolysis. Thromb. Res. 2012 130 3 547 551 10.1016/j.thromres.2012.06.020 22823944
    [Google Scholar]
  176. Rubiera M. Ribo M. Delgado-Mederos R. Santamarina E. Maisterra O. Delgado P. Montaner J. Alvarez-Sabín J. Molina C.A. Do bubble characteristics affect recanalization in stroke patients treated with microbubble-enhanced sonothrombolysis? Ultrasound Med. Biol. 2008 34 10 1573 1577 10.1016/j.ultrasmedbio.2008.02.011 18450360
    [Google Scholar]
  177. Almalki W.H. Alghamdi S. Alzahrani A. Zhang W. Emerging paradigms in treating cerebral infarction with nanotheranostics: opportunities and clinical challenges. Drug Discov. Today 2021 26 826 835
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673306668240829144324
Loading
/content/journals/cmc/10.2174/0109298673306668240829144324
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test