Skip to content
2000
Volume 32, Issue 1
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

β-alanine (BA), being a non-proteinogenic amino acid, is an important constituent of L-carnosine (LC), which is necessary for maintaining the muscle buffering capacity and preventing a loss of muscle mass associated with aging effects. BA is also very important for normal human metabolism due to the formation of a part of pantothenate, which is incorporated into coenzyme A. BA is synthesized in the liver, and its combination with histidine results in the formation of LC, which accumulates in the muscles and brain tissues and has a well-defined physiological role as a good buffer for the pH range of muscles that caused its rapidly increased popularity as ergogenic support to sports performance. The main antioxidant mechanisms of LC include reactive oxygen species (ROS) scavenging and chelation of metal ions. With age, the buffering capacity of muscles also declines due to reduced concentration of LC and sarcopenia. Moreover, LC acts as an antiglycation agent, ultimately reducing the development of degenerative diseases. LC has an anti-inflammatory effect in autoimmune diseases such as osteoarthritis. As histidine is always present in the human body in higher concentrations than BA, humans have to get BA from dietary sources to support the required amount of this critical constituent to supply the necessary amount of LC synthesis. Also, BA has other beneficial effects, such as preventing skin aging and intestinal damage, improving the stress-fighting capability of the muscle cells, and managing an age-related decline in memory and learning. In this review, the results of a detailed analysis of the role and various beneficial properties of BA and LC from the anti-aging perspective are presented.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673263561231117054447
2024-01-12
2025-01-28
Loading full text...

Full text loading...

References

  1. St-OngeM.P. GallagherD. Body composition changes with aging: The cause or the result of alterations in metabolic rate and macronutrient oxidation?Nutrition201026215215510.1016/j.nut.2009.07.00420004080
    [Google Scholar]
  2. KellerK. EngelhardtM. Strength and muscle mass loss with aging process. Age and strength loss.Muscles Ligaments Tendons J.20193434635010.32098/mltj.04.2013.1724596700
    [Google Scholar]
  3. Sadighi AkhaA.A. Aging and the immune system: An overview.J. Immunol. Methods2018463212610.1016/j.jim.2018.08.00530114401
    [Google Scholar]
  4. LiguoriI. RussoG. CurcioF. BulliG. AranL. Della-MorteD. GargiuloG. TestaG. CacciatoreF. BonaduceD. AbeteP. Oxidative stress, aging, and diseases.Clin. Interv. Aging20181375777210.2147/CIA.S15851329731617
    [Google Scholar]
  5. PierceB.L. The aging epigenome.eLife202211e7869310.7554/eLife.7869335481978
    [Google Scholar]
  6. KimJ.H. HwangK.H. ParkK.S. KongI.D. ChaS.K. Biological role of anti-aging protein Klotho.J. Lifestyle Med.2015511610.15280/jlm.2015.5.1.126528423
    [Google Scholar]
  7. MiwaS. CzapiewskiR. WanT. BellA. HillK.N. von ZglinickiT. SaretzkiG. Decreased mTOR signalling reduces mitochondrial ROS in brain via accumulation of the telomerase protein TERT within mitochondria.Aging (Albany NY)20168102551256710.18632/aging.10108927777385
    [Google Scholar]
  8. XuL. IdreesM. JooM.D. SidratT. WeiY. SongS.H. LeeK.L. KongI.K. Constitutive expression of TERT enhances β-Klotho expression and improves age-related deterioration in early bovine embryos.Int. J. Mol. Sci.20212210532710.3390/ijms2210532734070219
    [Google Scholar]
  9. AlmadaA.E. WagersA.J. Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease.Nat. Rev. Mol. Cell Biol.201617526727910.1038/nrm.2016.726956195
    [Google Scholar]
  10. MianaV.V. Prieto GonzálezE.A. Adipose tissue stem cells in regenerative medicine.Ecancermedicalscience20181282210.3332/ecancer.2018.82229662535
    [Google Scholar]
  11. BarikP. ShibuM.A. HsiehD.J.Y. DayC.H. ChenR.J. KuoW.W. ChangY.M. PadmaV.V. HoT.J. HuangC.Y. Cardioprotective effects of transplanted adipose-derived stem cells under Ang II stress with Danggui administration augments cardiac function through upregulation of insulin-like growth factor 1 receptor in late-stage hypertension rats.Environ. Toxicol.20213671466147510.1002/tox.2314533881220
    [Google Scholar]
  12. SpeharK. PanA. BeermanI. Restoring aged stem cell functionality: Current progress and future directions.Stem Cells20203891060107710.1002/stem.323432473067
    [Google Scholar]
  13. GeigerH. JasperH. FlorianM.C. Stem Cell Aging: Mechanisms, Consequences, Rejuvenation.Springer201510.1007/978‑3‑7091‑1232‑8
    [Google Scholar]
