Skip to content
2000
Volume 32, Issue 3
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The potential association between aluminum-containing deodorants/antiperspirants and breast cancer has been investigated and debated. This paper comprehensively analyzes existing literature to examine the evidence and provide insights into this relationship. This comprehensive review discusses aspects related to the absorption and distribution of aluminum compounds, its effects on the induction of oxidative stress, the estrogenic activity of aluminum, and potential disruption of hormonal pathways, and the potential role in breast cancer induction. Currently, available research, consisting of epidemiological studies as well as clinical trials, together with meta-analyses and previously published reviews conducted on identifying the relationship between aluminum-containing deodorants/antiperspirants and the risk of breast cancer were also analyzed and discussed. Societal factors, personal hygiene considerations, and lifestyle changes contribute to the increased usage of antiperspirants, but they do not establish a direct causal connection with breast cancer. Further research employing larger-scale studies and rigorous methodologies must validate the existing findings and explore the underlying mechanisms involved. Continued multidisciplinary research efforts and collaboration between researchers, regulatory bodies, and public health authorities are vital to developing a more definitive understanding of this complex topic.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673269343231025070053
2024-01-01
2025-01-17
Loading full text...

Full text loading...

References

  1. Centers for Disease Control and PreventionVaccine Safety - Adjuvants.2022Available from: https://www.cdc.gov/vaccinesafety/concerns/adjuvants.html
  2. SanajouS. ŞahinG. BaydarT. Aluminium in cosmetics and personal care products.J. Appl. Toxicol.202141111704171810.1002/jat.422834396567
    [Google Scholar]
  3. FeketeV. VandevijvereS. BolleF. Van LocoJ. Estimation of dietary aluminum exposure of the Belgian adult population: Evaluation of contribution of food and kitchenware.Food Chem. Toxicol.20135560260810.1016/j.fct.2013.01.05923402858
    [Google Scholar]
  4. DingG. JingY. HanY. SunP. LiangS. LiuJ. WangX. LianY. FangY. JinZ. LiW. Monitoring of aluminum content in food and assessment of dietary exposure of residents in North China.Food Addit. Contam. Part B Surveill.202114317718310.1080/19393210.2021.191219134362289
    [Google Scholar]
  5. WillhiteC.C. KaryakinaN.A. YokelR.A. YenugadhatiN. WisniewskiT.M. ArnoldI.M. MomoliF. KrewskiD. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts.Crit. Rev. Toxicol.201444Suppl 418010.3109/10408444.2014.934439
    [Google Scholar]
  6. MitkusR.J. KingD.B. HessM.A. ForsheeR.A. WalderhaugM.O. Updated aluminum pharmacokinetics following infant exposures through diet and vaccination.Vaccine201129519538954310.1016/j.vaccine.2011.09.12422001122
    [Google Scholar]
  7. McConaghyJ.R. FosselmanD. Hyperhidrosis: Management options.Am. Fam. Physician2018971172973430215934
    [Google Scholar]
  8. BarelA.O. PayeM. MaibachH.I. Handbook of Cosmetic Science and Technology.Taylor & FrancisUnited Kingdom4th ed.201410.1201/b16716
    [Google Scholar]
  9. ErmenlievaN. GeorgievaE. MilevM. Antibacterial and antifungal activity of antiperspirant cosmetic products.J. IMAB - Annual Proceeding (Scientific Papers)20202643374337710.5272/jimab.2020264.3374
    [Google Scholar]
