Skip to content
2000
Volume 32, Issue 3
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

COVID-19, an airborne disease caused by a betacoronavirus named SARS-CoV-2, was officially declared a pandemic in early 2020, resulting in more than 770 million confirmed cases and over 6.9 million deaths by September 2023. Although the introduction of vaccines in late 2020 helped reduce the number of deaths, the global effort to fight COVID-19 is far from over. While significant progress has been made in a short period, the fight against SARS-CoV-2/COVID-19 and other potential pandemic threats continues. Like AIDS and hepatitis C epidemics, controlling the spread of COVID-19 will require the development of multiple drugs to weaken the virus's resistance to different drug treatments. Therefore, it is essential to continue developing new drug candidates derived from natural or synthetic small molecules. Coumarins are a promising drug design and development scaffold due to their synthetic versatility and unique physicochemical properties. Numerous examples reported in scientific literature, mainly by prospection, demonstrate their potential contribution to the rapid development of drugs against SARS-CoV-2/COVID-19 and other emergent and reemergent viruses.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673285609231220111556
2024-01-11
2025-01-17
Loading full text...

Full text loading...

References

  1. VougogiannopoulouK. CoronaA. TramontanoE. AlexisM.N. SkaltsounisA.L. Natural and nature-derived products targeting human coronaviruses.Molecules202126244810.3390/molecules2602044833467029
    [Google Scholar]
  2. ChristianM.D. PoutanenS.M. LoutfyM.R. MullerM.P. LowD.E. Severe acute respiratory syndrome.Clin. Infect. Dis.200438101420142710.1086/42074315156481
    [Google Scholar]
  3. YaoH. SongY. ChenY. WuN. XuJ. SunC. ZhangJ. WengT. ZhangZ. WuZ. ChengL. ShiD. LuX. LeiJ. CrispinM. ShiY. LiL. LiS. Molecular architecture of the SARS-CoV-2 virus.Cell20201833730738.e1310.1016/j.cell.2020.09.01832979942
    [Google Scholar]
  4. PustakeM. TambolkarI. GiriP. GandhiC. SARS, MERS and COVID-19: An overview and comparison of clinical, laboratory and radiological features.J. Family Med. Prim. Care2022111101710.4103/jfmpc.jfmpc_839_2135309670
    [Google Scholar]
  5. HuangC. WangY. LiX. RenL. ZhaoJ. HuY. ZhangL. FanG. XuJ. GuX. ChengZ. YuT. XiaJ. WeiY. WuW. XieX. YinW. LiH. LiuM. XiaoY. GaoH. GuoL. XieJ. WangG. JiangR. GaoZ. JinQ. WangJ. CaoB. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.Lancet20203951022349750610.1016/S0140‑6736(20)30183‑531986264
    [Google Scholar]
  6. WHO 2019. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019
    [Google Scholar]
  7. SavilleJ.W. BerezukA.M. SrivastavaS.S. SubramaniamS. Three-dimensional visualization of viral structure, entry, and replication underlying the spread of SARS-CoV-2.Chem. Rev.202212217140661408410.1021/acs.chemrev.1c0106235863749
    [Google Scholar]
  8. GaoK. WangR. ChenJ. ChengL. FrishcosyJ. HuzumiY. QiuY. SchluckbierT. WeiX. WeiG.W. Methodology-centered review of molecular modeling, simulation, and prediction of SARS-CoV-2.Chem. Rev.202212213112871136810.1021/acs.chemrev.1c0096535594413
    [Google Scholar]
  9. AbulsoudA.I. El-HusseinyH.M. El-HusseinyA.A. El-MahdyH.A. IsmailA. ElkhawagaS.Y. KhidrE.G. FathiD. MadyE.A. NajdaA. AlgahtaniM. TheyabA. AlsharifK.F. AlbrakatiA. BayramR. Abdel-DaimM.M. DoghishA.S. Mutations in SARS-CoV-2: Insights on structure, variants, vaccines, and biomedical interventions.Biomed. Pharmacother.202315711397710.1016/j.biopha.2022.11397736370519
    [Google Scholar]
  10. MercorelliB. PalùG. LoregianA. Drug repurposing for viral infectious diseases: How far are we?Trends Microbiol.2018261086587610.1016/j.tim.2018.04.00429759926
    [Google Scholar]
  11. NIHAvailable from: https://www.COVID19treatmentguidelines.nih.gov/therapies/antivirals-including-antibody-products/chloroquine-or-hydroxychloroquine-and-or-azithromycin/ 2020
  12. FioletT. GuihurA. RebeaudM.E. MulotM. Peiffer-SmadjaN. Mahamat-SalehY. Effect of hydroxychloroquine with or without azithromycin on the mortality of coronavirus disease 2019 (COVID-19) patients: a systematic review and meta-analysis.Clin. Microbiol. Infect.2021271192710.1016/j.cmi.2020.08.02232860962
    [Google Scholar]
  13. AyerbeL. Risco-RiscoC. ForgnoneI. Pérez-PiñarM. AyisS. Azithromycin in patients with COVID-19: A systematic review and meta-analysis.J. Antimicrob. Chemother.202277230330910.1093/jac/dkab40434791330
    [Google Scholar]
  14. SaghirS.A.M. AlGabriN.A. AlagawanyM.M. AttiaY.A. AlyileiliS.R. ElnesrS.S. ShafiM.E. Al-shargiO.Y.A. Al-balagiN. AlwajeehA.S. AlsalahiO.S.A. PatraA.K. KhafagaA.F. NegidaA. NoreldinA. Al-AmaratW. AlmaimanA.A. El-TarabilyK.A. Abd El-HackM.E. Chloroquine and hydroxychloroquine for the prevention and treatment of COVID-19: A fiction, hope or hype? an updated review.Ther. Clin. Risk Manag.20211737138710.2147/TCRM.S30181733953559
    [Google Scholar]