  14. BjørklundG. ShanaidaM. LysiukR. ButnariuM. PeanaM. SaracI. StrusO. SmetaninaK. ChirumboloS. Natural compounds and products from an anti-aging perspective.Molecules20222720708410.3390/molecules2720708436296673
    [Google Scholar]
  15. CalabreseV. CorneliusC. CuzzocreaS. IavicoliI. RizzarelliE. CalabreseE. Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity.Mol. Aspects Med.2011324-627930410.1016/j.mam.2011.10.00722020114
    [Google Scholar]
  16. SalemM.A. RadwanR.A. MostafaE.S. AlseekhS. FernieA.R. EzzatS.M. Using an UPLC/MS-based untargeted metabolomics approach for assessing the antioxidant capacity and anti-aging potential of selected herbs.RSC Advances20201052315113152410.1039/D0RA06047J35520633
    [Google Scholar]
  17. CanfieldC.A. BradshawP.C. Amino acids in the regulation of aging and aging-related diseases.Transl. Med. Aging20193708910.1016/j.tma.2019.09.001
    [Google Scholar]
  18. YangJ.H. PettyC.A. Dixon-McDougallT. LopezM.V. TyshkovskiyA. Maybury-LewisS. TianX. IbrahimN. ChenZ. GriffinP.T. ArnoldM. LiJ. MartinezO.A. BehnA. Rogers-HammondR. AngeliS. GladyshevV.N. SinclairD.A. Chemically induced reprogramming to reverse cellular aging.Aging (Albany NY)202315135966598910.18632/aging.20489637437248
    [Google Scholar]
  19. HuangW.J. ZhangX. ChenW.W. Role of oxidative stress in Alzheimer’s disease.Biomed. Rep.20164551952210.3892/br.2016.63027123241
    [Google Scholar]
  20. KumarA. RatanR.R. Oxidative stress and Huntington’s disease: The good, the bad, and the ugly.J. Huntingtons Dis.20165321723710.3233/JHD‑16020527662334
    [Google Scholar]
  21. EgawaT. KidoK. YokokawaT. FujibayashiM. GotoK. HayashiT. The effect of glycation stress on skeletal muscle.Psychology and Pathophysiological Outcomes of Eating20218510.5772/intechopen.97769
    [Google Scholar]
  22. del FaveroS. RoschelH. SolisM.Y. HayashiA.P. ArtioliG.G. OtaduyM.C. BenattiF.B. HarrisR.C. WiseJ.A. LeiteC.C. PereiraR.M. de Sá-PintoA.L. Lancha-JuniorA.H. GualanoB. Beta-alanine (Carnosyn™) supplementation in elderly subjects (60–80 years): effects on muscle carnosine content and physical capacity.Amino Acids2012431495610.1007/s00726‑011‑1190‑x22143432
    [Google Scholar]
  23. KyriazisM. Anti-ageing potential of carnosine: Approaches toward successful ageing.Drug Discov. Today Ther. Strateg.201073-4454910.1016/j.ddstr.2011.01.002
    [Google Scholar]
  24. MahomoodallyM.F. DilmarA. S.; Khadaroo, S.K.Antioxidants Effects in Health. NabaviS.M. SilvaA.S. Amsterdam, The NetherlandsElsevier202225126810.1016/B978‑0‑12‑819096‑8.00042‑2
    [Google Scholar]
  25. SureshkumarK. DurairajM. SrinivasanK. GohK.W. UndelaK. MahalingamV.T. ArdiantoC. MingL.C. GanesanR.M. Effect of l-carnosine in patients with age-related diseases: a systematic review and meta-analysis.Front. Biosci. Landmark20232811810.31083/j.fbl280101836722274
    [Google Scholar]
  26. BoldyrevA.A. GallantS.C. SukhichG.T. Carnosine, the protective, anti-aging peptide.Biosci. Rep.199919658158710.1023/A:102027101327710841274
    [Google Scholar]
  27. RaškovićA. MartićN. ZaklanD. Duborija-KovačevićN. VujčićM. Andrejić-VišnjićB. ČapoI. MijovićR. KrgaM. PavlovićN. ProdanovićD. ArsenovićP. HorvatO. Antihyperlipidemic potential of dietary supplementation with carnosine in high-fat diet-fed rats.Eur. Rev. Med. Pharmacol. Sci.20232731083109436808356
    [Google Scholar]
  28. CarusoJ. CharlesJ. UnruhK. GiebelR. LearmonthL. PotterW. Ergogenic effects of β-alanine and carnosine: proposed future research to quantify their efficacy.Nutrients20124758560110.3390/nu407058522852051
    [Google Scholar]
  29. WangL. MaoY. WangZ. MaH. ChenT. Advances in biotechnological production of β-alanine.World J. Microbiol. Biotechnol.20213757910.1007/s11274‑021‑03042‑133825146
    [Google Scholar]
  30. SolisM.Y. CooperS. HobsonR.M. ArtioliG.G. OtaduyM.C. RoschelH. RobertsonJ. MartinD. S PainelliV. HarrisR.C. GualanoB. SaleC. Effects of beta-alanine supplementation on brain homocarnosine/carnosine signal and cognitive function: An exploratory study.PLoS One2015104e012385710.1371/journal.pone.012385725875297
    [Google Scholar]
  31. DrozakJ. Veiga-da-CunhaM. VertommenD. StroobantV. Van SchaftingenE. Molecular identification of carnosine synthase as ATP-grasp domain-containing protein 1 (ATPGD1).J. Biol. Chem.2010285139346935610.1074/jbc.M109.09550520097752
    [Google Scholar]
  32. WuG. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health.Amino Acids202052332936010.1007/s00726‑020‑02823‑632072297
    [Google Scholar]
  33. CarusoG. CaraciF. JolivetR.B. Pivotal role of carnosine in the modulation of brain cells activity: Multimodal mechanism of action and therapeutic potential in neurodegenerative disorders.Prog. Neurobiol.2019175355310.1016/j.pneurobio.2018.12.00430593839