  10. ShahtalebiM.A. GhanadianM. FarzanA. ShiriN. ShokriD. FatemiS.A. Deodorant effects of a sage extract stick: Antibacterial activity and sensory evaluation of axillary deodorancy.J. Res. Med. Sci.2013181083383924497852
    [Google Scholar]
  11. KlotzK. WeistenhöferW. NeffF. HartwigA. van ThrielC. DrexlerH. The health effects of aluminum exposure.Dtsch. Arztebl. Int.20171143965365929034866
    [Google Scholar]
  12. BenohanianA. Antiperspirants and deodorants.Clin. Dermatol.200119439840510.1016/S0738‑081X(01)00192‑411535380
    [Google Scholar]
  13. BoydC. Which chemicals make deodorants and antiperspirants work?2014Available from: https://www.chemservice.com/news/2014/08/which-chemicals-make-deodorants-and-antiperspirants-work/
  14. KumarM. MyagmardoloonjinB. KeshariS. NegariI.P. HuangC.M. 5-methyl furfural reduces the production of malodors by inhibiting sodium l-lactate fermentation of Staphylococcus epidermidis: Implication for deodorants targeting the fermenting skin microbiome.Microorganisms20197823910.3390/microorganisms708023931387211
    [Google Scholar]
  15. FlarendR. Aluminium and Alzheimer’s Disease. ExleyC. AmsterdamElsevier2001759510.1016/B978‑044450811‑9/50029‑X
    [Google Scholar]
  16. BaumannB.C. ZengC. FreedmanG.M. VerginadisI.I. VachaniC. MacArthurK. LinL.L. KoumenisC. SolbergT.D. MetzJ.M. Avoiding antiperspirants during breast radiation therapy: Onco-myth or sound advice?Int. J. Radiat. Oncol. Biol. Phys.2016962E18E1910.1016/j.ijrobp.2016.06.640
    [Google Scholar]
  17. DarbreP.D. Environmental oestrogens, cosmetics and breast cancer.Best Pract. Res. Clin. Endocrinol. Metab.200620112114310.1016/j.beem.2005.09.00716522524
    [Google Scholar]
  18. DarbreP.D. Underarm cosmetics are a cause of breast cancer.Eur. J. Cancer Prev.200110538939410.1097/00008469‑200110000‑0000211711753
    [Google Scholar]
  19. JaliliP. HuetS. LanceleurR. JarryG. HegaratL.L. NesslanyF. HogeveenK. FessardV. Genotoxicity of aluminum and aluminum oxide nanomaterials in rats following oral exposure.Nanomaterials (Basel)202010230510.3390/nano1002030532053952
    [Google Scholar]
  20. RajivS. JerobinJ. SaranyaV. NainawatM. SharmaA. MakwanaP. GayathriC. BharathL. SinghM. KumarM. MukherjeeA. ChandrasekaranN. Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro.Hum. Exp. Toxicol.201635217018310.1177/096032711557920825829403
    [Google Scholar]
  21. LimaP.D.L. VasconcellosM.C. MontenegroR.C. BahiaM.O. CostaE.T. AntunesL.M.G. BurbanoR.R. Genotoxic effects of aluminum, iron and manganese in human cells and experimental systems: A review of the literature.Hum. Exp. Toxicol.201130101435144410.1177/096032711039653121247993
    [Google Scholar]
  22. Darbre, P.D. Aluminium and the human breast aluminium et sein humain. In: Morphologie. Elsevier Masson SAS, 2016, 100(329), pp. 65-74.10.1016/j.morpho.2016.02.001
  23. ExleyC. CharlesL.M. BarrL. MartinC. PolwartA. DarbreP.D. Aluminium in human breast tissue.J. Inorg. Biochem.200710191344134610.1016/j.jinorgbio.2007.06.00517629949
    [Google Scholar]
  24. SappinoA.P. BuserR. LesneL. GimelliS. BénaF. BelinD. MandriotaS.J. Aluminium chloride promotes anchorage-independent growth in human mammary epithelial cells.J. Appl. Toxicol.201232323324310.1002/jat.179322223356
    [Google Scholar]
  25. MandriotaS.J. TenanM. FerrariP. SappinoA.P. Aluminium chloride promotes tumorigenesis and metastasis in normal murine mammary gland epithelial cells.Int. J. Cancer2016139122781279010.1002/ijc.3039327541736
    [Google Scholar]
  26. MannelloF. TontiG.A. DarbreP.D. Concentration of aluminium in breast cyst fluids collected from women affected by gross cystic breast disease.J. Appl. Toxicol.20092911610.1002/jat.138418785682