  15. CostaT.M. TavaresL.B.B. de OliveiraD. Fungi as a source of natural coumarins production.Appl. Microbiol. Biotechnol.2016100156571658410.1007/s00253‑016‑7660‑z27364626
    [Google Scholar]
  16. StasiC. FallaniS. VollerF. SilvestriC. Treatment for COVID-19: An overview.Eur. J. Pharmacol.202088917364410.1016/j.ejphar.2020.17364433053381
    [Google Scholar]
  17. MakaremA. ZareefR. AbourjeiliJ. NassarJ.E. BitarF. ArabiM. Low molecular weight heparin in COVID-19: Benefits and concerns.Front. Pharmacol.202314115936310.3389/fphar.2023.115936337180701
    [Google Scholar]
  18. NoreenS. MaqboolI. MadniA. Dexamethasone: Therapeutic potential, risks, and future projection during COVID-19 pandemic.Eur. J. Pharmacol.202189417385410.1016/j.ejphar.2021.17385433428898
    [Google Scholar]
  19. ChenL. GuiC. LuoX. YangQ. GüntherS. ScandellaE. DrostenC. BaiD. HeX. LudewigB. ChenJ. LuoH. YangY. YangY. ZouJ. ThielV. ChenK. ShenJ. ShenX. JiangH. Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro.J. Virol.200579117095710310.1128/JVI.79.11.7095‑7103.200515890949
    [Google Scholar]
  20. CeramellaJ. IacopettaD. SinicropiM.S. AndreuI. MaricondaA. SaturninoC. GiuzioF. LongoP. AquaroS. CatalanoA. Drugs for COVID-19: An update.Molecules20222723856210.3390/molecules2723856236500655
    [Google Scholar]
  21. KushnerP. McCarbergB.H. GrangeL. KolosovA. HavericA.L. ZucalV. PetruschkeR. BissonnetteS. The use of non-steroidal anti-inflammatory drugs (NSAIDs) in COVID-19.NPJ Prim. Care Respir. Med.20223213510.1038/s41533‑022‑00300‑z36127354
    [Google Scholar]
  22. YipA.J.W. LowZ.Y. ChowV.T.K. LalS.K. Repurposing molnupiravir for COVID-19: The mechanisms of antiviral activity.Viruses2022146134510.3390/v1406134535746815
    [Google Scholar]
  23. BekheitM.S. PandaS.S. GirgisA.S. Potential RNA-dependent RNA polymerase (RdRp) inhibitors as prospective drug candidates for SARS-CoV-2.Eur. J. Med. Chem.202325211529210.1016/j.ejmech.2023.11529236965227
    [Google Scholar]
  24. JoyceR.P. HuV.W. WangJ. The history, mechanism, and perspectives of nirmatrelvir (PF-07321332): an orally bioavailable main protease inhibitor used in combination with ritonavir to reduce COVID-19-related hospitalizations.Med. Chem. Res.202231101637164610.1007/s00044‑022‑02951‑636060104
    [Google Scholar]
  25. LoosN.H.C. BeijnenJ.H. SchinkelA.H. The mechanism-based inactivation of CYP3A4 by Ritonavir: What mechanism?Int. J. Mol. Sci.20222317986610.3390/ijms2317986636077262
    [Google Scholar]
  26. BreidenbachJ. BartzU. GütschowM. Coumarin as a structural component of substrates and probes for serine and cysteine proteases.Biochim. Biophys. Acta. Proteins Proteomics20201868914044510.1016/j.bbapap.2020.14044532405284
    [Google Scholar]
  27. BlaisingJ. PolyakS.J. PécheurE.I. Arbidol as a broad-spectrum antiviral: An update.Antiviral Res.2014107849410.1016/j.antiviral.2014.04.00624769245
    [Google Scholar]
  28. KakaA.S. MacDonaldR. LinskensE.J. LangsetmoL. VelaK. Duan-PorterW. Major update 2: Remdesivir for adults with COVID-19: A living systematic review and meta-analysis for the American college of physicians practice points.Ann. Intern. Med.2022175570170910.1016/10.7326/M21‑478435226522
    [Google Scholar]
  29. NappiF. IervolinoA. Avtaar SinghS.S. Molecular insights of SARS-CoV-2 antivirals administration: A balance between safety profiles and impact on cardiovascular phenotypes.Biomedicines202210243710.3390/biomedicines1002043735203646
    [Google Scholar]
  30. Gil MartínezV. Avedillo SalasA. Santander BallestínS. Antiviral therapeutic approaches for SARS-CoV-2 infection: A systematic review.Pharmaceuticals202114873610.3390/ph1408073634451833
    [Google Scholar]
  31. Navitha ReddyG. JogvanshiA. NaikwadiS. SontiR. Nirmatrelvir and ritonavir combination: An antiviral therapy for COVID-19.Expert Rev. Anti Infect. Ther.202321994395510.1080/14787210.2023.224163837525997
    [Google Scholar]
  32. TianF. FengQ. ChenZ. Efficacy and safety of molnupiravir treatment for COVID-19: A systematic review and meta-analysis of randomized controlled trials.Int. J. Antimicrob. Agents202362210687010.1016/j.ijantimicag.2023.10687037245600
    [Google Scholar]
  33. FDAAvailable from: https://www.fda.gov/consumers/consumer-updates/know-your-treatment-options-COVID-19 2021
  34. SixtT. MorettoF. EsteveC. DuongM. BuissonM. MahyS. BlotM. PirothL. Healing treatments in COVID-19 patients: A narrative review.J. Clin. Med.20231214467210.3390/jcm1214467237510786
    [Google Scholar]
  35. YanD. YanB. Viral target and metabolism-based rationale for combined use of recently authorized small molecule COVID-19 medicines: Molnupiravir, nirmatrelvir, and remdesivir.Fundam. Clin. Pharmacol.202337472673810.1111/fcp.1288936931725
    [Google Scholar]
  36. YoungR.J. Physical properties in drug design.Tactics in Contemporary Drug Design201416810.1007/7355_2013_35
    [Google Scholar]
  37. VercauterenK. BrownR.J.P. MesalamA.A. DoerrbeckerJ. BhujuS. GeffersR. Van Den EedeN. McClureC.P. TroiseF. VerhoyeL. BaumertT. FarhoudiA. CorteseR. BallJ.K. Leroux-RoelsG. PietschmannT. NicosiaA. MeulemanP. Targeting a host-cell entry factor barricades antiviral-resistant HCV variants from on-therapy breakthrough in human-liver mice.Gut201665122029203410.1136/gutjnl‑2014‑30904526306759