    [Google Scholar]
  34. BonaccorsoA. PriviteraA. GrassoM. SalamoneS. CarboneC. PignatelloR. MusumeciT. CaraciF. CarusoG. The therapeutic potential of novel carnosine formulations: Perspectives for drug development.Pharmaceuticals202316677810.3390/ph1606077837375726
    [Google Scholar]
  35. KopećW. JamrozD. WiliczkiewiczA. BiazikE. HikawczukT. SkibaT. PudłoA. OrdaJ. Antioxidation status and histidine dipeptides content in broiler blood and muscles depending on protein sources in feed.J. Anim. Physiol. Anim. Nutr.201397358659810.1111/j.1439‑0396.2012.01303.x22533382
    [Google Scholar]
  36. ChaikaN. KoshovyiO. AinR. KireyevI. ZupanetsA. OdyntsovaV. Phytochemical profile and pharmacological activity of the dry extract from Arctostaphylos uva-ursi leaves modified with phenylalanine.ScienceRise: Pharma. Sci.2020628748410.15587/2519‑4852.2020.222511
    [Google Scholar]
  37. ShanaidaM. KernychnaI. ShanaidaY. Chromatographic analysis of organic acids, amino acids, and sugars in Ocimum americanum L.Acta Pol. Pharm.201774272973429624281
    [Google Scholar]
  38. MykhailenkoO. IvanauskasL. BezrukI. LesykR. GeorgiyantsV. Comparative investigation of amino acids content in the dry extracts of Juno bucharica, Gladiolus hybrid zefir, Iris hungarica, Iris variegata and Crocus sativus raw materials of ukrainian flora.Sci. Pharm.2020881810.3390/scipharm88010008
    [Google Scholar]
  39. WangP. ZhouH.Y. LiB. DingW.Q. LiuZ.Q. ZhengY.G. Multiplex modification of Escherichia coli for enhanced β-alanine biosynthesis through metabolic engineering.Bioresour. Technol.202134212605010.1016/j.biortech.2021.12605034597803
    [Google Scholar]
  40. HipkissA.R. BayeE. de CourtenB. Carnosine and the processes of ageing.Maturitas201693283310.1016/j.maturitas.2016.06.00227344459
    [Google Scholar]
  41. XingL. CheeM.E. ZhangH. ZhangW. MineY. Carnosine—a natural bioactive dipeptide: Bioaccessibility, bioavailability and health benefits.J. Food Bioact.2019581710.31665/JFB.2019.5174
    [Google Scholar]
  42. ArtioliG.G. SaleC. JonesR.L. Carnosine in health and disease.Eur. J. Sport Sci.2019191303910.1080/17461391.2018.144409629502490
    [Google Scholar]
  43. BelliaF. VecchioG. RizzarelliE. Carnosinases, their substrates and diseases.Molecules20141922299232910.3390/molecules1902229924566305
    [Google Scholar]
  44. ChmielewskaK. DzierzbickaK. Inkielewicz-StępniakI. PrzybyłowskaM. Therapeutic potential of carnosine and its derivatives in the treatment of human diseases.Chem. Res. Toxicol.20203371561157810.1021/acs.chemrestox.0c0001032202758
    [Google Scholar]
  45. GardnerM.L. IllingworthK.M. KelleherJ. WoodD. Intestinal absorption of the intact peptide carnosine in man, and comparison with intestinal permeability to lactulose.J. Physiol.1991439141142210.1113/jphysiol.1991.sp0186731910085
    [Google Scholar]
  46. ZhuY.Y. Zhu-GeZ.B. WuD.C. WangS. LiuL.Y. OhtsuH. ChenZ. Carnosine inhibits pentylenetetrazol-induced seizures by histaminergic mechanisms in histidine decarboxylase knock-out mice.Neurosci. Lett.2007416321121610.1016/j.neulet.2007.01.07517368719
    [Google Scholar]
  47. Barata-AntunesS. CristóvãoA.C. PiresJ. RochaS.M. BernardinoL. Dual role of histamine on microglia-induced neurodegeneration.Biochim. Biophys. Acta Mol. Basis Dis.20171863376476910.1016/j.bbadis.2016.12.01628057587
    [Google Scholar]
  48. DeraveW. JonesG. HespelP. HarrisR.C. Creatine supplementation augments skeletal muscle carnosine content in senescence-accelerated mice (SAMP8).Rejuvenation Res.200811364164710.1089/rej.2008.069918593282
    [Google Scholar]
  49. ShaoL. LiQ. TanZ. l-Carnosine reduces telomere damage and shortening rate in cultured normal fibroblasts.Biochem. Biophys. Res. Commun.2004324293193610.1016/j.bbrc.2004.09.13615474517
    [Google Scholar]
  50. MorimotoR.I. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging.Genes Dev.200822111427143810.1101/gad.165710818519635
    [Google Scholar]
  51. HansenM. TaubertS. CrawfordD. LibinaN. LeeS.J. KenyonC. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans.Aging Cell2007619511010.1111/j.1474‑9726.2006.00267.x17266679
    [Google Scholar]
  52. HipkissA.R. On why decreasing protein synthesis can increase lifespan.Mech. Ageing Dev.20071285-641241410.1016/j.mad.2007.03.00217452047
    [Google Scholar]
  53. HipkissA.R. Carnosine, diabetes and Alzheimer’s disease.Expert Rev. Neurother.20099558358510.1586/ern.09.3219402768
    [Google Scholar]
  54. HipkissA.R. BrownsonC. CarrierM.J. Carnosine, the anti-ageing, anti-oxidant dipeptide, may react with protein carbonyl groups.Mech. Ageing Dev.2001122131431144510.1016/S0047‑6374(01)00272‑X11470131
    [Google Scholar]
