Skip to content
2000
Volume 31, Issue 42
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Perillyl alcohol (POH) is a monoterpenoid found in plant essential oils and has been shown to relax murine vessels, but its effect on human vessels remains poorly studied.

Objective

The study aimed to characterize the effect of POH on human umbilical arteries (HUA).

Methods

Rings of HUA were obtained from uncomplicated patients and suspended in an organ bath for isometric recording. The vasorelaxant effect of POH in HUA was evaluated on basal tone and electromechanical or pharmacomechanical contractions, and possible mechanisms of action were also investigated.

Results

POH (1-1000 µM) altered the basal tone of HUA and completely relaxed HUA rings precontracted with KCl (60 mM) or 5-HT (10 µM), obtaining greater potency in the pharmacomechanical pathway (EC 110.1 µM), suggesting a complex interference in the mobilization of extra- and intracellular Ca2+. POH (1000 µM) inhibited contractions induced by BaCl (0.1-30 mM) in a similar way to nifedipine (10 µM), indicating a possible blockade of L-type VOCC. In the presence of potassium channel blockers, tetraethylammonium (1 mM), 4-aminopyridine (1 mM), or glibenclamide (10 µM), an increase in the EC value of the POH was observed, suggesting a modulation of the activity of BK, K, and K channels.

Conclusion

The data from this study suggest that POH modulates Ca2+ and K+ ion channels to induce a relaxant response in HUA.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673269428231204064101
2024-01-08
2024-11-14
Loading full text...

Full text loading...