    [Google Scholar]
  38. WangX. ZouP. WuF. LuL. JiangS. Development of small-molecule viral inhibitors targeting various stages of the life cycle of emerging and re-emerging viruses.Front. Med.201711444946110.1007/s11684‑017‑0589‑529170916
    [Google Scholar]
  39. NamchukM.N. Early returns on small molecule therapeutics for SARS-CoV-2.ACS Infect. Dis.2021761298130210.1021/acsinfecdis.0c0087433417425
    [Google Scholar]
  40. PillaiyarT. FluryP. KrügerN. SuH. SchäkelL. Barbosa Da SilvaE. EpplerO. KronenbergerT. NieT. LuedtkeS. RochaC. SylvesterK. PetryM.R.I. McKerrowJ.H. PosoA. PöhlmannS. GütschowM. O’DonoghueA.J. XuY. MüllerC.E. LauferS.A. Small-molecule thioesters as SARS-CoV-2 main protease inhibitors: Enzyme inhibition, structure–activity relationships, antiviral activity, and X-ray structure determination.J. Med. Chem.202265139376939510.1021/acs.jmedchem.2c0063635709506
    [Google Scholar]
  41. LuoL. YangJ. WangC. WuJ. LiY. ZhangX. LiH. ZhangH. ZhouY. LuA. ChenS. Natural products for infectious microbes and diseases: An overview of sources, compounds, and chemical diversities.Sci. China Life Sci.20226561123114510.1007/s11427‑020‑1959‑534705221
    [Google Scholar]
  42. ChakravartiR. SinghR. GhoshA. DeyD. SharmaP. VelayuthamR. RoyS. GhoshD. A review on potential of natural products in the management of COVID-19.RSC Advances20211127167111673510.1039/D1RA00644D35479175
    [Google Scholar]
  43. StefanachiA. LeonettiF. PisaniL. CattoM. CarottiA. Coumarin: A natural, privileged and versatile scaffold for bioactive compounds.Molecules201823225010.3390/molecules2302025029382051
    [Google Scholar]
  44. AnnunziataF. PinnaC. DallavalleS. TamboriniL. PintoA. An overview of coumarin as a versatile and readily accessible scaffold with broad-ranging biological activities.Int. J. Mol. Sci.20202113461810.3390/ijms2113461832610556
    [Google Scholar]
  45. VogelA. Darstellung von Benzoesäure aus der Tonka-Bohne und aus den Meliloten - oder Steinklee - Blumen. Annalen der Physik und der physikalischen Chemie182064216116610.1002/andp.18200640205
    [Google Scholar]
  46. PerkinW.H. VI.—On the artificial production of coumarin and formation of its homologues.J. Chem. Soc.1868210536310.1039/JS8682100053
    [Google Scholar]
  47. KolbusA. DanelA. GrabkaD. KucharekM. SzaryK. Spectral properties of highly emissive derivative of coumarin with N,N-diethylamino, nitrile and tiophenecarbonyl moieties in water-methanol mixture.J. Fluoresc.20192961393139910.1007/s10895‑019‑02446‑531755048
    [Google Scholar]
  48. SethnaS.M. ShahN.M. The chemistry of coumarins.Chem. Rev.194536116210.1021/cr60113a001
    [Google Scholar]
  49. de SouzaL.G. RennóM.N. Figueroa-VillarJ.D. Coumarins as cholinesterase inhibitors: A review.Chem. Biol. Interact.2016254112310.1016/j.cbi.2016.05.00127174134
    [Google Scholar]
  50. LončarM. JakovljevićM. ŠubarićD. PavlićM. Buzjak SlužekV. CindrićI. MolnarM. Coumarins in food and methods of their determination.Foods20209564510.3390/foods905064532443406
    [Google Scholar]
  51. Sharifi-RadJ. Cruz-MartinsN. López-JornetP. LopezE.P.F. HarunN. YeskaliyevaB. BeyatliA. SytarO. ShaheenS. SharopovF. TaheriY. DoceaA.O. CalinaD. ChoW.C. Natural coumarins: Exploring the pharmacological complexity and underlying molecular mechanisms.Oxid. Med. Cell. Longev.2021202111910.1155/2021/649234634531939
    [Google Scholar]
  52. TsivilevaO.M. KoftinO.V. EvseevaN.V. Coumarins as fungal metabolites with potential medicinal properties.Antibiotics2022119115610.3390/antibiotics1109115636139936
    [Google Scholar]
  53. KumarP. MahatoD.K. KamleM. MohantaT.K. KangS.G. Aflatoxins: A global concern for food safety, human health and their management.Front. Microbiol.20177217010.3389/fmicb.2016.0217028144235
    [Google Scholar]
  54. PrompanyaC. DethoupT. BessaL. PintoM. GalesL. CostaP. SilvaA. KijjoaA. New isocoumarin derivatives and meroterpenoids from the marine sponge-associated fungus Aspergillus similanensis sp. nov. KUFA 0013.Mar. Drugs201412105160517310.3390/md1210516025317534
    [Google Scholar]
  55. EustáquioA.S. GustB. LuftT. LiS.M. ChaterK.F. HeideL. Clorobiocin biosynthesis in Streptomyces: Identification of the halogenase and generation of structural analogs.Chem. Biol.200310327928810.1016/S1074‑5521(03)00051‑612670542
    [Google Scholar]
  56. LiraS.P. SeleghimM.H.R. WilliamsD.E. MarionF. HamillP. JeanF. AndersenR.J. HajduE. BerlinckR.G.S. A SARS-coronovirus 3CL protease inhibitor isolated from the marine sponge Axinella cf. corrugata: structure elucidation and synthesis.J. Braz. Chem. Soc.200718244044310.1590/S0103‑50532007000200030
    [Google Scholar]
  57. VenugopalaK.N. RashmiV. OdhavB. Review on natural coumarin lead compounds for their pharmacological activity.Bio. Med. Res. Int.2013201311410.1155/2013/96324823586066
    [Google Scholar]