  55. SonD.O. SatsuH. KisoY. TotsukaM. ShimizuM. Inhibitory effect of carnosine on interleukin-8 production in intestinal epithelial cells through translational regulation.Cytokine200842226527610.1016/j.cyto.2008.02.01118397832
    [Google Scholar]
  56. HipkissA.R. On the enigma of carnosine’s anti-ageing actions.Exp. Gerontol.200944423724210.1016/j.exger.2008.11.00119041712
    [Google Scholar]
  57. KimY. KimY. L-histidine and L-carnosine exert anti-brain aging effects in D-galactose-induced aged neuronal cells.Nutr. Res. Pract.202014318820210.4162/nrp.2020.14.3.18832528627
    [Google Scholar]
  58. BeňovičP. SokolJ. PurdešováA. MaliarováM. Biological properties and methods for determination of carnosine.Monatsh. Chemie.202315410451060
    [Google Scholar]
  59. HoffmanJ.R. RathmacherJ.A. RobinsonJ. GepnerY. CohenH. Effect of β-alanine supplementation on carnosine and histidine content in the hippocampus of 14-month-old rats.Appl. Physiol. Nutr. Metab.201944101112111510.1139/apnm‑2019‑010230998856
    [Google Scholar]
  60. DeaneC.S. WilkinsonD.J. PhillipsB.E. SmithK. EtheridgeT. AthertonP.J. “Nutraceuticals” in relation to human skeletal muscle and exercise.Am. J. Physiol. Endocrinol. Metab.20173124E282E29910.1152/ajpendo.00230.201628143855
    [Google Scholar]
  61. ArtioliG.G. GualanoB. SmithA. StoutJ. LanchaA.H.Jr. Role of beta-alanine supplementation on muscle carnosine and exercise performance.Med. Sci. Sports Exerc.20104261162117310.1249/MSS.0b013e3181c74e3820479615
    [Google Scholar]
  62. WangA.S. DreesenO. Biomarkers of cellular senescence and skin aging.Front. Genet.2018924710.3389/fgene.2018.0024730190724
    [Google Scholar]
  63. McHughD. GilJ. Senescence and aging: Causes, consequences, and therapeutic avenues.J. Cell Biol.20182171657710.1083/jcb.20170809229114066
    [Google Scholar]
  64. Pérez-ManceraP.A. YoungA.R.J. NaritaM. Inside and out: The activities of senescence in cancer.Nat. Rev. Cancer201414854755810.1038/nrc377325030953
    [Google Scholar]
  65. ToutfaireM. BauwensE. Debacq-ChainiauxF. The impact of cellular senescence in skin ageing: A notion of mosaic and therapeutic strategies.Biochem. Pharmacol.201714211210.1016/j.bcp.2017.04.01128408343
    [Google Scholar]
  66. LiX. YangK. GaoS. ZhaoJ. LiuG. ChenY. LinH. ZhaoW. HuZ. XuN. Carnosine stimulates macrophage-mediated clearance of senescent skin cells through activation of the AKT2 Signaling Pathway by CD36 and RAGE.Front. Pharmacol.20201159383210.3389/fphar.2020.59383233390976
    [Google Scholar]
  67. GarreA. Martinez-MasanaG. Piquero-CasalsJ. GrangerC. Redefining face contour with a novel anti-aging cosmetic product: An open-label, prospective clinical study.Clin. Cosmet. Investig. Dermatol.20171047348210.2147/CCID.S14859729180884
    [Google Scholar]
  68. CarusoG. FrestaC.G. FidilioA. O’DonnellF. MussoN. LazzarinoG. GrassoM. AmoriniA.M. TasceddaF. BucoloC. DragoF. TavazziB. LazzarinoG. LunteS.M. CaraciF. Carnosine decreases pma-induced oxidative stress and inflammation in murine macrophages.Antioxidants20198828110.3390/antiox808028131390749
    [Google Scholar]
  69. OoiT.C. ChanK.M. SharifR. Zinc L -carnosine suppresses inflammatory responses in lipopolysaccharide-induced RAW 264.7 murine macrophages cell line via activation of Nrf2/HO-1 signaling pathway.Immunopharmacol. Immunotoxicol.201739525926710.1080/08923973.2017.134498728697633
    [Google Scholar]
  70. MattsonM.P. MagnusT. Ageing and neuronal vulnerability.Nat. Rev. Neurosci.20067427829410.1038/nrn188616552414
    [Google Scholar]
  71. ParkM.H. SonD.J. NamK.T. KimS.Y. OhS.Y. SongM.J. ChunH.O. LeeT.H. HongJ.T. PRDX6 inhibits neurogenesis of neural precursor cells through downregulation of wdfy1 mediated TLR4 signal.bioRxiv201608637110.1101/086371
    [Google Scholar]
  72. ZhangY. ThompsonR. ZhangH. XuH. APP processing in Alzheimer’s disease.Mol. Brain201141310.1186/1756‑6606‑4‑321214928
    [Google Scholar]
  73. McLarnonJ.G. Chemokine interleukin-8 (IL-8) in Alzheimer’s and other neurodegenerative diseases.J. Alzheimers Dis. Parkinsonism2016627321612460
    [Google Scholar]
  74. ZhangL. YaoK. FanY. HeP. WangX. HuW. ChenZ. Carnosine protects brain microvascular endothelial cells against rotenone-induced oxidative stress injury through histamine H 1 and H 2 receptors in vitro.Clin. Exp. Pharmacol. Physiol.201239121019102510.1111/1440‑1681.1201923127196
    [Google Scholar]
  75. MizunoD. Konoha-MizunoK. MoriM. SadakaneY. KoyamaH. OhkawaraS. KawaharaM. Protective activity of carnosine and anserine against zinc-induced neurotoxicity: A possible treatment for vascular dementia.Metallomics2015781233123910.1039/c5mt00049a25846004
    [Google Scholar]
