Skip to content
2000
Volume 32, Issue 7
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Lung cancer is a frequent malignancy with a poor prognosis. Extensive metabolic alterations are involved in carcinogenesis and could, therefore, serve as a reliable prognostic phenotype.

Aims

Our study aimed to develop a prognosis signature and explore the relationship between metabolic characteristic-related signature and immune infiltration in lung adenocarcinoma (LUAD).

Objective

TCGA-LUAD and GSE31210 datasets were used as a training set and a validation set, respectively.

Methods

A total of 513 LUAD samples collected from The Cancer Genome Atlas database (TCGA-LUAD) were used as a training dataset. Molecular subtypes were classified by consensus clustering, and prognostic genes related to metabolism were analyzed based on Differentially Expressed Genes (DEGs), Protein-Protein Interaction (PPI) network, the univariate/multivariate- and Lasso- Cox regression analysis.

Results

Two molecular subtypes with significant survival differences were divided by the metabolism gene sets. The DEGs between the two subtypes were identified by integrated analysis and then used to develop an 8-gene signature (TTK, TOP2A, KIF15, DLGAP5, PLK1, PTTG1, ECT2, and ANLN) for predicting LUAD prognosis. Overexpression of the 8 genes was significantly correlated with worse prognostic outcomes. RiskScore was an independent factor that could divide LUAD patients into low- and high-risk groups. Specifically, high-risk patients had poorer prognoses and higher immune escape. The Receiver Operating Characteristic (ROC) curve showed strong performance of the RiskScore model in estimating 1-, 3- and 5-year survival in both training and validation sets. Finally, an optimized nomogram model was developed and contributed the most to the prognostic prediction in LUAD.

Conclusion

The current model could help effectively identify high-risk patients and suggest the most effective drug and treatment candidates for patients with LUAD.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673293414240314043529
2024-03-15
2025-06-17
Loading full text...

Full text loading...