  58. ReenF.J. Gutiérrez-BarranqueroJ.A. ParagesM.L. O´GaraF. Coumarin: A novel player in microbial quorum sensing and biofilm formation inhibition.Appl. Microbiol. Biotechnol.201810252063207310.1007/s00253‑018‑8787‑x29392389
    [Google Scholar]
  59. RostomB. KarakyR. KassabI. Sylla-Iyarreta VeitíaM. Coumarins derivatives and inflammation: Review of their effects on the inflammatory signaling pathways.Eur. J. Pharmacol.202292217486710.1016/j.ejphar.2022.17486735248553
    [Google Scholar]
  60. BouhaouiA. EddahmiM. DibM. KhouiliM. AiresA. CattoM. BouissaneL. Synthesis and biological properties of coumarin derivatives. A review.ChemistrySelect20216245848587010.1002/slct.202101346
    [Google Scholar]
  61. SalehianF. NadriH. Jalili-BalehL. Youseftabar-MiriL. Abbas BukhariS.N. ForoumadiA. Tüylü KüçükkilinçT. SharifzadehM. KhoobiM. A review: Biologically active 3,4-heterocycle-fused coumarins.Eur. J. Med. Chem.202121211303410.1016/j.ejmech.2020.11303433276991
    [Google Scholar]
  62. KielesińskiŁ. DeperasińskaI. MorawskiO. VygranenkoK.V. OuelletteE.T. GrykoD.T. Polarized, V-shaped, and conjoined biscoumarins: From lack of dipole moment alignment to high brightness.J. Org. Chem.20228795961597510.1021/acs.joc.2c0023235410474
    [Google Scholar]
  63. MatosM.J. SantanaL. UriarteE. AbreuO.A. MolinaE. YordiE.G. Coumarins — An Important Class of Phytochemicals.In: Phytochemicals - Isolation, Characterisation and Role in Human Health. InTech201510.5772/59982
    [Google Scholar]
  64. PisaniL. CattoM. MuncipintoG. NicolottiO. CarrieriA. RulloM. StefanachiA. LeonettiF. AltomareC. A twenty-year journey exploring coumarin-based derivatives as bioactive molecules.Front Chem.202210100254710.3389/fchem.2022.100254736300022
    [Google Scholar]
  65. Fatema-Tuz-Zohora.; Mahtarin, R.; Ali, M. A.; Islam, M. J.; Sohrab, M. H.; Hasan, C. M.; Ahsan, M.Cytotoxicity, antioxidant activity, molecular docking, and dynamics simulation analysis against SARS-CoV-2 M and N protein models of phytoconstituents of Micromelum minutum.Biointerface Res. Appl. Chem.2023131610.33263/BRIAC131.006
    [Google Scholar]
  66. MuñozA. FonsecaA. MatosM.J. UriarteE. SantanaL. BorgesF. FigueroaR. Olea AzarC. Evaluation of antioxidant and antitrypanosomal properties of a selected series of synthetic 3-carboxamidocoumarins.ChemistrySelect20161154957496410.1002/slct.201601336
    [Google Scholar]
  67. GaoF. SunZ. KongF. XiaoJ. Artemisinin-derived hybrids and their anticancer activity.Eur. J. Med. Chem.202018811204410.1016/j.ejmech.2020.11204431945642
    [Google Scholar]
  68. MusaM. CooperwoodJ. KhanM.O. A review of coumarin derivatives in pharmacotherapy of breast cancer.Curr. Med. Chem.200815262664267910.2174/09298670878624287718991629
    [Google Scholar]
  69. DettoriT. SannaG. CoccoA. SerreliG. DeianaM. PalmasV. OnnisV. PiliaL. MelisN. MoiD. CariaP. SecciF. Synthesis and antiproliferative effect of halogenated coumarin derivatives.Molecules20222724889710.3390/molecules2724889736558029
    [Google Scholar]
  70. ÖzdemirM. KöksoyB. CeyhanD. SayınK. ErçağE. BulutM. YalçınB. Design and in silico study of the novel coumarin derivatives against SARS-CoV-2 main enzymes.J. Biomol. Struct. Dyn.202240114905492010.1080/07391102.2020.186326333357038
    [Google Scholar]
  71. HasanA.H. AmranS.I. Saeed HussainF.H. JaffB.A. JamalisJ. Molecular docking and recent advances in the design and development of cholinesterase inhibitor scaffolds: Coumarin hybrids.ChemistrySelect2019448141401415610.1002/slct.201903607
    [Google Scholar]
  72. HassanM.Z. OsmanH. AliM.A. AhsanM.J. Therapeutic potential of coumarins as antiviral agents.Eur. J. Med. Chem.201612323625510.1016/j.ejmech.2016.07.05627484512
    [Google Scholar]
  73. FobofouS.A.T. FrankeK. BrandtW. ManzinA. MadedduS. SerreliG. SannaG. WessjohannL.A. Bichromonol, a dimeric coumarin with anti-HIV activity from the stem bark of Hypericum roeperianum.Nat. Prod. Res.202337121947195310.1080/14786419.2022.211009435959682
    [Google Scholar]
  74. MurphyD.G. SablonE. ChamberlandJ. FournierE. DandavinoR. TremblayC.L. HepatitisC. Hepatitis C virus genotype 7, a new genotype originating from central Africa.J. Clin. Microbiol.201553396797210.1128/JCM.02831‑1425520447
    [Google Scholar]
  75. SelimS. AlmuhayawiM.S. AlharbiM.T. Al JaouniS.K. AlharthiA. Abdel-WahabB.A. IbrahimM.A.R. AlsuhaibaniA.M. WarradM. RashedK. Insights into the antimicrobial, antioxidant, anti-SARS-CoV-2 and cytotoxic activities of Pistacia lentiscus bark and phytochemical profile; in silico and in vitro study.Antioxidants202211593010.3390/antiox1105093035624793
    [Google Scholar]
  76. HwuJ.R. HuangW.C. LinS.Y. TanK.T. HuY.C. ShiehF.K. BachurinS.O. UstyugovA. TsayS.C. Chikungunya virus inhibition by synthetic coumarin–guanosine conjugates.Eur. J. Med. Chem.201916613614310.1016/j.ejmech.2019.01.03730703657
    [Google Scholar]
  77. MishraS. PandeyA. ManvatiS. Coumarin: An emerging antiviral agent.Heliyon202061e0321710.1016/j.heliyon.2020.e0321732042967
    [Google Scholar]