  76. ZhangZ. SunB. YangM. LiD. FangJ. ZhangS. Carnosine attenuates early brain injury through its antioxidative and anti-apoptotic effects in a rat experimental subarachnoid hemorrhage model.Cell. Mol. Neurobiol.201535214715710.1007/s10571‑014‑0106‑125179154
    [Google Scholar]
  77. HerculanoB. TamuraM. OhbaA. ShimataniM. KutsunaN. HisatsuneT. β-alanyl-L-histidine rescues cognitive deficits caused by feeding a high fat diet in a transgenic mouse model of Alzheimer’s disease.J. Alzheimers Dis.201333498399710.3233/JAD‑2012‑12132423099816
    [Google Scholar]
  78. VaranoskeA.N. WellsA.J. BoffeyD. HaratI. FrostiC.L. KozlowskiG.J. GepnerY. HoffmanJ.R. Effects of high-dose, short-duration β-alanine supplementation on cognitive function, mood, and circulating brain-derived neurotropic factor (BDNF) in recreationally-active males before simulated military operational stress.J. Diet. Suppl.202118214716810.1080/19390211.2020.173373032138563
    [Google Scholar]
  79. FurstT. MassaroA. MillerC. WilliamsB.T. LaMacchiaZ.M. HorvathP.J. β-Alanine supplementation increased physical performance and improved executive function following endurance exercise in middle aged individuals.J. Int. Soc. Sports Nutr.20181513210.1186/s12970‑018‑0238‑729996843
    [Google Scholar]
  80. WellsA.J. VaranoskeA.N. CokerN.A. KozlowskiG.J. FrostiC.L. BoffeyD. HaratI. JahaniS. GepnerY. HoffmanJ.R. Effect of β-alanine supplementation on monocyte recruitment and cognition during a 24-hour simulated military operation.J. Strength Cond. Res.202034113042305410.1519/JSC.000000000000380933105353
    [Google Scholar]
  81. PenceB.D. BhattacharyaT.K. ParkP. RytychJ.L. AllenJ.M. SunY. McCuskerR.H. KelleyK.W. JohnsonR.W. RhodesJ.S. WoodsJ.A. Long-term supplementation with EGCG and beta-alanine decreases mortality but does not affect cognitive or muscle function in aged mice.Exp. Gerontol.201798222910.1016/j.exger.2017.08.02028818411
    [Google Scholar]
  82. OstfeldI. HoffmanJ.R. The effect of β-Alanine supplementation on performance, cognitive function and resiliency in soldiers.Nutrients2023154103910.3390/nu1504103936839397
    [Google Scholar]
  83. Solana-ManriqueC. SanzF.J. Martínez-CarriónG. ParicioN. Antioxidant and neuroprotective effects of carnosine: Therapeutic implications in neurodegenerative diseases.Antioxidants202211584810.3390/antiox1105084835624713
    [Google Scholar]
  84. MeftahiG.H. JahromiG.P. Biochemical mechanisms of beneficial effects of beta-alanine supplements on cognition.Biochemistry20238881181119010.1134/S000629792308011437758316
    [Google Scholar]
  85. WalstonJ.D. Sarcopenia in older adults.Curr. Opin. Rheumatol.201224662362710.1097/BOR.0b013e328358d59b22955023
    [Google Scholar]
  86. MiljkovicN. LimJ.Y. MiljkovicI. FronteraW.R. Aging of skeletal muscle fibers.Ann. Rehabil. Med.201539215516210.5535/arm.2015.39.2.15525932410
    [Google Scholar]
  87. BusaP. LeeS.O. HuangN. KuthatiY. WongC.S. Carnosine alleviates knee osteoarthritis and promotes synoviocyte protection via activating the Nrf2/HO-1 signaling pathway: an in-vivo and in-vitro study.Antioxidants2022116120910.3390/antiox1106120935740105
    [Google Scholar]
  88. PonistS. DrafiF. KuncirovaV. MihalovaD. RackovaL. DanisovicL. OndrejickovaO. TumovaI. TrunovaO. FedorovaT. Effect of carnosine in experimental arthritis and on primary culture chondrocytes.Oxid. Med. Cell. Longev.201610.1155/2016/8470589
    [Google Scholar]
  89. LaiteerapongN. HuangE. LaiteerapongN. Diabetes in Older Adults.Diabetes in America2016126
    [Google Scholar]
  90. BillacuraM.P. Jr LavillaC. CrippsM.J. HannaK. SaleC. TurnerM.D. β-alanine scavenging of free radicals protects mitochondrial function and enhances both insulin secretion and glucose uptake in cells under metabolic stress.Adv. Red. Res.2022610005010.1016/j.arres.2022.100050
    [Google Scholar]
  91. BoldyrevA.A. AldiniG. DeraveW. Physiology and pathophysiology of carnosine.Physiol. Rev.20139341803184510.1152/physrev.00039.201224137022
    [Google Scholar]
  92. MahootchiE. HomaeiS. KleppeR. WingeI. HegvikT.-A. MegiasR. TotlandC. MogaveroF. BaumannA. GlennonJ. MileticH. KursulaP. HaavikJ. GADL1 is a multifunctional decarboxylase with tissue specific roles in β-alanine and carnosine production.Sci Adv.2020629371310.1126/sciadv.abb3713
    [Google Scholar]
  93. AbdelkaderH. LongmanM. AlanyR.G. PierscionekB. On the anticataractogenic effects of l-carnosine: is it best described as an antioxidant, metal-chelating agent or glycation inhibitor?Oxid. Med. Cell. Longev.2016201611110.1155/2016/324026127822337
    [Google Scholar]
  94. CarvalhoV.H. OliveiraA.H.S. de OliveiraL.F. da SilvaR.P. Di MascioP. GualanoB. ArtioliG.G. MedeirosM.H.G. Exercise and β-alanine supplementation on carnosine-acrolein adduct in skeletal muscle.Redox Biol.20181822222810.1016/j.redox.2018.07.00930053728