References

  1. XiaC. DongX. LiH. CaoM. SunD. HeS. YangF. YanX. ZhangS. LiN. ChenW. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants.Chin. Med. J. (Engl.)2022135558459010.1097/CM9.000000000000210835143424
    [Google Scholar]
  2. HerbstR.S. MorgenszternD. BoshoffC. The biology and management of non-small cell lung cancer.Nature2018553768944645410.1038/nature2518329364287
    [Google Scholar]
  3. McMillanE.A. RyuM.J. DiepC.H. MendirattaS. ClemenceauJ.R. VadenR.M. KimJ.H. MotoyajiT. CovingtonK.R. PeytonM. HuffmanK. WuX. GirardL. SungY. ChenP.H. MallipeddiP.L. LeeJ.Y. HansonJ. VorugantiS. YuY. ParkS. SudderthJ. DeSevoC. MuznyD.M. DoddapaneniH. GazdarA. GibbsR.A. HwangT.H. HeymachJ.V. WistubaI. CoombesK.R. WilliamsN.S. WheelerD.A. MacMillanJ.B. DeberardinisR.J. RothM.G. PosnerB.A. MinnaJ.D. KimH.S. WhiteM.A. Chemistry-first approach for nomination of personalized treatment in lung cancer.Cell20181734864878.e2910.1016/j.cell.2018.03.02829681454
    [Google Scholar]
  4. DumaN. Santana-DavilaR. MolinaJ.R. Non–small cell lung cancer: Epidemiology, screening, diagnosis, and treatment.Mayo Clin. Proc.20199481623164010.1016/j.mayocp.2019.01.01331378236
    [Google Scholar]
  5. ZhangH. XingX. LiuY. LiS. LiW. Comprehensive network analysis of different subtypes of molecular disorders in lung cancer.Oncologie202022210711610.32604/oncologie.2020.012494
    [Google Scholar]
  6. ChenR. ManochakianR. JamesL. AzzouqaA.G. ShiH. ZhangY. ZhaoY. ZhouK. LouY. Emerging therapeutic agents for advanced non-small cell lung cancer.J. Hematol. Oncol.20201315810.1186/s13045‑020‑00881‑732448366
    [Google Scholar]
  7. WangQ. YangS. WangK. SunS.Y. MET inhibitors for targeted therapy of EGFR TKI-resistant lung cancer.J. Hematol. Oncol.20191216310.1186/s13045‑019‑0759‑931227004
    [Google Scholar]
  8. WardE.M. ShermanR.L. HenleyS.J. JemalA. SiegelD.A. FeuerE.J. FirthA.U. KohlerB.A. ScottS. MaJ. AndersonR.N. BenardV. CroninK.A. Annual report to the nation on the status of cancer, featuring cancer in men and women age 20-49 years.J. Natl. Cancer Inst.2019111121279129710.1093/jnci/djz10631145458
    [Google Scholar]
  9. HowladerN. ForjazG. MooradianM.J. MezaR. KongC.Y. CroninK.A. MariottoA.B. LowyD.R. FeuerE.J. The effect of advances in lung-cancer treatment on population mortality.N. Engl. J. Med.2020383764064910.1056/NEJMoa191662332786189
    [Google Scholar]
  10. PavlovaN.N. ZhuJ. ThompsonC.B. The hallmarks of cancer metabolism: Still emerging.Cell Metab.202234335537710.1016/j.cmet.2022.01.00735123658
    [Google Scholar]
  11. HuL. ChenM. DaiH. WangH. YangW. A metabolism-related gene signature predicts the prognosis of breast cancer patients: Combined analysis of high- throughput sequencing and gene chip data sets.Oncologie202224480382210.32604/oncologie.2022.026419
    [Google Scholar]
  12. FouadY.A. AaneiC. Revisiting the hallmarks of cancer.Am. J. Cancer Res.2017751016103628560055
    [Google Scholar]
  13. ZengR. LiuL. ZhaoJ. ZhangW. ZhangG. LiY. Ampelopsin inhibits breast cancer glucose metabolism reprogramming based on network pharmacology and molecular docking.Oncologie202224348349810.32604/oncologie.2022.025148
    [Google Scholar]
  14. PavlovaN.N. ThompsonC.B. The emerging hallmarks of cancer metabolism.Cell Metab.2016231274710.1016/j.cmet.2015.12.00626771115
    [Google Scholar]
  15. IansanteV. ChoyP.M. FungS.W. LiuY. ChaiJ.G. DysonJ. Del RioA. D’SantosC. WilliamsR. ChokshiS. AndersR.A. BubiciC. PapaS. PARP14 promotes the Warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation.Nat. Commun.201561788210.1038/ncomms888226258887
    [Google Scholar]