    [Google Scholar]
  27. DarbreP.D. BakirA. IskakovaE. Effect of aluminium on migratory and invasive properties of MCF-7 human breast cancer cells in culture.J. Inorg. Biochem.201312824524910.1016/j.jinorgbio.2013.07.00423896199
    [Google Scholar]
  28. DarbreP.D. Metalloestrogens: An emerging class of inorganic xenoestrogens with potential to add to the oestrogenic burden of the human breast.J. Appl. Toxicol.200626319119710.1002/jat.113516489580
    [Google Scholar]
  29. SamavatH. KurzerM.S. Estrogen metabolism and breast cancer.Cancer Lett.201535622 Pt A23124310.1016/j.canlet.2014.04.01824784887
    [Google Scholar]
  30. SoysalS.D. TzankovA. MuenstS.E. Role of the tumor microenvironment in breast cancer.Pathobiology2015823-414215210.1159/00043049926330355
    [Google Scholar]
  31. YanX. XieY. YangF. HuaY. ZengT. SunC. YangM. HuangX. WuH. FuZ. LiW. JiaoS. YinY. Comprehensive description of the current breast cancer microenvironment advancements via single-cell analysis.J. Exp. Clin. Cancer Res.202140114210.1186/s13046‑021‑01949‑z33906694
    [Google Scholar]
  32. DarbreP.D. AljarrahA. MillerW.R. ColdhamN.G. SauerM.J. PopeG.S. Concentrations of parabens in human breast tumours.J. Appl. Toxicol.200424151310.1002/jat.95814745841
    [Google Scholar]
  33. MirickD.K. DavisS. ThomasD.B. Antiperspirant use and the risk of breast cancer.J. Natl. Cancer Inst.200294201578158010.1093/jnci/94.20.157812381712
    [Google Scholar]
  34. FakriS. Al AzzawiA. Al TawilN. Antiperspirant use as a risk factor for breast cancer in Iraq.East Mediterr Health J.2006123-447882
    [Google Scholar]
  35. McGrathK.G. An earlier age of breast cancer diagnosis related to more frequent use of antiperspirants/deodorants and underarm shaving.Eur. J. Cancer Prev.200312647948510.1097/00008469‑200312000‑0000614639125
    [Google Scholar]
  36. BurchA. GoodmanD.A. A pilot survey of radiation doses received in the United Kingdom Breast Screening Programme.Br. J. Radiol.19987184551752710.1259/bjr.71.845.96918979691897
    [Google Scholar]
  37. KimS. LeeS. Effects of 20% aluminum chloride in axillary hyperhidrosis not accompanying osmidrosis.J. Korean Neurosurg. Soc.2005374272274
    [Google Scholar]
  38. SakhawothY. DupireJ. LeonforteF. ChardonM. MontiF. TabelingP. CabaneB. BotetR. GaleyJ.B. Real time observation of the interaction between aluminium salts and sweat under microfluidic conditions.Sci. Rep.2021111637610.1038/s41598‑021‑85691‑833737654
    [Google Scholar]
  39. de LigtR. van DuijnE. GrossouwD. BosgraS. BurggraafJ. WindhorstA. PeetersP.A.M. van der LuijtG.A. Alexander-WhiteC. VaesW.H.J. Assessment of dermal absorption of aluminum from a representative antiperspirant formulation using a 26Al microtracer approach.Clin. Transl. Sci.201811657358110.1111/cts.1257930052317
    [Google Scholar]
  40. MesurolleB. CeccarelliJ. KarpI. SunS. El-KhouryM. Effects of antiperspirant aluminum percent composition and mode of application on mock microcalcifications in mammography.Eur. J. Radiol.201483227928210.1016/j.ejrad.2013.10.01524262976
    [Google Scholar]
  41. FlarendR. BinT. ElmoreD. HemS.L. A preliminary study of the dermal absorption of aluminium from antiperspirants using aluminium-26.Food Chem. Toxicol.200139216316810.1016/S0278‑6915(00)00118‑611267710
    [Google Scholar]
  42. ExleyC. Aluminum in antiperspirants: More than just skin deep.Am. J. Med.20041171296997010.1016/j.amjmed.2004.11.00315629740
    [Google Scholar]