    [Google Scholar]
  95. JukićI. KolobarićN. StupinA. MatićA. KozinaN. MihaljevićZ. MihaljM. ŠušnjaraP. StupinM. ĆurićŽ.B. Selthofer-RelatićK. KibelA. LukinacA. KolarL. KralikG. KralikZ. SzéchenyiA. JozanovićM. GalovićO. Medvidović-KosanovićM. DrenjančevićI. Carnosine, Small but mighty—prospect of use as functional ingredient for functional food formulation.Antioxidants2021107103710.3390/antiox1007103734203479
    [Google Scholar]
  96. SmithA.E. StoutJ.R. KendallK.L. FukudaD.H. CramerJ.T. Exercise-induced oxidative stress: The effects of β-alanine supplementation in women.Amino Acids2012431779010.1007/s00726‑011‑1158‑x22102056
    [Google Scholar]
  97. HoffmanJ. GepnerY. CohenH. β-Alanine supplementation reduces anxiety and increases neurotrophin expression in both young and older rats: 535 Board #1 May 29 1:00 PM - 3:00 PM.Med. Sci. Sports Exerc.20195113710.1249/01.mss.0000560910.67865.08
    [Google Scholar]
  98. CarusoG. PriviteraA. SaabM.W. MussoN. MaugeriS. FidilioA. PriviteraA.P. PittalàA. JolivetR.B. LanzanòL. LazzarinoG. CaraciF. AmoriniA.M. Characterization of carnosine effect on human microglial cells under basal conditions.Biomedicines202311247410.3390/biomedicines1102047436831010
    [Google Scholar]
  99. McCartyM.F. DiNicolantonioJ.J. β-Alanine and orotate as supplements for cardiac protection.Open Heart201411e00011910.1136/openhrt‑2014‑00011925332822
    [Google Scholar]
  100. CreightonJ.V. de Souza GonçalvesL. ArtioliG.G. TanD. Elliott-SaleK.J. TurnerM.D. DoigC.L. SaleC. Physiological roles of carnosine in myocardial function and health.Adv. Nutr.20221351914192910.1093/advances/nmac05935689661
    [Google Scholar]
  101. MenonK. CameronJ.D. de CourtenM. de CourtenB. Use of carnosine in the prevention of cardiometabolic risk factors in overweight and obese individuals: study protocol for a randomised, double-blind placebo-controlled trial.BMJ Open2021115e04368010.1136/bmjopen‑2020‑04368033986049
    [Google Scholar]
  102. ShetewyA. Shimada-TakauraK. WarnerD. JongC.J. MehdiA.B.A. AlexeyevM. TakahashiK. SchafferS.W. Mitochondrial defects associated with β-alanine toxicity: Relevance to hyper-beta-alaninemia.Mol. Cell. Biochem.20164161-2112210.1007/s11010‑016‑2688‑z27023909
    [Google Scholar]
  103. Schwank-XuC. ForsbergE. BentingerM. ZhaoA. AnsurudeenI. DallnerG. CatrinaS.B. BrismarK. TekleM. L-Carnosine stimulation of coenzyme Q10 Biosynthesis promotes improved mitochondrial function and decreases hepatic steatosis in diabetic conditions.Antioxidants202110579310.3390/antiox1005079334067694
    [Google Scholar]
  104. TurnerM.D. SaleC. GarnerA.C. HipkissA.R. Anti-cancer actions of carnosine and the restoration of normal cellular homeostasis.Biochim. Biophys. Acta Mol. Cell Res.202118681111911710.1016/j.bbamcr.2021.11911734384791
    [Google Scholar]
  105. IovineB. OlivieroG. GarofaloM. OreficeM. NocellaF. BorboneN. PiccialliV. CentoreR. MazzoneM. PiccialliG. BevilacquaM.A. The anti-proliferative effect of L-carnosine correlates with a decreased expression of hypoxia inducible factor 1 alpha in human colon cancer cells.PLoS One201495e9675510.1371/journal.pone.009675524804733
    [Google Scholar]
  106. IovineB. GuardiaF. IraceC. BevilacquaM.A. l-carnosine dipeptide overcomes acquired resistance to 5-fluorouracil in HT29 human colon cancer cells via downregulation of HIF1-alpha and induction of apoptosis.Biochimie201612719620410.1016/j.biochi.2016.05.01027234614
    [Google Scholar]
  107. PrakashM.D. FraserS. BoerJ.C. PlebanskiM. de CourtenB. ApostolopoulosV. Anti-cancer effects of carnosine—A dipeptide molecule.Molecules2021266164410.3390/molecules2606164433809496
    [Google Scholar]
  108. RennerC. ZemitzschN. FuchsB. GeigerK.D. HermesM. HengstlerJ. GebhardtR. MeixensbergerJ. GaunitzF. Carnosine retards tumor growth in vivo in an NIH3T3-HER2/neu mouse model.Mol. Cancer201091210.1186/1476‑4598‑9‑220053283
    [Google Scholar]
  109. HipkissA. GaunitzF. Inhibition of tumour cell growth by carnosine: Some possible mechanisms.Amino Acids20134624292217
    [Google Scholar]
  110. OppermannH. FaustH. YamanishiU. MeixensbergerJ. GaunitzF. Carnosine inhibits glioblastoma growth independent from PI3K/Akt/mTOR signaling.PLoS One2019146e021897210.1371/journal.pone.021897231247000
    [Google Scholar]
  111. FeehanJ. de CourtenM. ApostolopoulosV. de CourtenB. Nutritional interventions for COVID-19: A role for carnosine?Nutrients2021135146310.3390/nu1305146333925783
    [Google Scholar]
  112. GasmiA. MujawdiyaP.K. LysiukR. ShanaidaM. PeanaM. Gasmi BenahmedA. BeleyN. KovalskaN. BjørklundG. Quercetin in the prevention and treatment of coronavirus infections: A focus on SARS-CoV-2.Pharmaceuticals2022159104910.3390/ph1509104936145270