  16. WangX. LiuR. ZhuW. ChuH. YuH. WeiP. WuX. ZhuH. GaoH. LiangJ. LiG. YangW. UDP-glucose accelerates SNAI1 mRNA decay and impairs lung cancer metastasis.Nature2019571776312713110.1038/s41586‑019‑1340‑y31243371
    [Google Scholar]
  17. Vander HeidenM.G. DeBerardinisR.J. Understanding the intersections between metabolism and cancer biology.Cell2017168465766910.1016/j.cell.2016.12.03928187287
    [Google Scholar]
  18. JonesB.C. PohlmannP.R. ClarkeR. SenguptaS. Treatment against glucose-dependent cancers through metabolic PFKFB3 targeting of glycolytic flux.Cancer Metastasis Rev.202241244745810.1007/s10555‑022‑10027‑535419769
    [Google Scholar]
  19. FlobergJ.M. SchwarzJ.K. Manipulation of glucose and hydroperoxide metabolism to improve radiation response.Semin. Radiat. Oncol.2019291334110.1016/j.semradonc.2018.10.00730573182
    [Google Scholar]
  20. YooH.C. ParkS.J. NamM. KangJ. KimK. YeoJ.H. KimJ.K. HeoY. LeeH.S. LeeM.Y. LeeC.W. KangJ.S. KimY.H. LeeJ. ChoiJ. HwangG.S. BangS. HanJ.M. A variant of slc1a5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells.Cell Metab.2020312267283.e1210.1016/j.cmet.2019.11.02031866442
    [Google Scholar]
  21. PearsonA.N. CarmichealJ. JiangL. LeiY.L. GreenM.D. Contribution of lipid oxidation and ferroptosis to radiotherapy efficacy.Int. J. Mol. Sci.202122221260310.3390/ijms22221260334830482
    [Google Scholar]
  22. PengS.L. WangR. ZhouY.L. WeiW. ZhongG.H. HuangX.T. YangS. LiuQ.D. LiuZ.G. Insight of a metabolic prognostic model to identify tumor environment and drug vulnerability for lung adenocarcinoma.Front. Immunol.20221387291010.3389/fimmu.2022.87291035812404
    [Google Scholar]
  23. ShiJ. HuaX. ZhuB. RavichandranS. WangM. NguyenC. BrodieS.A. PalleschiA. AlloisioM. PariscentiG. JonesK. ZhouW. BoukA.J. BolandJ. HicksB. RischA. BennettH. LukeB.T. SongL. DuanJ. LiuP. KohnoT. ChenQ. MeerzamanD. MarconettC. Laird-OffringaI. MillsI. CaporasoN.E. GailM.H. PesatoriA.C. ConsonniD. BertazziP.A. ChanockS.J. LandiM.T. Somatic genomics and clinical features of lung adenocarcinoma: A retrospective study.PLoS Med.20161312e100216210.1371/journal.pmed.100216227923066
    [Google Scholar]
  24. BergerA.H. BrooksA.N. WuX. ShresthaY. ChouinardC. PiccioniF. BagulM. KamburovA. ImielinskiM. HogstromL. ZhuC. YangX. PantelS. SakaiR. WatsonJ. KaplanN. CampbellJ.D. SinghS. RootD.E. NarayanR. NatoliT. LahrD.L. TiroshI. TamayoP. GetzG. WongB. DoenchJ. SubramanianA. GolubT.R. MeyersonM. BoehmJ.S. High-throughput phenotyping of lung cancer somatic mutations.Cancer Cell201630221422810.1016/j.ccell.2016.06.02227478040
    [Google Scholar]
  25. KrzystanekM. MoldvayJ. SzütsD. SzallasiZ. EklundA.C. A robust prognostic gene expression signature for early stage lung adenocarcinoma.Biomark. Res.201641410.1186/s40364‑016‑0058‑326900477
    [Google Scholar]
  26. ZhaoK. LiZ. TianH. Twenty-gene-based prognostic model predicts lung adenocarcinoma survival.OncoTargets Ther.2018113415342410.2147/OTT.S15863829928133
    [Google Scholar]
  27. SongP. LiW. GuoL. YingJ. GaoS. HeJ. Identification and validation of a novel signature based on NK cell marker genes to predict prognosis and immunotherapy response in lung adenocarcinoma by integrated analysis of single-cell and bulk RNA-sequencing.Front. Immunol.20221385074510.3389/fimmu.2022.85074535757748
    [Google Scholar]
  28. BalarA.V. GalskyM.D. RosenbergJ.E. PowlesT. PetrylakD.P. BellmuntJ. LoriotY. NecchiA. Hoffman-CensitsJ. Perez-GraciaJ.L. DawsonN.A. van der HeijdenM.S. DreicerR. SrinivasS. RetzM.M. JosephR.W. DrakakiA. VaishampayanU.N. SridharS.S. QuinnD.I. DuránI. ShafferD.R. EiglB.J. GrivasP.D. YuE.Y. LiS. KadelE.E.III BoydZ. BourgonR. HegdeP.S. MariathasanS. ThåströmA. AbidoyeO.O. FineG.D. BajorinD.F. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: A single-arm, multicentre, phase 2 trial.Lancet201738910064677610.1016/S0140‑6736(16)32455‑227939400