  43. RahmanH. SkillenA.W. WardM.K. ChannonS.M. KerrD.N. Affinity of the aluminium binding protein.Int. J. Artif. Organs19869293963699915
    [Google Scholar]
  44. TaylorG.J. McDonald-StephensJ.L. HunterD.B. BertschP.M. ElmoreD. RengelZ. ReidR.J. Direct measurement of aluminum uptake and distribution in single cells of Chara corallina.Plant Physiol.2000123398799610.1104/pp.123.3.98710889247
    [Google Scholar]
  45. ExleyC. MoldM.J. The binding, transport and fate of aluminium in biological cells.J. Trace Elem. Med. Biol.201530909510.1016/j.jtemb.2014.11.00225498314
    [Google Scholar]
  46. MannelloF. LigiD. CanaleM. Aluminium, carbonyls and cytokines in human nipple aspirate fluids: Possible relationship between inflammation, oxidative stress and breast cancer microenvironment.J. Inorg. Biochem.201312825025610.1016/j.jinorgbio.2013.07.00323916117
    [Google Scholar]
  47. YamamotoY. KobayashiY. DeviS.R. RikiishiS. MatsumotoH. Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells.Plant Physiol.20021281637210.1104/pp.01041711788753
    [Google Scholar]
  48. BabourinaO. OzturkL. CakmakI. RengelZ. Reactive oxygen species production in wheat roots is not linked with changes in h fluxes during acidic and aluminium stresses.Plant Signal. Behav.200612707510.4161/psb.1.2.259119521479
    [Google Scholar]
  49. Abou-SeifM A M. Oxidative stress of vanadium-mediated oxygen free radical generation stimulated by aluminium on human erythrocytes.Ann. Clin. Biochem.199835225426010.1177/0004563298035002099547897
    [Google Scholar]
  50. AkhtarM.J. AlhadlaqH.A. AlshamsanA. Majeed KhanM.A. AhamedM. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells.Sci. Rep.2015511387610.1038/srep1387626347142
    [Google Scholar]
  51. BaeH. ParkS. YangC. SongG. LimW. Disruption of endoplasmic reticulum and ROS production in human ovarian cancer by campesterol.Antioxidants202110337910.3390/antiox1003037933802602
    [Google Scholar]
  52. KimS.H. KimK.Y. YuS.N. ParkS.G. YuH.S. SeoY.K. AhnS.C. Monensin Induces PC-3 Prostate Cancer Cell Apoptosis via ROS Production and Ca2+ Homeostasis Disruption.Anticancer Res.201636115835584410.21873/anticanres.1116827793906
    [Google Scholar]
  53. HechtF. PessoaC.F. GentileL.B. RosenthalD. CarvalhoD.P. FortunatoR.S. The role of oxidative stress on breast cancer development and therapy.Tumour Biol.20163744281429110.1007/s13277‑016‑4873‑926815507
    [Google Scholar]
  54. LinhartK. BartschH. SeitzH.K. The role of reactive oxygen species (ROS) and cytochrome P-450 2E1 in the generation of carcinogenic etheno-DNA adducts.Redox Biol.20143566210.1016/j.redox.2014.08.00925462066
    [Google Scholar]
  55. JainA.K. SamykuttyA. JacksonC.L. ThangarajuM. BrowningD.D. Curcumin inhibit PhIP induced cytotoxicity by inhibiting ROS production, DNA strand breaks and DNA adducts formation in MCF 10A cells.Cancer Res.20147419p. 4106
    [Google Scholar]
  56. GuptaR. MunagalaR. VadhanamM. NagarajanB. RavooriS. DNA adduct accumulation during the course of human cervical cancer development, and during and after radiotherapy.Toxicol. Lett.2009189S27S2710.1016/j.toxlet.2009.06.045
    [Google Scholar]
  57. TenanM.R. NicolleA. MoralliD. VerbouweE. JankowskaJ.D. DurinM.A. GreenC.M. MandriotaS.J. SappinoA.P. Aluminum enters mammalian cells and destabilizes chromosome structure and number.Int. J. Mol. Sci.20212217951510.3390/ijms2217951534502420
    [Google Scholar]
  58. MarvibaigiM. AminiN. SupriyantoE. Abdul MajidF.A. Kumar JaganathanS. JamilS. Hamzehalipour AlmakiJ. NasiriR. Antioxidant activity and ROS-dependent apoptotic Effect of Scurrula ferruginea (Jack) danser methanol extract in human breast cancer cell MDA-MB-231.PLoS One2016117e015894210.1371/journal.pone.015894227410459