  78. GargS.S. GuptaJ. SharmaS. SahuD. An insight into the therapeutic applications of coumarin compounds and their mechanisms of action.Eur. J. Pharm . Sci.202015210542410.1016/j.ejps.2020.10542432534193
    [Google Scholar]
  79. BipatR. From rat poison to medicine: Medical applications of coumarin derivatives.In: Phytochemicals in Human Health. IntechOpen20209110410.5772/intechopen.8976
    [Google Scholar]
  80. JamalisJ. YusofF.S.M. ChanderS. WahabR.A. P BhagwatD. SankaranarayananM. AlmalkiF. HaddaT.B. Psoralen derivatives: Recent advances of synthetic strategy and pharmacological properties.Antiinflamm. Antiallergy Agents Med. Chem.202019322223910.2174/187152301866619062517080231241020
    [Google Scholar]
  81. TimsonD. Dicoumarol: A drug which hits at least two very different targets in vitamin k metabolism.Curr. Drug Targets201718550051010.2174/138945011666615072214190626201483
    [Google Scholar]
  82. KasperkiewiczK. PonczekM.B. OwczarekJ. GugaP. BudziszE. Antagonists of Vitamin K—Popular coumarin drugs and new synthetic and natural coumarin derivatives.Molecules2020256146510.3390/molecules2506146532213944
    [Google Scholar]
  83. LombardiN. CrescioliG. VannacciA. Real-world safety of anticoagulants.Anticoagulant Drugs.InTech201810.5772/intechopen.78023
    [Google Scholar]
  84. HeghesS.C. VostinaruO. MogosanC. MiereD. IugaC.A. FilipL. Safety profile of nutraceuticals rich in coumarins: An update.Front. Pharmacol.20221380333810.3389/fphar.2022.80333835140615
    [Google Scholar]
  85. PitaroM. CroceN. GalloV. ArienzoA. SalvatoreG. AntoniniG. Coumarin-induced hepatotoxicity: A narrative review.Molecules20222724906310.3390/molecules2724906336558195
    [Google Scholar]
  86. MárquezN. SanchoR. BedoyaL. AlcamíJ. LópezpérezJ. FelicianoA. FiebichB. MuñozE. Mesuol, a natural occurring 4-phenylcoumarin, inhibits HIV-1 replication by targeting the NF-κB pathway.Antiviral Res.2005662-313714510.1016/j.antiviral.2005.02.00615911030
    [Google Scholar]
  87. SanchoR. MárquezN. Gómez-GonzaloM. CalzadoM.A. BettoniG. CoirasM.T. AlcamíJ. López-CabreraM. AppendinoG. MuñozE. Imperatorin inhibits HIV-1 replication through an Sp1-dependent pathway.J. Biol. Chem.200427936373493735910.1074/jbc.M40199320015218031
    [Google Scholar]
  88. HuangR. ChenC.C. HuangY.L. HsiehD.J. HuC.P. ChenC.F. ChangC. Osthole increases glycosylation of hepatitis B surface antigen and suppresses the secretion of hepatitis B virus in vitro.Hepatology199624350851510.1053/jhep.1996.v24.pm00087813158781315
    [Google Scholar]
  89. GómezJ. AlbaicetaG.M. García-ClementeM. López-LarreaC. Amado-RodríguezL. Lopez-AlonsoI. HermidaT. EnriquezA.I. HerreroP. MelónS. Alvarez-ArgüellesM.E. BogaJ.A. Rojo-AlbaS. Cuesta-LlavonaE. AlvarezV. LorcaR. CotoE. Angiotensin-converting enzymes (ACE, ACE2) gene variants and COVID-19 outcome.Gene202076214510210.1016/j.gene.2020.14510232882331
    [Google Scholar]
  90. XuZ.Q. HollingsheadM.G. BorgelS. ElderC. KhilevichA. FlavinM.T. In vivo anti-HIV activity of (+)-calanolide a in the hollow fiber mouse model.Bioorg. Med. Chem. Lett.19999213313810.1016/S0960‑894X(98)00713‑610021914
    [Google Scholar]
  91. NewmanR.A. ChenW. MaddenT.L. Pharmaceutical properties of related calanolide compounds with activity against human immunodeficiency virus.J. Pharm. Sci.19988791077108010.1021/js980122d9724557
    [Google Scholar]
  92. LiZ. WangF. LiuY. ZhaiD. ZhangX. YingQ. JiaM. XueX. MengJ. LiJ. WuX. LiM. Coumarin derivative N6 as a novel anti-hantavirus infection agent targeting AKT.Front. Pharmacol.20211274564610.3389/fphar.2021.74564634938178
    [Google Scholar]
  93. WangH. HuY. SongD. ShanL. LiuL. Synthesis and application of a potential therapeutic coumarin derivative against IHNV in aquaculture.Aquaculture202154373699910.1016/j.aquaculture.2021.736999
    [Google Scholar]
  94. HuY. ShanL. LiuH. LiuL. ChenJ. Highly efficient inhibition of infectious hematopoietic necrosis virus replication mediated by a novel synthesized coumarin derivative in vitro and in vivo.Aquaculture202154573728110.1016/j.aquaculture.2021.737281
    [Google Scholar]
  95. LiuL. HuY. LuJ. WangG. An imidazole coumarin derivative enhances the antiviral response to spring viremia of carp virus infection in zebrafish.Virus Res.201926311211810.1016/j.virusres.2019.01.00930658072
    [Google Scholar]
  96. SinghM. de WitE. Antiviral agents for the treatment of COVID-19: Progress and challenges.Cell Rep. Med.20223310054910.1016/j.xcrm.2022.10054935474740
    [Google Scholar]
  97. XueY MeiH ChenY GriffinJD LiuQ WeisbergE Repurposing clinically available drugs and therapies for pathogenic targets to combat SARS-CoV-2.MedComm202343p.e25410.1002/mco2.254
    [Google Scholar]
  98. Jahirul IslamM. Nawal IslamN. Siddik AlomM. KabirM. HalimM.A. A review on structural, non-structural, and accessory proteins of SARS-CoV-2: Highlighting drug target sites.Immunobiology2023228115230210.1016/j.imbio.2022.15230236434912
    [Google Scholar]
  99. YanW. ZhengY. ZengX. HeB. ChengW. Structural biology of SARS-CoV-2: Open the door for novel therapies.Signal Transduct. Target. Ther.2022712610.1038/s41392‑022‑00884‑535087058