References

  1. BhatiaS.P. McGintyD. LetiziaC.S. ApiA.M. Fragrance material review on carveol.Food Chem. Toxicol.20084611S85S8710.1016/j.fct.2008.06.03218640224
    [Google Scholar]
  2. GarciaD.G. AmorimL.M.F. de Castro FariaM.V. FreireA.S. SantelliR.E. Da FonsecaC.O. Quirico-SantosT. BurthP. The anticancer drug perillyl alcohol is a Na/K-ATPase inhibitor.Mol. Cell. Biochem.20103451-2293410.1007/s11010‑010‑0556‑920689980
    [Google Scholar]
  3. GomesA.C. MelloA.L. RibeiroM.G. GarciaD.G. Da FonsecaC.O. SalazarM.D.A. SchönthalA.H. Quirico-SantosT. Perillyl alcohol, a pleiotropic natural compound suitable for brain tumor therapy, targets free radicals.Arch. Immunol. Ther. Exp.201765428529710.1007/s00005‑017‑0459‑528314870
    [Google Scholar]
  4. BejeshkM.A. BeikA. AminizadehA.H. SalimiF. BagheriF. SahebazzamaniM. NajafipourH. RajizadehM.A. Perillyl alcohol (PA) mitigates inflammatory, oxidative, and histopathological consequences of allergic asthma in rats.Naunyn Schmiedebergs Arch. Pharmacol.202339661235124510.1007/s00210‑023‑02398‑536707429
    [Google Scholar]
  5. KhanA.Q. NafeesS. SultanaS. Perillyl alcohol protects against ethanol induced acute liver injury in Wistar rats by inhibiting oxidative stress, NFκ-B activation and proinflammatory cytokine production.Toxicology20112791-310811410.1016/j.tox.2010.09.01720923693
    [Google Scholar]
  6. SousaM. AfonsoA.C. TeixeiraL.S. BorgesA. SaavedraM.J. SimõesL.C. SimõesM. Hydrocinnamic acid and perillyl alcohol potentiate the action of antibiotics against Escherichia coli. Antibiotics202312236010.3390/antibiotics1202036036830271
    [Google Scholar]
  7. GreayS.J. HammerK.A. Recent developments in the bioactivity of mono- and diterpenes: Anticancer and antimicrobial activity.Phytochem. Rev.20151411610.1007/s11101‑011‑9212‑6
    [Google Scholar]
  8. RippleG.H. GouldM.N. StewartJ.A. TutschK.D. ArzoomanianR.Z. AlbertiD. FeierabendC. PomplunM. WildingG. BaileyH.H. Phase I clinical trial of perillyl alcohol administered daily.Clin. Cancer Res.199845115911649607573
    [Google Scholar]
  9. HudesG.R. SzarkaC.E. AdamsA. RanganathanS. McCauleyR.A. WeinerL.M. LangerC.J. LitwinS. YeslowG. HalberrT. QianM. GalloJ.M. Phase I pharmacokinetic trial of perillyl alcohol (NSC 641066) in patients with refractory solid malignancies.Clin. Cancer Res.2000683071308010955786
    [Google Scholar]
  10. RippleG.H. GouldM.N. ArzoomanianR.Z. AlbertiD. FeierabendC. SimonK. BingerK. TutschK.D. PomplunM. WahamakiA. MarnochaR. WildingG. BaileyH.H. Phase I clinical and pharmacokinetic study of perillyl alcohol administered four times a day.Clin. Cancer Res.20006239039610690515
    [Google Scholar]
  11. AzzoliC.G. MillerV.A. NgK.K. KrugL.M. SpriggsD.R. TongW.P. RiedelE.R. KrisM.G. A phase I trial of perillyl alcohol in patients with advanced solid tumors.Cancer Chemother. Pharmacol.200351649349810.1007/s00280‑003‑0599‑712695855
    [Google Scholar]
  12. Morgan-MeadowsS. DubeyS. GouldM. TutschK. MarnochaR. ArzoomaninR. AlbertiD. BingerK. FeierabendC. VolkmanJ. EllingenS. BlackS. PomplunM. WildingG. BaileyH. Phase I trial of perillyl alcohol administered four times daily continuously.Cancer Chemother. Pharmacol.200352536136610.1007/s00280‑003‑0684‑y12904896
    [Google Scholar]
  13. BaileyH. WildingG. TutschK. ArzoomanianR. AlbertiD. FeierabendC. SimonK. MarnochaR. HolsteinS. StewartJ. LewisK. HohlR. A phase I trial of perillyl alcohol administered four times daily for 14 days out of 28 days.Cancer Chemother. Pharmacol.200454436837610.1007/s00280‑004‑0788‑z15205914
    [Google Scholar]
  14. SchönthalA.H. PeereboomD.M. WagleN. LaiR. MathewA.J. HurthK.M. SimmonV.F. HowardS.P. TaylorL.P. ChowF. da FonsecaC.O. ChenT.C. Phase I trial of intranasal NEO100, highly purified perillyl alcohol, in adult patients with recurrent glioblastoma.Neurooncol. Adv.202131vdab00510.1093/noajnl/vdab00533604574
    [Google Scholar]