    [Google Scholar]
  59. MencalhaA. VictorinoV.J. CecchiniR. PanisC. Mapping oxidative changes in breast cancer: Understanding the basic to reach the clinics.Anticancer Res.20143431127114024596350
    [Google Scholar]
  60. LeeJ.D. CaiQ. ShuX.O. NechutaS.J. The role of biomarkers of oxidative stress in breast cancer risk and prognosis: A systematic review of the epidemiologic literature.J. Womens Health (Larchmt.)201726546748210.1089/jwh.2016.597328151039
    [Google Scholar]
  61. Ragab AliA.R. FaroukO. AfifyM. AttiaA. SamanoudyA. TaalabY. The role of oxidative stress in carcinogenesis induced by metals in breast cancer egyptian females sample at dakahlia governorate.J. Environ. Anal. Toxicol.201442
    [Google Scholar]
  62. NiehoffN.M. O’BrienK.M. KeilA.P. LevineK.E. LiyanapatiranaC. HainesL.G. WaidyanathaS. WeinbergC.R. WhiteA.J. Metals and breast cancer risk: A prospective study using toenail biomarkers.Am. J. Epidemiol.2021190112360237310.1093/aje/kwab20434268559
    [Google Scholar]
  63. SenguptaT. GhoshS. Gaur TA. NayakP. Dissimilar anxiety-like behavior in prepubertal and young adult female rats on acute exposure to aluminium.Cent. Nerv. Syst. Agents Med. Chem.202121318719410.2174/187152492266621123109550734970958
    [Google Scholar]
  64. KhademR. MahdiF.C. The role of estrogen in breast cancer.Biomed. Biotech. Res. J.20204429329610.4103/bbrj.bbrj_59_20
    [Google Scholar]
  65. LiuW.J. ZhaoG. ZhangC.Y. YangC.Q. ZengX.B. LiJ. ZhuK. ZhaoS.Q. LuH.M. YinD.C. LinS.X. Comparison of the roles of estrogens and androgens in breast cancer and prostate cancer.J. Cell. Biochem.202012142756276910.1002/jcb.2951531693255
    [Google Scholar]
  66. SongR.X.D. ZhangZ. ChenY. BaoY. SantenR.J. Estrogen signaling via a linear pathway involving insulin- like growth factor I receptor, matrix metalloproteinases, and epidermal growth factor receptor to activate mitogen-activated protein kinase in MCF-7 breast cancer cells.Endocrinology200714884091410110.1210/en.2007‑024017525128
    [Google Scholar]
  67. KhanM.Z.I. UzairM. NazliA. ChenJ.Z. An overview on estrogen receptors signaling and its ligands in breast cancer.Eur. J. Med. Chem.202224111465810.1016/j.ejmech.2022.11465835964426
    [Google Scholar]
  68. GorgogietasV.A. TsialtasI. SotiriouN. LaschouV.C. KarraA.G. LeonidasD.D. ChrousosG.P. ProtopapaE. PsarraA.G. Potential interference of aluminum chlorohydrate with estrogen receptor signaling in breast cancer cells.J. Mol. Biochem.20187111330148119
    [Google Scholar]
  69. PhilippaD.D. The potential for estrogen disrupting chemicals to contribute to migration, invasion and metastasis of human breast cancer cells.J. Cancer Metastasis. Treat.2019558
    [Google Scholar]
  70. EveL. FerversB. Le RomancerM. Etienne-SelloumN. Exposure to endocrine disrupting chemicals and risk of breast cancer.Int. J. Mol. Sci.20202123913910.3390/ijms2123913933266302
    [Google Scholar]
  71. Saha RoyS. VadlamudiR.K. Role of estrogen receptor signaling in breast cancer metastasis.Int. J. Breast Cancer201220121810.1155/2012/65469822295247
    [Google Scholar]
  72. ClusanL. FerrièreF. FlouriotG. PakdelF. A basic review on estrogen receptor signaling pathways in breast cancer.Int. J. Mol. Sci.2023247683410.3390/ijms2407683437047814
    [Google Scholar]
  73. YouC.P. LeungM.H. TsangW.C. KhooU.S. TsoiH. Androgen receptor as an emerging feasible biomarker for breast cancer.Biomolecules20221217210.3390/biom1201007235053220
    [Google Scholar]