    [Google Scholar]
  100. YadavR. ChaudharyJ.K. JainN. ChaudharyP.K. KhanraS. DhamijaP. SharmaA. KumarA. HanduS. Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19.Cells202110482110.3390/cells1004082133917481
    [Google Scholar]
  101. LiuX.H. ChengT. LiuB.Y. ChiJ. ShuT. WangT. Structures of the SARS-CoV-2 spike glycoprotein and applications for novel drug development.Front. Pharmacol.20221395564810.3389/fphar.2022.95564836016554
    [Google Scholar]
  102. LvZ. CanoK.E. JiaL. DragM. HuangT.T. OlsenS.K. Targeting SARS-CoV-2 proteases for COVID-19 antiviral development.Front Chem.2022981916510.3389/fchem.2021.81916535186898
    [Google Scholar]
  103. MukherjeeR. DikicI. Proteases of SARS coronaviruses.Encyclopedia of Cell Biology.Elsevier202393094110.1016/B978‑0‑12‑821618‑7.00111‑5
    [Google Scholar]
  104. UllrichS. NitscheC. SARS-CoV-2 papain-like protease: Structure, function and inhibition.ChemBioChem20222319e20220032710.1002/cbic.20220032735993805
    [Google Scholar]
  105. HuQ. XiongY. ZhuG. ZhangY. ZhangY. HuangP. The SARS-CoV-2 main protease (Mpro): Structure, function, and emerging therapies for COVID-19.MedComm202233e15110.1002/mco2.15135845352
    [Google Scholar]
  106. SteutenK. KimH. WidenJ.C. BabinB.M. OngukaO. LovellS. BolgiO. CerikanB. NeufeldtC.J. CorteseM. MuirR.K. BennettJ.M. Geiss-FriedlanderR. PetersC. BartenschlagerR. BogyoM. Challenges for targeting SARS-CoV-2 proteases as a therapeutic strategy for COVID-19.ACS Infect. Dis.2021761457146810.1021/acsinfecdis.0c0081533570381
    [Google Scholar]
  107. WuJ. ChenZ. HanX. ChenQ. WangY. FengT. SARS-CoV-2 RNA-dependent RNA polymerase as a target for high-throughput drug screening.Future Virol.2023181516210.2217/fvl‑2021‑033536794167
    [Google Scholar]
  108. LiuY HuangH. ACE2, a drug target for COVID-19 treatment?Irish J. Med. Sci.2023192291992110.1007/s11845‑022‑03055‑135699908
    [Google Scholar]
  109. KellerC. Böttcher-FriebertshäuserE. LohoffM. TMPRSS2, a novel host-directed drug target against SARS- COV-2.Signal Transduct. Target. Ther.20227125110.1038/s41392‑022‑01084‑x35871159
    [Google Scholar]
  110. HamillP. HudsonD. KaoR.Y. ChowP. RajM. XuH. RicherM.J. JeanF. Development of a red-shifted fluorescence-based assay for SARS-coronavirus 3CL protease: Identification of a novel class of anti-SARS agents from the tropical marine sponge Axinella corrugata.Biol. Chem.200638781063107410.1515/BC.2006.13116895476
    [Google Scholar]
  111. ParkJ.Y. KoJ.A. KimD.W. KimY.M. KwonH.J. JeongH.J. KimC.Y. ParkK.H. LeeW.S. RyuY.B. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV.J. Enzyme Inhib. Med. Chem.2016311233010.3109/14756366.2014.100321525683083
    [Google Scholar]
  112. ChidambaramS.K. AliD. AlarifiS. RadhakrishnanS. AkbarI. In silico molecular docking: Evaluation of coumarin based derivatives against SARS-CoV-2.J. Infect. Public Health202013111671167710.1016/j.jiph.2020.09.00233008777
    [Google Scholar]
  113. AbdizadehR. HadizadehF. AbdizadehT. In silico analysis and identification of antiviral coumarin derivatives against 3-chymotrypsin-like main protease of the novel coronavirus SARS-CoV-2.Mol. Divers.20222621053107610.1007/s11030‑021‑10230‑634213728
    [Google Scholar]
  114. Lyndem, S.; Sarmah, S.; Das, S.; Roy, A.S. In silico screening of naturally occurring coumarin derivatives for the inhibition of the main protease of SARS-CoV-2. ChemRxiv, 2020, 1. 10.26434/chemrxiv.12234728.v1
  115. ChidambaramS. El-SheikhM.A. AlfarhanA.H. RadhakrishnanS. AkbarI. Synthesis of novel coumarin analogues: Investigation of molecular docking interaction of SARS-CoV-2 proteins with natural and synthetic coumarin analogues and their pharmacokinetics studies.Saudi J. Biol. Sci.20212811100110810.1016/j.sjbs.2020.11.03833199969
    [Google Scholar]
  116. SuleimenY.M. JoseR.A. SuleimenR.N. IshmuratovaM.Y. ToppetS. DehaenW. AlsfoukA.A. ElkaeedE.B. EissaI.H. MetwalyA.M. Isolation and in silico SARS-CoV-2 main protease inhibition potential of jusan coumarin, a new dicoumarin from Artemisia glauca. Molecules2022277228110.3390/molecules2707228135408682
    [Google Scholar]
  117. AbdelmohsenU.R. AlbohyA. AbdulrazikB.S. BayoumiS.A.L. MalakL.G. KhallafI.S.A. BringmannG. FaragS.F. Natural coumarins as potential anti-SARS-CoV-2 agents supported by docking analysis.RSC Advances20211128169701697910.1039/D1RA01989A35479715
    [Google Scholar]
  118. PengY. ChenS. WangZ. ZhouZ. SunJ. ZhangG. LiJ. WangL. ZhaoJ. TangX.X. WangD.Y. ZhongN. Dicoumarol is an effective post-exposure prophylactic for SARS-CoV-2 Omicron infection in human airway epithelium.Signal Transduct. Target. Ther.20238124210.1038/s41392‑023‑01511‑737301869
    [Google Scholar]
  119. ZígoloM.A. GoytiaM.R. PomaH.R. RajalV.B. IrazustaV.P. Virtual screening of plant-derived compounds against SARS-CoV-2 viral proteins using computational tools.Sci. Total Environ.202178114640010.1016/j.scitotenv.2021.14640033794459
    [Google Scholar]
  120. PiplaniS. SinghP. WinklerD.A. PetrovskyN. Potential COVID-19 therapies from computational repurposing of drugs and natural products against the SARS-CoV-2 helicase.Int. J. Mol. Sci.20222314770410.3390/ijms2314770435887049