  15. BaileyH.H. LevyD. HarrisL.S. SchinkJ.C. FossF. BeattyP. WadlerS. A phase II trial of daily perillyl alcohol in patients with advanced ovarian cancer: Eastern Cooperative Oncology Group Study E2E96.Gynecol. Oncol.200285346446810.1006/gyno.2002.664712051875
    [Google Scholar]
  16. MeadowsS.M. MulkerinD. BerlinJ. BaileyH. KolesarJ. WarrenD. ThomasJ.P. Phase II trial of perillyl alcohol in patients with metastatic colorectal cancer.Int. J. Gastrointest. Cancer2002322-312512810.1385/IJGC:32:2‑3:12512794248
    [Google Scholar]
  17. LiuG. OettelK. BaileyH. UmmersenL.V. TutschK. StaabM.J. HorvathD. AlbertiD. ArzoomanianR. RezazadehH. McGovernJ. RobinsonE. DeMetsD. WildingG. Phase II trial of perillyl alcohol (NSC 641066) administered daily in patients with metastatic androgen independent prostate cancer.Invest. New Drugs200321336737210.1023/A:102543711518214578686
    [Google Scholar]
  18. BaileyH.H. AttiaS. LoveR.R. FassT. ChappellR. TutschK. HarrisL. JumonvilleA. HansenR. ShapiroG.R. StewartJ.A. Phase II trial of daily oral perillyl alcohol (NSC 641066) in treatment-refractory metastatic breast cancer.Cancer Chemother. Pharmacol.200862114915710.1007/s00280‑007‑0585‑617885756
    [Google Scholar]
  19. da FonsecaC.O. SchwartsmannG. FischerJ. NagelJ. FuturoD. Quirico-SantosT. GattassC.R. Preliminary results from a phase I/II study of perillyl alcohol intranasal administration in adults with recurrent malignant gliomas.Surg. Neurol.200870325926610.1016/j.surneu.2007.07.04018295834
    [Google Scholar]
  20. KennedyS. WadsworthR.M. WainwrightC.L. Effect of antiproliferative agents on vascular function in normal and in vitro balloon-injured porcine coronary arteries.Eur. J. Pharmacol.2003481110110710.1016/j.ejphar.2003.09.01014637181
    [Google Scholar]
  21. Cardoso-TeixeiraA. Ferreira-da-SilvaF. Peixoto-NevesD. Oliveira-AbreuK. Pereira-GonçalvesÁ. Coelho-de-SouzaA. Leal-CardosoJ. Hydroxyl group and vasorelaxant effects of perillyl alcohol, carveol, limonene on aorta smooth muscle of rats.Molecules2018236143010.3390/molecules2306143029899230
    [Google Scholar]
  22. de Menezes DantasD. Pereira-de-MoraisL. de Alencar SilvaA. da SilvaR.E.R. DiasF.J. de Sousa AmorimT. Cruz-MartinsN. Melo CoutinhoH.D. BarbosaR. Pharmacological screening of species from the Lippia genus, content in terpenes and phenylpropanoids, and their vasorelaxing effects on human umbilical artery.Curr. Pharm. Des.202329753554210.2174/1381612829666221124101321
    [Google Scholar]
  23. Pereira-de-MoraisL. SilvaA.A. BastosC.M.S. CalixtoG.L. AraújoI.M. AraújoM.C. BarbosaR. Leal-CardosoJ.H. The preeclampsia condition alters external potassium-evoked contraction of human umbilical vessels.Placenta2023138687410.1016/j.placenta.2023.05.00537209614
    [Google Scholar]
  24. HoulihanD.D. DennedyM.C. RavikumarN. MorrisonJ.J. Anti-hypertensive therapy and the feto-placental circulation: Effects on umbilical artery resistance.J. Perinat. Med.200432431531910.1515/JPM.2004.05815346815
    [Google Scholar]
  25. Evaristo Rodrigues da SilvaR. de Alencar SilvaA. Pereira-de-MoraisL. de Sousa AlmeidaN. IritiM. KerntopfM.R. MenezesI.R.A. CoutinhoH.D.M. BarbosaR. Relaxant effect of monoterpene (−)-carveol on isolated human umbilical cord arteries and the involvement of ion channels.Molecules20202511268110.3390/molecules2511268132527034
    [Google Scholar]
  26. DantasD.M. SilvaA.A. Pereira-de-MoraisL. BastosC.M.S. CalixtoG.L. KerntopfM.R. MenezesI.R.A. WeinreichD. BarbosaR. Characterization of the vasodilator effect of eugenol in isolated human umbilical cord arteries.Chem. Biol. Interact.202235910989010.1016/j.cbi.2022.10989035318036
    [Google Scholar]
  27. ĐukanovićĐ. BojićM.G. MarinkovićS. TrailovićS. StojiljkovićM.P. ŠkrbićR. Vasorelaxant effect of monoterpene carvacrol on isolated human umbilical artery.Can. J. Physiol. Pharmacol.2022100875576210.1139/cjpp‑2021‑073635507953
    [Google Scholar]