    [Google Scholar]
  29. BarbieD.A. TamayoP. BoehmJ.S. KimS.Y. MoodyS.E. DunnI.F. SchinzelA.C. SandyP. MeylanE. SchollC. FröhlingS. ChanE.M. SosM.L. MichelK. MermelC. SilverS.J. WeirB.A. ReilingJ.H. ShengQ. GuptaP.B. WadlowR.C. LeH. HoerschS. WittnerB.S. RamaswamyS. LivingstonD.M. SabatiniD.M. MeyersonM. ThomasR.K. LanderE.S. MesirovJ.P. RootD.E. GillilandD.G. JacksT. HahnW.C. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1.Nature2009462726910811210.1038/nature0846019847166
    [Google Scholar]
  30. HänzelmannS. CasteloR. GuinneyJ. GSVA: Gene set variation analysis for microarray and RNA-Seq data.BMC Bioinformatics2013141710.1186/1471‑2105‑14‑723323831
    [Google Scholar]
  31. ZhaoX. ChenJ. YinS. ShiJ. ZhengM. HeC. MengH. HanY. HanJ. GuoJ. YuanZ. WangY. The expression of cuproptosis-related genes in hepatocellular carcinoma and their relationships with prognosis.Front. Oncol.20221299246810.3389/fonc.2022.99246836313717
    [Google Scholar]
  32. ZhangJ. WangZ. ZhangX. DaiZ. Zhi-PengW. YuJ. PengY. WuW. ZhangN. LuoP. ZhangJ. LiuZ. FengS. ZhangH. ChengQ. Large-scale single-cell and bulk sequencing analyses reveal the prognostic value and immune aspects of CD147 in Pan-Cancer.Front. Immunol.20221381047110.3389/fimmu.2022.81047135464411
    [Google Scholar]
  33. ZhangY. XiaR. LvM. LiZ. JinL. ChenX. HanY. ShiC. JiangY. JinS. Machine-learning algorithm-based prediction of diagnostic gene biomarkers related to immune infiltration in patients with chronic obstructive pulmonary disease.Front. Immunol.20221374051310.3389/fimmu.2022.74051335350787
    [Google Scholar]
  34. BechtE. GiraldoN.A. LacroixL. ButtardB. ElarouciN. PetitprezF. SelvesJ. Laurent-PuigP. Sautès-FridmanC. FridmanW.H. de ReynièsA. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression.Genome Biol.201617121810.1186/s13059‑016‑1070‑527765066
    [Google Scholar]
  35. GuoS. WuJ. ZhouW. LiuX. LiuY. ZhangJ. JiaS. LiJ. WangH. Identification and analysis of key genes associated with acute myocardial infarction by integrated bioinformatics methods.Medicine (Baltimore)202110015e2555310.1097/MD.000000000002555333847684
    [Google Scholar]
  36. ZhangL. HanL. WangX. WeiY. ZhengJ. ZhaoL. TongX. Exploring the mechanisms underlying the therapeutic effect of Salvia miltiorrhiza in diabetic nephropathy using network pharmacology and molecular docking.Biosci. Rep.2021416BSR2020352010.1042/BSR2020352033634308
    [Google Scholar]
  37. SzklarczykD. GableA.L. NastouK.C. LyonD. KirschR. PyysaloS. DonchevaN.T. LegeayM. FangT. BorkP. JensenL.J. von MeringC. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets.Nucleic Acids Res.202149D1D605D61210.1093/nar/gkaa107433237311
    [Google Scholar]
  38. XiangX. HuB. PuZ. WangL. LeustekT. LiC. Co-overexpression of AtSAT1 and EcPAPR improves seed nutritional value in maize.Front. Plant Sci.20221396976310.3389/fpls.2022.96976336186039
    [Google Scholar]
  39. GuiJ. LiH. Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data.Bioinformatics200521133001300810.1093/bioinformatics/bti42215814556
    [Google Scholar]
  40. PanH. PanJ. LiP. WuJ. Immunologic gene sets reveal features of the tumor immune microenvironment and predict prognosis and immunotherapy response: A pan-cancer analysis.Front. Immunol.20221385824610.3389/fimmu.2022.85824635493519
    [Google Scholar]