    [Google Scholar]
  121. S. Zambare AA. Kalam Khan F, P. Zambare S, D. Shinde S, N. Sangshetti J. Recent advances in the synthesis of coumarin derivatives via pechmann condensation.Curr. Org. Chem.201620779882810.2174/1385272820666151026224227
    [Google Scholar]
  122. LončarićM. SušjenkaM. MolnarM. An extensive study of coumarin synthesis via knoevenagel condensation in choline chloride based deep eutectic solvents.Curr. Org. Synth.20201729810810.2174/157017941766620011615570432418515
    [Google Scholar]
  123. RatreP. KulkarniS. DasS. LiangC. MishraP.K. TharejaS. Medicinal chemistry aspects and synthetic strategies of coumarin as aromatase inhibitors: An overview.Med. Oncol.20224014110.1007/s12032‑022‑01916‑436471176
    [Google Scholar]
  124. FranciscoC.S. FranciscoC.S. ConstantinoA.F. NetoÁ.C. LacerdaV.J.r. Synthetic methods applied in the preparation of coumarin-based compounds.Curr. Org. Chem.202023242722275010.2174/1385272823666191121150047
    [Google Scholar]
  125. SzwaczkoK. Coumarins synthesis and transformation via C–H bond activation—a review.Inorganics20221022310.3390/inorganics10020023
    [Google Scholar]
  126. JadhavN.K. KaleB.R. AlamM.S. GaikwadV.B. PrasadV. KaleR.R. Synthesis and functionalization of coumarin-pyrazole scaffold: Recent development, challenges, and opportunities.Curr. Org. Synth.202118768571010.2174/157017941866621030112232233645484
    [Google Scholar]
  127. BasavarajaiahS.M. Gunavanthrao YernaleN. Punith KumarM. RakeshB. Review on contemporary synthetic recipes to access versatile coumarin heterocycles.Polycycl. Aromat. Compd.202312510.1080/10406638.2023.2235874
    [Google Scholar]
  128. MolnarM. LončarićM. KovačM. Green chemistry approaches to the synthesis of coumarin derivatives.Curr. Org. Chem.202024144310.2174/1385272824666200120144305
    [Google Scholar]
  129. ZhangL. LinD. KusovY. NianY. MaQ. WangJ. von BrunnA. LeyssenP. LankoK. NeytsJ. de WildeA. SnijderE.J. LiuH. HilgenfeldR. α-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: structure-based design, synthesis, and activity assessment.J. Med. Chem.20206394562457810.1021/acs.jmedchem.9b0182832045235
    [Google Scholar]
  130. ParmarG. ShahA. ShahS. SethA.K. Identification of bioactive phytoconstituents from the plant Euphorbia Hirta as potential inhibitor of SARS-CoV-2: An in-silico approach.Biointerface Res. Appl. Chem.202212213851396
    [Google Scholar]
  131. AminS.A. BanerjeeS. GhoshK. GayenS. JhaT. Protease targeted COVID-19 drug discovery and its challenges: Insight into viral main protease (Mpro) and papain- like protease (PLpro) inhibitors.Bioorg. Med. Chem.20212911586010.1016/j.bmc.2020.11586033191083
    [Google Scholar]
  132. ChoE. RosaM. AnjumR. MehmoodS. SobanM. MujtabaM. BuxK. MoinS.T. TanweerM. DantuS. PandiniA. YinJ. MaH. RamanathanA. IslamB. MeyA.S.J.S. BhowmikD. HaiderS. Dynamic Profiling of β-Coronavirus 3CL M pro protease ligand-binding sites.J. Chem. Inf. Model.20216163058307310.1021/acs.jcim.1c0044934124899
    [Google Scholar]
  133. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑011259830
    [Google Scholar]
  134. Hosseini NasabN. AzimianF. KrugerH.G. KimS.J. Reaction of 3-Acetylcoumarin: From methods to mechanism.Arab. J. Chem.202316210447210.1016/j.arabjc.2022.104472
    [Google Scholar]
  135. HelmyM.M. MoustafaM.H. EldeabH.A. Microwave-assisted synthesis of new series some acetyl coumarin derivatives and studying of some their pharmacological activities.J. Pharma. Sciences and Res.2015728388
    [Google Scholar]
  136. VekariyaR.H. PatelH.D. Recent advances in the synthesis of coumarin derivatives via knoevenagel condensation: A review.Synth. Commun.201444192756278810.1080/00397911.2014.926374
    [Google Scholar]
  137. AbdellatiifM.H. AliA. AliA. HussienM.A. Computational studies by molecular docking of some antiviral drugs with COVID-19 receptors are an approach to medication for COVID-19.Open Chem.202119124526410.1515/chem‑2021‑0024
    [Google Scholar]
  138. Hippisley-CoxJ. YoungD. CouplandC. ChannonK.M. TanP.S. HarrisonD.A. RowanK. AveyardP. PavordI.D. WatkinsonP.J. Risk of severe COVID-19 disease with ACE inhibitors and angiotensin receptor blockers: cohort study including 8.3 million people.Heart2020106191503151110.1136/heartjnl‑2020‑31739332737124
    [Google Scholar]
  139. GoswamiR. WohlfahrtG. TörmäkangasO. MoilanenA. LakshminarasimhanA. NagarajJ. ArumugamK.N. MukherjeeS. ChackoA.R. KrishnamurthyN.R. JaleelM. PalakurthyR.K. SamiullaD.S. RamachandraM. Structure-guided discovery of 2-aryl/pyridin-2-yl-1H-indole derivatives as potent and selective hepsin inhibitors.Bioorg. Med. Chem. Lett.201525225309531410.1016/j.bmcl.2015.09.04226421993
    [Google Scholar]
  140. Fuentes-PriorP. Priming of SARS-CoV-2 S protein by several membrane-bound serine proteinases could explain enhanced viral infectivity and systemic COVID-19 infection.J. Biol. Chem.202129610013510.1074/jbc.REV120.01598033268377
    [Google Scholar]