  28. BatistaP.R. SilvaA.A. de Sena BastosC.M. Rodrigues da SilvaR.E. CalixtoG.L. de MoraisL.P. DelmondesG.A. KerntopfM.R. de MenezesI.R.A. BarbosaR. Vasodilation promoted by (E,E)-farnesol involving ion channels in human umbilical arteries.Heliyon202396e1732810.1016/j.heliyon.2023.e1732837441374
    [Google Scholar]
  29. LeonardiA. HiebleJ.P. GuarneriL. NaselskyD.P. PoggesiE. SironiG. SulpizioA.C. TestaR. Pharmacological characterization of the uroselective alpha-1 antagonist Rec 15/2739 (SB 216469): Role of the alpha-1L adrenoceptor in tissue selectivity, part I.J. Pharmacol. Exp. Ther.19972813127212839190863
    [Google Scholar]
  30. LoY.C. WangC.C. ShenK.P. WuB.N. YuK.L. ChenI.J. Urgosedin inhibits hypotension, hypoglycemia, and pro-inflammatory mediators induced by lipopolysaccharide.J. Cardiovasc. Pharmacol.200444336337110.1097/01.fjc.0000137155.63604.7a15475835
    [Google Scholar]
  31. SilvaR.M. OliveiraF.A. CunhaK.M.A. MaiaJ.L. MacielM.A.M. PintoA.C. NascimentoN.R.F. SantosF.A. RaoV.S.N. Cardiovascular effects of trans-dehydrocrotonin, a diterpene from Croton cajucara in rats.Vascul. Pharmacol.2005431111810.1016/j.vph.2005.02.01515975531
    [Google Scholar]
  32. TufanH. Ayan-PolatB. Tecder-ÜnalM. PolatG. KayhanZ. ÖğüşE. Contractile responses of the human umbilical artery to KCl and serotonin in Ca-free medium and the effects of levcromakalim.Life Sci.200372121321132910.1016/S0024‑3205(02)02382‑212527030
    [Google Scholar]
  33. YildizO. NacitarhanC. SeyrekM. Potassium channels in the vasodilating action of levosimendan on the human umbilical artery.J. Soc. Gynecol. Investig.200613431231510.1016/j.jsgi.2006.02.00516697949
    [Google Scholar]
  34. PerusquíaM. NavarreteE. GonzálezL. VillalónC.M. The modulatory role of androgens and progestins in the induction of vasorelaxation in human umbilical artery.Life Sci.20078112993100210.1016/j.lfs.2007.07.02417804019
    [Google Scholar]
  35. HehirM.P. MoynihanA.T. GlaveyS.V. MorrisonJ.J. Umbilical artery tone in maternal obesity.Reprod. Biol. Endocrinol.200971610.1186/1477‑7827‑7‑619161625
    [Google Scholar]
  36. MohammedR. ProviteraL. CavallaroG. LattuadaD. ErcoliG. MoscaF. VillamorE. Vasomotor effects of hydrogen sulfide in human umbilical vessels.J. Physiol. Pharmacol.201768573774729375049
    [Google Scholar]
  37. Britto-JúniorJ. JacinthoF.F. Figueiredo MurariG.M. CamposR. MorenoR.A. AntunesE. MónicaF.Z. De NucciG. Electrical field stimulation induces endothelium-dependent contraction of human umbilical cord vessels.Life Sci.202024311725710.1016/j.lfs.2020.11725731917992
    [Google Scholar]
  38. BorgesA.S. BastosC.M.S. DantasD.M. MilfontC.G.B. BritoG.M.H. Pereira-de-MoraisL. DelmondesG.A. da SilvaR.E.R. Kennedy-FeitosaE. MaiaF.P.A. LimaC.M.G. Bin EmranT. CoutinhoH.D.M. MenezesI.R.A. KerntopfM.R. CarusoG. BarbosaR. Effect of Lippia alba (Mill.) N.E. Brown essential oil on the human umbilical artery.Plants20221121300210.3390/plants1121300236365458
    [Google Scholar]
  39. LorigoM. QuintaneiroC. LemosM. Martinez-de-OliveiraJ. BreitenfeldL. CairraoE. UV-B filter octylmethoxycinnamate induces vasorelaxation by Ca2+ channel inhibition and guanylyl cyclase activation in human umbilical arteries.Int. J. Mol. Sci.2019206137610.3390/ijms2006137630893788
    [Google Scholar]
  40. LorigoM. QuintaneiroC. MaiaC.J. BreitenfeldL. CairraoE. UV-B filter octylmethoxycinnamate impaired the main vasorelaxant mechanism of human umbilical artery.Chemosphere202127713030210.1016/j.chemosphere.2021.13030233789217
    [Google Scholar]
  41. CairrãoE. ÁlvarezE. Santos-SilvaA.J. VerdeI. Potassium channels are involved in testosterone-induced vasorelaxation of human umbilical artery.Naunyn Schmiedebergs Arch. Pharmacol.2008376537538310.1007/s00210‑007‑0213‑318026936
    [Google Scholar]
  42. CairrãoE. Santos-SilvaA.J. VerdeI. PKG is involved in testosterone-induced vasorelaxation of human umbilical artery.Eur. J. Pharmacol.20106401-39410110.1016/j.ejphar.2010.04.02520444426
    [Google Scholar]