  41. ZhouY. LiX. LongG. TaoY. ZhouL. TangJ. Identification and validation of a tyrosine metabolism-related prognostic prediction model and characterization of the tumor microenvironment infiltration in hepatocellular carcinoma.Front. Immunol.20221399425910.3389/fimmu.2022.99425936341373
    [Google Scholar]
  42. LiuT.T. LiR. HuoC. LiJ.P. YaoJ. JiX. QuY.Q. Identification of CDK2-related immune forecast model and ceRNA in lung adenocarcinoma, a Pan-cancer analysis.Front. Cell Dev. Biol.2021968200210.3389/fcell.2021.68200234409029
    [Google Scholar]
  43. YangW. SoaresJ. GreningerP. EdelmanE.J. LightfootH. ForbesS. BindalN. BeareD. SmithJ.A. ThompsonI.R. RamaswamyS. FutrealP.A. HaberD.A. StrattonM.R. BenesC. McDermottU. GarnettM.J. Genomics of Drug Sensitivity in Cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells.Nucleic Acids Res.201341D955D96123180760
    [Google Scholar]
  44. GeeleherP. CoxN. HuangR.S. pRRophetic: An R package for prediction of clinical chemotherapeutic response from tumor gene expression levels.PLoS One201499e10746810.1371/journal.pone.010746825229481
    [Google Scholar]
  45. JiangP. GuS. PanD. FuJ. SahuA. HuX. LiZ. TraughN. BuX. LiB. LiuJ. FreemanG.J. BrownM.A. WucherpfennigK.W. LiuX.S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response.Nat. Med.201824101550155810.1038/s41591‑018‑0136‑130127393
    [Google Scholar]
  46. FuJ. LiK. ZhangW. WanC. ZhangJ. JiangP. LiuX.S. Large-scale public data reuse to model immunotherapy response and resistance.Genome Med.20201212110.1186/s13073‑020‑0721‑z32102694
    [Google Scholar]
  47. LiR. YinY.H. JiX.L. LiuX. LiJ.P. QuY.Q. Pan-cancer prognostic, immunity, stemness, and anticancer drug sensitivity characterization of N6-methyladenosine RNA modification regulators in human cancers.Front. Mol. Biosci.2021864462010.3389/fmolb.2021.64462034150845
    [Google Scholar]
  48. CurranM.A. MontalvoW. YagitaH. AllisonJ.P. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors.Proc. Natl. Acad. Sci. USA201010794275428010.1073/pnas.091517410720160101
    [Google Scholar]
  49. JacksonS.E. ChesterJ.D. Personalised cancer medicine.Int. J. Cancer2015137226226610.1002/ijc.2894024789362
    [Google Scholar]
  50. AbubakarM.B. GanS.H. Molecular targets in advanced therapeutics of cancers: The role of pharmacogenetics.Oncology201691131210.1159/00044643727233906
    [Google Scholar]
  51. JiaY. YunC.H. ParkE. ErcanD. ManuiaM. JuarezJ. XuC. RheeK. ChenT. ZhangH. PalakurthiS. JangJ. LelaisG. DiDonatoM. BursulayaB. MichellysP.Y. EppleR. MarsiljeT.H. McNeillM. LuW. HarrisJ. BenderS. WongK.K. JänneP.A. EckM.J. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors.Nature2016534760512913210.1038/nature1796027251290
    [Google Scholar]
  52. BroadfieldL.A. PaneA.A. TalebiA. SwinnenJ.V. FendtS.M. Lipid metabolism in cancer: New perspectives and emerging mechanisms.Dev. Cell202156101363139310.1016/j.devcel.2021.04.01333945792
    [Google Scholar]
  53. MicheletX. DyckL. HoganA. LoftusR.M. DuquetteD. WeiK. BeyazS. TavakkoliA. FoleyC. DonnellyR. O’FarrellyC. RaverdeauM. VernonA. PetteeW. O’SheaD. NikolajczykB.S. MillsK.H.G. BrennerM.B. FinlayD. LynchL. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses.Nat. Immunol.201819121330134010.1038/s41590‑018‑0251‑730420624
    [Google Scholar]
  54. KadoT. NawazA. TakikawaA. UsuiI. TobeK. Linkage of CD8+ T cell exhaustion with high-fat diet-induced tumourigenesis.Sci. Rep.2019911228410.1038/s41598‑019‑48678‑031439906
    [Google Scholar]
  55. GaoF. LiuC. GuoJ. SunW. XianL. BaiD. LiuH. ChengY. LiB. CuiJ. ZhangC. CaiJ. Radiation-driven lipid accumulation and dendritic cell dysfunction in cancer.Sci. Rep.201551961310.1038/srep0961325923834