  74. ChiodoC. MorelliC. CavaliereF. SisciD. LanzinoM. The other side of the coin: May androgens have a role in breast cancer risk?Int. J. Mol. Sci.202123142410.3390/ijms2301042435008851
    [Google Scholar]
  75. BelbasisL. BellouV. Introduction to Epidemiological Studies.Methods Mol. Biol.201817931610.1007/978‑1‑4939‑7868‑7_129876887
    [Google Scholar]
  76. NamerM. LuporsiE. GligorovJ. LokiecF. SpielmannM. The use of deodorants/antiperspirants does not constitute a risk factor for breast cancer.Bull. Cancer200895987188018829420
    [Google Scholar]
  77. AllamM.F. Breast cancer and deodorants/antiperspirants: A system review.Cent. Eur. J. Public Health2016243245247 http://cejph.szu.cz/pdfs/cjp/2016/03/15.pdf
    [Google Scholar]
  78. MoussaronA. AlexandreJ. ChenardM.P. MathelinC. ReixN. Correlation between daily life aluminium exposure and breast cancer risk: A systematic review.J. Trace Elem. Med. Biol.20237912724710.1016/j.jtemb.2023.12724737354712
    [Google Scholar]
  79. LinhartC. TalaszH. MorandiE.M. ExleyC. LindnerH.H. TaucherS. EgleD. HubalekM. ConcinN. UlmerH. Use of underarm cosmetic products in relation to risk of breast cancer: A case-control study.EBioMedicine201721798510.1016/j.ebiom.2017.06.00528629908
    [Google Scholar]
  80. VagharM.I. MousaviM. The relationship between use of aluminum-containing anti-perspirant and hair color with breast cancer.J. Family Med. Prim. Care202110118218610.4103/jfmpc.jfmpc_1219_1934017723
    [Google Scholar]
  81. BarrangerE. Gynecologie Obstetrique et Fertilite.Elsevier Masson SAS201644673674
    [Google Scholar]
  82. DarbreP.D. Aluminium, antiperspirants and breast cancer.J. Inorg. Biochem.20059991912191910.1016/j.jinorgbio.2005.06.00116045991
    [Google Scholar]
  83. OstoM. FarshchianM. AlnabolsiA. SmidiS.A. BaiyasiM. PottsG.A. Aluminum-containing antiperspirants are not associated with breast cancer.J. Cosmet. Dermatol.202221105244524510.1111/jocd.1479635073435
    [Google Scholar]
  84. National Cancer Institute.Antiperspirants/Deodorants and Breast Cancer.2016Available from: https://www.cancer.gov/about-cancer/causes-prevention/risk/myths/antiperspirants-fact-sheet
  85. RummelS. HuemanM.T. CostantinoN. ShriverC.D. EllsworthR.E. Tumour location within the breast: Does tumour site have prognostic ability?Ecancermedicalscience2015955210.3332/ecancer.2015.55226284116
    [Google Scholar]
  86. KweiK.A. KungY. SalariK. HolcombI.N. PollackJ.R. Genomic instability in breast cancer: Pathogenesis and clinical implications.Mol. Oncol.20104325526610.1016/j.molonc.2010.04.00120434415
    [Google Scholar]
  87. ThébergeV. HarelF. DagnaultA. Use of axillary deodorant and effect on acute skin toxicity during radiotherapy for breast cancer: A prospective randomized noninferiority trial.Int. J. Radiat. Oncol. Biol. Phys.20097541048105210.1016/j.ijrobp.2008.12.04619327906
    [Google Scholar]
  88. ChanR.J. WebsterJ. ChungB. MarquartL. AhmedM. GarantziotisS. Prevention and treatment of acute radiation-induced skin reactions: A systematic review and meta-analysis of randomized controlled trials.BMC Cancer20141415310.1186/1471‑2407‑14‑5324484999
    [Google Scholar]
  89. PamphlettR. SatgunaseelanL. Kum JewS. DobleP.A. BishopD.P. Elemental bioimaging shows mercury and other toxic metals in normal breast tissue and in breast cancers.PLoS One2020151e022822610.1371/journal.pone.022822632004334
    [Google Scholar]
  90. YuanC.Y. LeeY.J. HsuG.S.W. Aluminum overload increases oxidative stress in four functional brain areas of neonatal rats.J. Biomed. Sci.20121915110.1186/1423‑0127‑19‑5122613782