  43. LorigoM. ManganaC. CairraoE. Disrupting effects of the emerging contaminant octylmethoxycinnamate (OMC) on human umbilical artery relaxation.Environ. Pollut.202333512230210.1016/j.envpol.2023.12230237536478
    [Google Scholar]
  44. SakariassenK.S. FemiaE.A. DarayF.M. PoddaG.M. RazzariC. PuglianoM. ErrastiA.E. ArmestoA.R. NowakW. AlbertsP. MeyerJ.P. SorensenA.S. CattaneoM. RothlinR.P. EV-077 in vitro inhibits platelet aggregation in type-2 diabetics on aspirin.Thromb. Res.2012130574675210.1016/j.thromres.2012.08.30922959706
    [Google Scholar]
  45. LeungS.W.S. QuanA. LaoT.T. ManR.Y.K. Efficacy of different vasodilators on human umbilical arterial smooth muscle under normal and reduced oxygen conditions.Early Hum. Dev.200682745746210.1016/j.earlhumdev.2005.11.00916443336
    [Google Scholar]
  46. ProviteraL. CavallaroG. GriggioA. RaffaeliG. AmodeoI. GuldenS. LattuadaD. ErcoliG. LonatiC. TomaselliA. MoscaF. VillamorE. Cyclic nucleotide-dependent relaxation in human umbilical vessels.J. Physiol. Pharmacol.201970461963010.26402/jpp.2019.4.1331741459
    [Google Scholar]
  47. NirupamaR. DivyashreeS. JanhaviP. MuthukumarS.P. RavindraP.V. Preeclampsia: Pathophysiology and management.J. Gynecol. Obstet. Hum. Reprod.202150210197510.1016/j.jogoh.2020.10197533171282
    [Google Scholar]
  48. AgalakovaN.I. GrigorovaY.N. ErshovI.A. ReznikV.A. MikhailovaE.V. NadeiO.V. SamuilovskayaL. RomanovaL.A. AdairC.D. RomanovaI.V. BagrovA.Y. Canrenone restores vasorelaxation impaired by Marinobufagenin in human umbilical preeclampsia.Int. J. Mol. Sci.2022236333610.3390/ijms2306333635328757
    [Google Scholar]
  49. KaradasB. Acar-SahanS. KantarciS. UysalN. HorozE. Kaya-TemizT. Comparison of relaxant effects of nifedipine and NS11021 on isolated umbilical arteries of healthy and preeclamptic pregnant women.Eur. J. Obstet. Gynecol. Reprod. Biol.202328016817310.1016/j.ejogrb.2022.12.00936508854
    [Google Scholar]
  50. DantasD.M. Silva-JúniorC.P. BarbosaR. Pereira-De-MoraisL. Implementation of an alternative method to replace the use of animals in studies with smooth muscle.Ciênc. Anim.201929148154
    [Google Scholar]
  51. LorigoM. CairraoE. Regulation mechanisms of endocrine disruptors on vasodilation and vasoconstriction: Insights from ex vivo models.Biocell20224661383138910.32604/biocell.2022.018895
    [Google Scholar]
  52. ProtićD. RadunovićN. Spremović-RađenovićS. ŽivanovićV. HeinleH. PetrovićA. Gojković-BukaricaL. The role of potassium channels in the vasodilatation induced by resveratrol and naringenin in isolated human umbilical vein.Drug Dev. Res.2015761172310.1002/ddr.2123625619904
    [Google Scholar]
  53. Silva de SáM.F. MeirellesR.S. FrancoJ.G.Jr RodriguesR. Constriction of human umbilical artery induced by local anesthetics.Gynecol. Obstet. Invest.198112312313110.1159/0002995947239348
    [Google Scholar]
  54. TuvemoT. WilldeckLundG. Smooth muscle effects of lidocaine, prilocaine, bupivacaine and etiodocaine on the human umbilical artery.Acta Anaesthesiol. Scand.198226210410710.1111/j.1399‑6576.1982.tb01734.x7102231
    [Google Scholar]
  55. NorénH. KällfeltB. LindblomB. Influence of bupivacaine and morphine on human umbilical arteries and veins in vitro. Acta Obstet. Gynecol. Scand.1990691879110.3109/000163490090210452346085
    [Google Scholar]
  56. BariskanerH. TuncerS. TanerA. DoganN. Effects of bupivacaine and ropivacaine on the isolated human umbilical artery.Int. J. Obstet. Anesth.200312426126510.1016/S0959‑289X(03)00072‑415321454
    [Google Scholar]
  57. MartínP. EnriqueN. PalomoA.R.R. RebolledoA. MilesiV. Bupivacaine inhibits large conductance, voltage- and Ca2+ - activated K + channels in human umbilical artery smooth muscle cells.Channels20126317418010.4161/chan.2036222688134
    [Google Scholar]
  58. BertrandC. DuperronL. St-LouisJ. Umbilical and placental vessels: Modifications of their mechanical properties in preeclampsia.Am. J. Obstet. Gynecol.199316851537154610.1016/S0002‑9378(11)90795‑98498440