    [Google Scholar]
  113. DinizF.C. HipkissA.R. FerreiraG.C. The potential use of carnosine in diabetes and other afflictions reported in long COVID patients.Front. Neurosci.20221689873510.3389/fnins.2022.89873535812220
    [Google Scholar]
  114. SaadahL.M. DeiabG.I.A. Al-BalasQ. BashetiI.A. Carnosine to combat novel coronavirus (nCoV): Molecular docking and modeling to cocrystallized host angiotensin-converting enzyme 2 (ACE2) and viral spike protein.Molecules20202523560510.3390/molecules2523560533260592
    [Google Scholar]
  115. HipkissA.R. COVID-19 and senotherapeutics: Any role for the naturally-occurring dipeptide carnosine?Aging Dis.202011473774110.14336/AD.2020.051832765939
    [Google Scholar]
  116. CarusoG. Unveiling the hidden therapeutic potential of carnosine, a molecule with a multimodal mechanism of action: A position paper.Molecules20222710330310.3390/molecules2710330335630780
    [Google Scholar]
  117. SaundersB. De Salles PainelliV. De OliveiraL.F. Da Eira SilvaV. Da SilvaR.P. RianiL. FranchiM. GonçalvesL.D.S. HarrisR.C. RoschelH. ArtioliG.G. SaleC. GualanoB. Twenty-four weeks of β-Alanine supplementation on carnosine content, related genes, and exercise.Med. Sci. Sports Exerc.201749589690610.1249/MSS.000000000000117328157726
    [Google Scholar]
  118. PerimP. MarticorenaF.M. RibeiroF. BarretoG. GobbiN. KerksickC. DolanE. SaundersB. Can the skeletal muscle carnosine response to beta-alanine supplementation be optimized?Front. Nutr.2019613510.3389/fnut.2019.0013531508423
    [Google Scholar]
  119. StegenS. BlancquaertL. EveraertI. BexT. TaesY. CaldersP. AchtenE. DeraveW. Meal and beta-alanine coingestion enhances muscle carnosine loading.Med. Sci. Sports Exerc.20134581478148510.1249/MSS.0b013e31828ab07323439427
    [Google Scholar]
  120. ChurchD.D. HoffmanJ.R. VaranoskeA.N. WangR. BakerK.M. La MonicaM.B. BeyerK.S. DoddS.J. OliveiraL.P. HarrisR.C. FukudaD.H. StoutJ.R. Comparison of Two β-Alanine dosing protocols on muscle carnosine elevations.J. Am. Coll. Nutr.201736860861610.1080/07315724.2017.133525028910200
    [Google Scholar]
  121. HoffmanJ.R. VaranoskeA. StoutJ.R. Effects of β-Alanine supplementation on carnosine elevation and physiological performance.Adv. Food Nutr. Res.20188418320610.1016/bs.afnr.2017.12.00329555069
    [Google Scholar]
  122. TrexlerE.T. Smith-RyanA.E. StoutJ.R. HoffmanJ.R. WilbornC.D. SaleC. KreiderR.B. JägerR. EarnestC.P. BannockL. CampbellB. KalmanD. ZiegenfussT.N. AntonioJ. International society of sports nutrition position stand: Beta-Alanine.J. Int. Soc. Sports Nutr.20151213010.1186/s12970‑015‑0090‑y26175657
    [Google Scholar]
  123. HobsonR.M. SaundersB. BallG. HarrisR.C. SaleC. Effects of β-alanine supplementation on exercise performance: A meta-analysis.Amino Acids2012431253710.1007/s00726‑011‑1200‑z22270875
    [Google Scholar]
  124. StoutJ.R. CramerJ.T. ZoellerR.F. TorokD. CostaP. HoffmanJ.R. HarrisR.C. O’KroyJ. Effects of β-alanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in women.Amino Acids200732338138610.1007/s00726‑006‑0474‑z17136505
    [Google Scholar]
  125. RogersonD. Vegan diets: Practical advice for athletes and exercisers.J. Int. Soc. Sports Nutr.20171413610.1186/s12970‑017‑0192‑928924423
    [Google Scholar]
  126. StoutJ.R. GravesB.S. SmithA.E. HartmanM.J. CramerJ.T. BeckT.W. HarrisR.C. The effect of beta-alanine supplementation on neuromuscular fatigue in elderly (55–92 Years): A double-blind randomized study.J. Int. Soc. Sports Nutr.2008512110.1186/1550‑2783‑5‑2118992136
    [Google Scholar]
  127. HarrisR.C. TallonM.J. DunnettM. BoobisL. CoakleyJ. KimH.J. FallowfieldJ.L. HillC.A. SaleC. WiseJ.A. The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis.Amino Acids200630327928910.1007/s00726‑006‑0299‑916554972
    [Google Scholar]
  128. HillC.A. HarrisR.C. KimH.J. HarrisB.D. SaleC. BoobisL.H. KimC.K. WiseJ.A. Influence of β-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity.Amino Acids200732222523310.1007/s00726‑006‑0364‑416868650
    [Google Scholar]
  129. KendrickI.P. HarrisR.C. KimH.J. KimC.K. DangV.H. LamT.Q. BuiT.T. SmithM. WiseJ.A. The effects of 10 weeks of resistance training combined with β-alanine supplementation on whole body strength, force production, muscular endurance and body composition.Amino Acids200834454755410.1007/s00726‑007‑0008‑318175046
    [Google Scholar]
  130. HoffmanJ.R. RatamessN.A. FaigenbaumA.D. RossR. KangJ. StoutJ.R. WiseJ.A. Short-duration β-alanine supplementation increases training volume and reduces subjective feelings of fatigue in college football players.Nutr. Res.2008281313510.1016/j.nutres.2007.11.00419083385
    [Google Scholar]