    [Google Scholar]
  91. KlaunigJ.E. KamendulisL.M. HocevarB.A. Oxidative stress and oxidative damage in carcinogenesis.Toxicol. Pathol.20103819610910.1177/019262330935645320019356
    [Google Scholar]
  92. ChowraU. YanaseE. KoyamaH. PandaS.K. Aluminium-induced excessive ROS causes cellular damage and metabolic shifts in black gram Vigna mungo (L.) Hepper.Protoplasma2017254129330210.1007/s00709‑016‑0943‑526769708
    [Google Scholar]
  93. CrisponiG. FanniD. GerosaC. NemolatoS. NurchiV.M. Crespo-AlonsoM. LachowiczJ.I. FaaG. The meaning of aluminium exposure on human health and aluminium-related diseases.Biomol. Concepts201341778710.1515/bmc‑2012‑004525436567
    [Google Scholar]
  94. AsgharH. AhmedT. Comparative study of time-dependent aluminum exposure and post-exposure recovery shows better improvement in synaptic changes and neuronal pathology in rat brain after short-term exposure.Neurochem. Res.2023482731275310.1007/s11064‑023‑03936‑6
    [Google Scholar]
  95. MannC.J. Observational research methods. Research design II: Cohort, cross sectional, and case-control studies.Emerg. Med. J.2003201546010.1136/emj.20.1.5412533370
    [Google Scholar]
  96. RosenmanR. TennekoonV. HillL.G. Measuring bias in self-reported data.Int. J. Behav. Healthc. Res.20112432033210.1504/IJBHR.2011.04341425383095
    [Google Scholar]
  97. SunY.S. ZhaoZ. YangZ.N. XuF. LuH.J. ZhuZ.Y. ShiW. JiangJ. YaoP.P. ZhuH.P. Risk factors and preventions of breast cancer.Int. J. Biol. Sci.201713111387139710.7150/ijbs.2163529209143
    [Google Scholar]
  98. AlreshidiF.S. AlharbiS.H. AlrashediS.A. AlrashidiA.G. AlshammeriK.J.K. AhmedH.G. Survey on knowledge and attitudes related to the relationship between smoking, alcohol, radiation, cosmetics use and risk of breast cancer in the northern Saudi Arabia.Am. J. Public Health Res.2017514715310.12691/ajphr‑5‑5‑2
    [Google Scholar]
  99. JonesS.C. MageeC.A. BarrieL.R. IversonD.C. GregoryP. HanksE.L. NelsonA.E. NehillC.L. ZorbasH.M. Australian women’s perceptions of breast cancer risk factors and the risk of developing breast cancer.Womens Health Issues201121535336010.1016/j.whi.2011.02.00421565527
    [Google Scholar]
  100. CroijmansI. BeetsmaD. AartsH. GortemakerI. SmeetsM. The role of fragrance and self-esteem in perception of body odors and impressions of others.PLoS One20211611e025877310.1371/journal.pone.025877334780484
    [Google Scholar]
  101. LadenK. Introduction ahd history of antiperspirants and deodorants. Antiperspirants and Deodorants.CRC PressBoca Raton, Florida2nd ed.1988113
    [Google Scholar]
  102. MacdonaldS. CunninghamY. PattersonC. RobbK. MacleodU. AnkerT. HiltonS. Mass media and risk factors for cancer: The under-representation of age.BMC Public Health201818149010.1186/s12889‑018‑5341‑929695238
    [Google Scholar]
  103. Journal of trace elements in medicine and biology: organ of the Society for Minerals and Trace Elements (GMS). 1995. Available from: https://www.ncbi.nlm.nih.gov/nlmcatalog/9508274
  104. European CommissionOpinion on the safety of aluminium in cosmetic products.2014Available From: https://health.ec.europa.eu/system/files/2021-11/sccs_o_235.pdf
  105. European ParliamentRegulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products (recast) (Text with EEA relevance).2009Available From: https://health.ec.europa.eu/document/download/47f167ec-b5db-4ec9-9d12-3d807bf3e526_en
/content/journals/cmc/10.2174/0109298673269343231025070053
Loading
/content/journals/cmc/10.2174/0109298673269343231025070053
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test