  141. HeurichA. Hofmann-WinklerH. GiererS. LiepoldT. JahnO. PöhlmannS. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein.J. Virol.20148821293130710.1128/JVI.02202‑1324227843
    [Google Scholar]
  142. LeeT.W. CherneyM.M. LiuJ. JamesK.E. PowersJ.C. EltisL.D. JamesM.N.G. Crystal structures reveal an induced-fit binding of a substrate-like Aza-peptide epoxide to SARS coronavirus main peptidase.J. Mol. Biol.2007366391693210.1016/j.jmb.2006.11.07817196984
    [Google Scholar]
  143. Báez-SantosY.M. BarrazaS.J. WilsonM.W. AgiusM.P. MielechA.M. DavisN.M. BakerS.C. LarsenS.D. MesecarA.D. X-ray structural and biological evaluation of a series of potent and highly selective inhibitors of human coronavirus papain-like proteases.J. Med. Chem.20145762393241210.1021/jm401712t24568342
    [Google Scholar]
  144. KirchdoerferR.N. WardA.B. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors.Nat. Commun.2019101234210.1038/s41467‑019‑10280‑331138817
    [Google Scholar]
  145. Zárraga OM. DarouchM. LisboaE. Arroyo PP. Miranda MA. Synthesis of 6- tert -octyl and 6,8-di tert -butyl coumarins, two coumarins of biological interest.J. Chil. Chem. Soc.20216625220522210.4067/S0717‑97072021000205220
    [Google Scholar]
  146. LindoyL.F. Mono- and diformylation of 4-substituted phenols: A new application of the duff reaction.Synthesis1998199871029103210.1055/s‑1998‑2110
    [Google Scholar]
  147. AldredR. JohnstonR. LevinD. NeilanJ. Magnesium-mediated ortho-specific formylation and formaldoximation of phenols.J. Chem. Soc. Perkin.1994131823
    [Google Scholar]
  148. Salgado-MoranG. CardonaV.W. Gerli-candia lorena, mendoza-huizar lh, abdizadeh t. identification of novel coumarin based compounds as potential inhibitors of the 3-chymotrypsin-like main protease of SARS-CoV-2 using dft, molecular docking and molecular dynamics simulation studies.J. Chil. Chem. Soc.20226725521553610.4067/S0717‑97072022000205521
    [Google Scholar]
  149. Ait-Ramdane-TerboucheC. AbdeldjebarH. TerboucheA. LakhdariH. BachariK. RoisnelT. HauchardD. Crystal structure, chemical reactivity, kinetic and thermodynamic studies of new ligand derived from 4-hydroxycoumarin: Interaction with SARS-CoV-2.J. Mol. Struct.2020122212891810.1016/j.molstruc.2020.12891832834114
    [Google Scholar]
  150. MohamedN.M. EltelbanyR.F.A. Synthetic coumarin derivatives as SARS-CoV-2 major protease inhibitors: Design, synthesis, bioevaluation and molecular docking.ChemistrySelect2021647136161362610.1002/slct.202103658
    [Google Scholar]
  151. Su, H.X.; Yao, S.; Zhao, W.F.; Li, M.J.; Liu, J.; Shang, W.J.; Xie, H.; Ke, C.Q.; Hu, H.C.; Gao, M.N.; Yu, K.Q.; Liu, H.; Shen, J.S.; Tang, W.; Zhang, L.K.; Xiao, G.F.; Ni, L.; Wang, D.W.; Zuo, J.P.; Jiang, H.L.; Bai, F.; Wu, Y.; Ye, Y.; Xu, Y.C. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta. Pharmacol. Sin., 2020, 41(9), 1167-1177.10.1038/s41401‑020‑0483‑632737471
  152. AvdovićE.H. MilanovićŽ.B. ŽivanovićM.N. ŠeklićD.S. RadojevićI.D. ČomićL.R. TrifunovićS.R. AmićA. MarkovićZ.S. Synthesis, spectroscopic characterization, biological activity, DFT and molecular docking study of novel 4-hydroxycoumarine derivatives and corresponding palladium(II) complexes.Inorg. Chim. Acta202050411946510.1016/j.ica.2020.119465
    [Google Scholar]
  153. AvdovićE.H. MilenkovićD. Dimitrić MarkovićJ.M. ĐorovićJ. VukovićN. VukićM.D. JevtićV.V. TrifunovićS.R. PotočňákI. MarkovićZ. Synthesis, spectroscopic characterization (FT-IR, FT-Raman, and NMR), quantum chemical studies and molecular docking of 3-(1-(phenylamino)ethylidene)-chroman-2,4-dione.Spectrochim. Acta A Mol. Biomol. Spectrosc.2018195314010.1016/j.saa.2018.01.02329367024
    [Google Scholar]
  154. MilenkovićD.A. DimićD.S. AvdovićE.H. MarkovićZ.S. Several coumarin derivatives and their Pd( ii ) complexes as potential inhibitors of the main protease of SARS-CoV-2, an in silico approach.RSC Advances20201058350993510810.1039/D0RA07062A35515669
    [Google Scholar]
  155. NestorJ.O. Fesults of the failure to perform adequate preclinical studies before administering new drugs to humans.S. Afr. Med. J.197549828729047186
    [Google Scholar]
  156. JinZ. LiuJ.Y. FengR. JiL. JinZ.L. LiH.B. Drug treatment of coronavirus disease 2019 (COVID-19) in China.Eur. J. Pharmacol.2020883March17332610.1016/j.ejphar.2020.17332632598953
    [Google Scholar]
  157. DeshmukhM.N. BurudR. BaldinoC. ChanP.C.M. LiuJ. A practical and environmentally friendly preparation of 3-carboxycoumarins.Synth. Commun.200333193299330310.1081/SCC‑120023987
    [Google Scholar]
  158. Felix da Silva GomesG. Goes CamargoP. de Santiago-SilvaK.M. SuzukawaH.T. Sotero da Silva RibeiroA.P. OrsatoA. In silico approaches and in vitro assays identify a coumarin derivative as antiviral potential against SARS-CoV-2. J. Biomol. Struct. Dyn. 2022 https://www.tandfonline.com/doi/abs/10.1080/07391102.2022.2140203
/content/journals/cmc/10.2174/0109298673285609231220111556
Loading
/content/journals/cmc/10.2174/0109298673285609231220111556
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test