Skip to content
2000
Volume 31, Issue 35
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Nucleosides containing carboranes are one of the most important boron delivery agents for boron neutron capture therapy, BNCT, which are good substrates of hTK1. The development of several nucleosides containing carboranes at early stages led to the discovery of the first generation of 3CTAs by incorporating a hydrocarbon spacer between the thymidine scaffold and carborane cluster and attaching dihydroxylpropyl group on the second carbon (C2) atom of the carborane cluster (e.g., N5 and N5-2OH). Phosphorylation rate, tumor cellular uptake, and retention have been evaluated in parallel to change the length of the tether arm of spacers in these compounds. Many attempts were reported and discussed to overcome the disadvantage of the first generation of 3CTAs by a) incorporating modified spacers between thymidine and carborane clusters, such as ethyleneoxide, polyhydroxyl, triazole, and tetrazole units, b) attaching hydrophilic groups at C2 of the carborane cluster, c) transforming lipophilic closo-carboranes to hydrophilic nidocarborane. The previous modifications represented the second generation of 3CTAs to improve the hydrogen bond formation with the hTK1 active site. Moreover, amino acid prodrugs were developed to enhance biological and physicochemical properties. The structure-activity relationship (SAR) of carboranyl thymidine analogues led to the roadmap for the development of the 3rd generation of the 3CTAs for BNCT.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673245020230929152030
2024-10-01
2025-01-27
Loading full text...

Full text loading...

/content/journals/cmc/10.2174/0109298673245020230929152030
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test