    [Google Scholar]
  56. TangH. WangS. XiaoG. SchillerJ. PapadimitrakopoulouV. MinnaJ. WistubaI.I. XieY. Comprehensive evaluation of published gene expression prognostic signatures for biomarker-based lung cancer clinical studies.Ann. Oncol.201728473374010.1093/annonc/mdw68328200038
    [Google Scholar]
  57. Dominguez-BrauerC. ThuK.L. MasonJ.M. BlaserH. BrayM.R. MakT.W. Targeting mitosis in cancer: Emerging strategies.Mol. Cell201560452453610.1016/j.molcel.2015.11.00626590712
    [Google Scholar]
  58. KilpinenS. OjalaK. KallioniemiO. Analysis of kinase gene expression patterns across 5681 human tissue samples reveals functional genomic taxonomy of the kinome.PLoS One2010512e1506810.1371/journal.pone.001506821151926
    [Google Scholar]
  59. TannousB.A. KeramiM. Van der StoopP.M. KwiatkowskiN. WangJ. ZhouW. KesslerA.F. LewandrowskiG. HiddinghL. SolN. LagerweijT. WedekindL. NiersJ.M. BarazasM. NilssonR.J.A. GeertsD. De Witt HamerP.C. HagemannC. VandertopW.P. Van TellingenO. NoskeD.P. GrayN.S. WürdingerT. Effects of the selective MPS1 inhibitor MPS1-IN-3 on glioblastoma sensitivity to antimitotic drugs.J. Natl. Cancer Inst.2013105171322133110.1093/jnci/djt16823940287
    [Google Scholar]
  60. VitaleI. GalluzziL. CastedoM. KroemerG. Mitotic catastrophe: A mechanism for avoiding genomic instability.Nat. Rev. Mol. Cell Biol.201112638539210.1038/nrm311521527953
    [Google Scholar]
  61. VitovcovaB. SkarkovaV. RudolfK. RudolfE. Biology of glioblastoma multiforme-exploration of mitotic catastrophe as a potential treatment modality.Int. J. Mol. Sci.20202115532410.3390/ijms2115532432727112
    [Google Scholar]
  62. SteinmetzM.O. ProtaA.E. Microtubule-targeting agents: Strategies To hijack the Cytoskeleton.Trends Cell Biol.2018281077679210.1016/j.tcb.2018.05.00129871823
    [Google Scholar]
  63. MaW. WangB. ZhangY. WangZ. NiuD. ChenS. ZhangZ. ShenN. HanW. ZhangX. WeiR. WangC. Prognostic significance of TOP2A in non-small cell lung cancer revealed by bioinformatic analysis.Cancer Cell Int.201919123910.1186/s12935‑019‑0956‑131528121
    [Google Scholar]
  64. CaiH. ShaoB. ZhouY. ChenZ. High expression of TOP2A in hepatocellular carcinoma is associated with disease progression and poor prognosis.Oncol. Lett.2020205110.3892/ol.2020.1209532968454
    [Google Scholar]
  65. WuZ. ZhangH. SunZ. WangC. ChenY. LuoP. YanW. Knockdown of kinesin family 15 inhibits osteosarcoma through suppressing cell proliferation and promoting cell apoptosis.Chemotherapy201964418719610.1159/00050501432074608
    [Google Scholar]
  66. ZhangY. TanL. YangQ. LiC. LiouY.C. The microtubule-associated protein HURP recruits the centrosomal protein TACC3 to regulate K-fiber formation and support chromosome congression.J. Biol. Chem.201829340157331574710.1074/jbc.RA118.00367630054275
    [Google Scholar]
  67. SchneiderM.A. ChristopoulosP. MuleyT. WarthA. KlingmuellerU. ThomasM. HerthF.J.F. DienemannH. MuellerN.S. TheisF. MeisterM. AURKA, DLGAP5, TPX2, KIF11 and CKAP5: Five specific mitosis-associated genes correlate with poor prognosis for non-small cell lung cancer patients.Int. J. Oncol.201750236537210.3892/ijo.2017.383428101582
    [Google Scholar]
  68. KuoT.C. ChangP.Y. HuangS.F. ChouC.K. ChaoC.C.K. Knockdown of HURP inhibits the proliferation of hepacellular carcinoma cells via downregulation of gankyrin and accumulation of p53.Biochem. Pharmacol.201283675876810.1016/j.bcp.2011.12.03422230478
    [Google Scholar]
  69. de CárcerG. ManningG. MalumbresM. From Plk1 to Plk5: Functional evolution of polo-like kinases.Cell Cycle201110142255226210.4161/cc.10.14.1649421654194