  131. DeraveW. OzdemirM.S. HarrisR.C. PottierA. ReyngoudtH. KoppoK. WiseJ.A. AchtenE. beta-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters.J. Appl. Physiol.2007103517361743
    [Google Scholar]
  132. BrisolaG.M.P. ArtioliG.G. PapotiM. ZagattoA.M. Effects of four weeks of β-alanine supplementation on repeated sprint ability in water polo players.PLoS One20161112e016796810.1371/journal.pone.016796827930743
    [Google Scholar]
  133. BrisolaG.M.P. de Souza MaltaE. SantiagoP.R.P. VieiraL.H.P. ZagattoA.M. β-alanine supplementation’s improvement of high-intensity game activities in water polo.Int. J. Sports Physiol. Perform.20181391208121410.1123/ijspp.2017‑063629651862
    [Google Scholar]
  134. ClausG.M. RedkvaP.E. BrisolaG.M.P. MaltaE.S. de Araujo Bonetti de PoliR. MiyagiW.E. ZagattoA.M. Beta-Alanine supplementation improves throwing velocities in repeated sprint ability and 200-m swimming performance in young water polo players.Pediatr. Exerc. Sci.201729220321210.1123/pes.2016‑017628121265
    [Google Scholar]
  135. ChungW. ShawG. AndersonM.E. PyneD.B. SaundersP.U. BishopD.J. BurkeL.M. Effect of 10 week beta-alanine supplementation on competition and training performance in elite swimmers.Nutrients20124101441145310.3390/nu410144123201763
    [Google Scholar]
  136. StellingwerffT. AnwanderH. EggerA. BuehlerT. KreisR. DecombazJ. BoeschC. Effect of two β-alanine dosing protocols on muscle carnosine synthesis and washout.Amino Acids20124262461247210.1007/s00726‑011‑1054‑421847611
    [Google Scholar]
  137. SpelnikovD. HarrisR.C. A kinetic model of carnosine synthesis in human skeletal muscle.Amino Acids201951111512110.1007/s00726‑018‑2646‑z30209603
    [Google Scholar]
  138. BaguetA. ReyngoudtH. PottierA. EveraertI. CallensS. AchtenE. DeraveW. Carnosine loading and washout in human skeletal muscles.J. Appl. Physiol.20091063837842
    [Google Scholar]
  139. NassisG.P. SporerB. StathisC.G. β-alanine efficacy for sports performance improvement: From science to practice.Br. J. Sports Med.201751862662710.1136/bjsports‑2016‑09703827913374
    [Google Scholar]
  140. DécombazJ. BeaumontM. VuichoudJ. BouissetF. StellingwerffT. Effect of slow-release β-alanine tablets on absorption kinetics and paresthesia.Amino Acids2012431677610.1007/s00726‑011‑1169‑722139410
    [Google Scholar]
  141. GualanoB. EveraertI. StegenS. ArtioliG.G. TaesY. RoschelH. AchtenE. OtaduyM.C. JuniorA.H.L. HarrisR. DeraveW. Reduced muscle carnosine content in type 2, but not in type 1 diabetic patients.Amino Acids2012431212410.1007/s00726‑011‑1165‑y22120670
    [Google Scholar]
  142. MenonK. de CourtenB. MaglianoD.J. AdemiZ. LiewD. ZomerE. The cost-effectiveness of supplemental carnosine in type 2 diabetes.Nutrients202214121510.3390/nu1401021535011089
    [Google Scholar]
  143. PeelingP. BinnieM.J. GoodsP.S.R. SimM. BurkeL.M. Evidence-based supplements for the enhancement of athletic performance.Int. J. Sport Nutr. Exerc. Metab.201828217818710.1123/ijsnem.2017‑034329465269
    [Google Scholar]
  144. BabizhayevM. DeyevA. YegorovY. L-Carnosine modulates respiratory burst and reactive oxygen species production in neutrophil biochemistry and function: may oral dosage form of non-hydrolized dipeptide l-carnosine complement anti-infective anti-influenza flu treatment, prevention and self-care as an alternative to the conventional vaccination?Curr. Clin. Pharmacol.2013923441838
    [Google Scholar]
  145. TanakaK.I. SugizakiT. KandaY. TamuraF. NiinoT. KawaharaM. Preventive effects of carnosine on lipopolysaccharide-induced lung injury.Sci. Rep.2017714281310.1038/srep4281328205623
    [Google Scholar]
  146. SlovákL. PoništS. FedorovaT. LogvinenkoA. LevachevaI. SamsonovaO. BakowskyU. PaškováĽ. ČavojskýT. TsiklauriL. BauerováK. Evaluation of liposomal carnosine in adjuvant arthritis.Gen. Physiol. Biophys.201736447147910.4149/gpb_201701428836498
    [Google Scholar]
  147. KimE.S. KimD. NybergS. PomaA. CecchinD. JainS.A. KimK.A. ShinY.J. KimE.H. KimM. BaekS.H. KimJ.K. DoeppnerT.R. AliA. RedgraveJ. BattagliaG. MajidA. BaeO.N. LRP-1 functionalized polymersomes enhance the efficacy of carnosine in experimental stroke.Sci. Rep.202010169910.1038/s41598‑020‑57685‑531959846
    [Google Scholar]
  148. FaridR.M. GaafarP.M.E. HazzahH.A. HelmyM.W. AbdallahO.Y. Chemotherapeutic potential of L-carnosine from stimuli-responsive magnetic nanoparticles against breast cancer model.Nanomedicine202015989191110.2217/nnm‑2019‑042832238029
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673263561231117054447
Loading
/content/journals/cmc/10.2174/0109298673263561231117054447
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Amino acid; anti-aging effect; dietary supplements; dipeptide; dosages; sources
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test