    [Google Scholar]
  59. García-HuidobroD.N. García-HuidobroT.M. Huidobro-ToroJ.P.G. Vasomotion in human umbilical and placental veins: Role of gap junctions and intracellular calcium reservoirs in their synchronous propagation.Placenta200728432833810.1016/j.placenta.2006.04.00416797694
    [Google Scholar]
  60. MilesiV. RaingoJ. RebolledoA. Grassi de GendeA.O. Potassium channels in human umbilical artery cells.J. Soc. Gynecol. Investig.200310633934610.1016/S1071‑5576(03)00117‑512969776
    [Google Scholar]
  61. Santos-SilvaA.J. CairraoE. VerdeI. Study of the mechanisms regulating human umbilical artery contractility.Health20102432133110.4236/health.2010.24049
    [Google Scholar]
  62. PutneyJ.W.Jr Capacitative calcium entry revisited.Cell Calcium1990111061162410.1016/0143‑4160(90)90016‑N1965707
    [Google Scholar]
  63. MeldrumE. ParkerP.J. CarozziA. The PtdIns-PLC superfamily and signal transduction.Biochim. Biophys. Acta Mol. Cell Res.199110921497110.1016/0167‑4889(91)90177‑Y1849017
    [Google Scholar]
  64. JiangH. StephensN.L. Calcium and smooth muscle contraction.Mol. Cell. Biochem.199413511910.1007/BF009259567816050
    [Google Scholar]
  65. XieH. TriggleC.R. Endothelium-independent relaxations to acetylcholine and A23187 in the human umbilical artery.J. Vasc. Res.19943129210510.1159/0001590358117864
    [Google Scholar]
  66. FeiJ.Q. ZhouH.B. ShenY.L. ChenX.Z. WangL.L. A comparison study on the responses of umbilical arteries and thoracic aorts to the adrenergic receptor agonists.Cell Biol. Int.2008323S5510.1016/j.cellbi.2008.01.234
    [Google Scholar]
  67. MassaroF.C. BrooksP.R. WallaceH.M. NsengiyumvaV. NarokaiL. RussellF.D. Effect of Australian propolis from stingless bees (Tetragonula carbonaria) on pre-contracted human and porcine isolated arteries.PLoS One2013811e8129710.1371/journal.pone.008129724260567
    [Google Scholar]
  68. LorigoM. MarianaM. FeiteiroJ. CairraoE. How is the human umbilical artery regulated?J. Obstet. Gynaecol. Res.20184471193120110.1111/jog.1366729727040
    [Google Scholar]
  69. SperoniF. RebolledoA. SalemmeS. Roldán-PalomoR. RimoriniL. AñónM.C. SpinilloA. TanziF. MilesiV. Genistein effects on Ca2+ handling in human umbilical artery: Inhibition of sarcoplasmic reticulum Ca2+ release and of voltage-operated Ca2+ channels.J. Physiol. Biochem.200965211312410.1007/BF0317906219886390
    [Google Scholar]
  70. RadenkovićM. GrbovićL. RadunovićN. MomčilovP. Pharmacological evaluation of bradykinin effect on human umbilical artery in normal, hypertensive and diabetic pregnancy.Pharmacol. Rep.2007591647317377208
    [Google Scholar]
  71. MartínP. RebolledoA. PalomoA.R.R. MoncadaM. PiccininiL. MilesiV. Diversity of potassium channels in human umbilical artery smooth muscle cells: A review of their roles in human umbilical artery contraction.Reprod. Sci.201421443244110.1177/193371911350446824084522
    [Google Scholar]
  72. LorigoM. OliveiraN. CairrãoE. Clinical importance of the human umbilical artery potassium channels.Cells202099195610.3390/cells909195632854241
    [Google Scholar]
  73. Nacka-AleksićM. PirkovićA. VilotićA. Bojić-TrbojevićŽ. Jovanović KrivokućaM. GiampieriF. BattinoM. DekanskiD. The role of dietary polyphenols in pregnancy and pregnancy-related disorders.Nutrients20221424524610.3390/nu1424524636558404
    [Google Scholar]
  74. ChenT.C. da FonsecaC.O. LevinD. SchönthalA.H. The monoterpenoid perillyl alcohol: Anticancer agent and medium to overcome biological barriers.Pharmaceutics20211312216710.3390/pharmaceutics1312216734959448
    [Google Scholar]
  75. BaptistaM. LorigoM. CairraoE. Protein interaction network for identifying vascular response of metformin (oral antidiabetic).Bio. Med. Informatics20222221723310.3390/biomedinformatics2020014
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673269428231204064101
Loading
/content/journals/cmc/10.2174/0109298673269428231204064101
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test