    [Google Scholar]
  70. WatanabeG. IshidaT. FurutaA. TakahashiS. WatanabeM. NakataH. KatoS. IshiokaC. OhuchiN. Combined immunohistochemistry of PLK1, p21, and p53 for predicting TP53 status.Am. J. Surg. Pathol.20153981026103410.1097/PAS.000000000000038626171916
    [Google Scholar]
  71. de CárcerG. VenkateswaranS.V. SalgueiroL. El BakkaliA. SomogyiK. RowaldK. MontañésP. SanclementeM. EscobarB. de MartinoA. McGranahanN. MalumbresM. SotilloR. Plk1 overexpression induces chromosomal instability and suppresses tumor development.Nat. Commun.201891301210.1038/s41467‑018‑05429‑530069007
    [Google Scholar]
  72. HuangJ. CaoS. OuQ. YangB. ZhengS. TangJ. ChenJ. HuY. ZhengL. WangQ. The long non-coding RNA PTTG3P promotes cell growth and metastasis via up-regulating PTTG1 and activating PI3K/AKT signaling in hepatocellular carcinoma.Mol. Cancer20181719310.1186/s12943‑018‑0841‑x29803224
    [Google Scholar]
  73. TongY. TanY. ZhouC. MelmedS. Pituitary tumor transforming gene interacts with Sp1 to modulate G1/S cell phase transition.Oncogene200726385596560510.1038/sj.onc.121033917353909
    [Google Scholar]
  74. HuffL.P. DeCristoM.J. TrembathD. KuanP.F. YimM. LiuJ. CookD.R. MillerC.R. DerC.J. CoxA.D. The role of Ect2 nuclear RhoGEF activity in ovarian cancer cell transformation.Genes Cancer2013411-1246047510.1177/194760191351485124386507
    [Google Scholar]
  75. ChenJ. XiaH. ZhangX. KarthikS. PratapS.V. OoiL.L. HongW. HuiK.M. ECT2 regulates the Rho/ERK signalling axis to promote early recurrence in human hepatocellular carcinoma.J. Hepatol.20156261287129510.1016/j.jhep.2015.01.01425617497
    [Google Scholar]
  76. JustilienV. AliS.A. JamiesonL. YinN. CoxA.D. DerC.J. MurrayN.R. FieldsA.P. Ect2-dependent rRNA synthesis is required for KRAS-TRP53 -driven lung adenocarcinoma.Cancer Cell201731225626910.1016/j.ccell.2016.12.01028110998
    [Google Scholar]
  77. ChenM. PanH. SunL. ShiP. ZhangY. LiL. HuangY. ChenJ. JiangP. FangX. WuC. ChenZ. Structure and regulation of human epithelial cell transforming 2 protein.Proc. Natl. Acad. Sci. USA202011721027103510.1073/pnas.191305411731888991
    [Google Scholar]
  78. PieknyA.J. MaddoxA.S. The myriad roles of Anillin during cytokinesis.Semin. Cell Dev. Biol.201021988189110.1016/j.semcdb.2010.08.00220732437
    [Google Scholar]
  79. ZhangX. LiL. HuangS. LiaoW. LiJ. HuangZ. HuangY. LianY. Comprehensive analysis of ANLN in human tumors: A prognostic biomarker associated with cancer immunity.Oxid. Med. Cell. Longev.2022202211410.1155/2022/532292935340220
    [Google Scholar]
  80. WangG. ShenW. CuiL. ChenW. HuX. FuJ. Overexpression of Anillin (ANLN) is correlated with colorectal cancer progression and poor prognosis.Cancer Biomark.201616345946510.3233/CBM‑16058527062703
    [Google Scholar]
  81. SuzukiC. DaigoY. IshikawaN. KatoT. HayamaS. ItoT. TsuchiyaE. NakamuraY. ANLN plays a critical role in human lung carcinogenesis through the activation of RHOA and by involvement in the phosphoinositide 3-kinase/AKT pathway.Cancer Res.20056524113141132510.1158/0008‑5472.CAN‑05‑150716357138
    [Google Scholar]
  82. LianY.F. HuangY.L. WangJ.L. DengM.H. XiaT.L. ZengM.S. ChenM.S. WangH.B. HuangY.H. Anillin is required for tumor growth and regulated by miR-15a/miR-16-1 in HBV-related hepatocellular carcinoma.Aging (Albany NY)20181081884190110.18632/aging.10151030103211
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673293414240314043529
Loading
/content/journals/cmc/10.2174/0109298673293414240314043529
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test