Skip to content
2000
Volume 32, Issue 8
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Although immunotherapies have greatly improved diffuse large B-cell lymphoma (DLBCL) prognosis, a proportion of patients remain to be relapsed or refractory. Therefore, the identification of novel therapeutic targets and drugs is urgently required. Inhibition of the bromodomain and extra-terminal (BET) proteins has been a promising therapeutic strategy for various haematologic cancers. CPI-0610 is a potent and selective BET inhibitor. The effects of CPI-0610 in DLBCL cells have not been reported yet.

Aims

The aim of this study was to assess the effects of CPI-0610 in DLBCL and its underlying mechanisms.

Methods

DLBCL cells were treated with CPI-0610, followed by measuring cell viability, cell cycle, apoptosis, autophagy, and specific cell signaling pathways. Moreover, immunodeficient mice were engrafted with SUDHL2 cells and then treated with CPI-0610 for analysis of tumor burden. We also analyzed the synergistic effect of CPI-0610 with histone deacetylase inhibitor suberoylanilide hydroxamic acid.

Results

The present study demonstrated that CPI-0610 displayed cell cytotoxicity by arresting the G cell cycle and inducing endogenous and exogenous apoptotic pathways. Additionally, CPI-0610 decreased BRD4 and c-Myc expressions and affected MAPK, JAK/STAT, and AKT signalling pathways in human DLBCL cells. An experiment exhibited that CPI-0610 decreased the primary tumour growth of the DLBCL xenograft model. Furthermore, the use of CPI-0610 in combination with suberoylanilide hydroxamic acid exhibited a specific synergistic effect in inducing apoptosis through the regulation of STAT3 and p38.

Conclusion

Targeting BET may be an effective therapeutic strategy and potentiated by a combination with histone deacetylase inhibition in DLBCL.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673244868231017043517
2023-10-24
2025-04-04
Loading full text...

Full text loading...

References

  1. GisselbrechtC. Van Den NesteE. How I manage patients with relapsed/refractory diffuse large B cell lymphoma.Br. J. Haematol.2018182563364310.1111/bjh.1541229808921
    [Google Scholar]
  2. ZhangJ. MedeirosL.J. YoungK.H. Cancer immunotherapy in diffuse large B-cell lymphoma.Front. Oncol.2018835110.3389/fonc.2018.0035130250823
    [Google Scholar]
  3. CrombieJ.L. ArmandP. Diffuse large B-cell lymphoma and high-grade B-cell lymphoma.Hematol. Oncol. Clin. North Am.201933457558510.1016/j.hoc.2019.03.00131229155
    [Google Scholar]
  4. HopfingerG. JägerU. WorelN. CAR-T cell therapy in diffuse large B cell lymphoma: Hype and hope.HemaSphere201932e18510.1097/HS9.000000000000018531723824
    [Google Scholar]
  5. PolettoS. NovoM. ParuzzoL. FrascioneP.M.M. VitoloU. Treatment strategies for patients with diffuse large B-cell lymphoma.Cancer Treat. Rev.202211010244310.1016/j.ctrv.2022.10244335933930
    [Google Scholar]
  6. ZhengY. SiJ. YuanT. DingS. TianC. Immune targeted therapy for diffuse large B cell lymphoma.Blood Science20213413614810.1097/BS9.000000000000009535402846
    [Google Scholar]
  7. SkrabekP. AssoulineS. ChristofidesA. MacDonaldD. PricaA. SanghaR. MatthewsB.A. SehnL.H. Emerging therapies for the treatment of relapsed or refractory diffuse large B cell lymphoma.Curr. Oncol.201926425326510.3747/co.26.542131548805
    [Google Scholar]
  8. YoungR.M. PhelanJ.D. WilsonW.H. StaudtL.M. Pathogenic B-cell receptor signaling in lymphoid malignancies: New insights to improve treatment.Immunol. Rev.2019291119021310.1111/imr.1279231402495
    [Google Scholar]
  9. SehnL.H. SallesG. Diffuse large B-cell lymphoma.N. Engl. J. Med.2021384984285810.1056/NEJMra202761233657296
    [Google Scholar]
  10. WangN. WuR. TangD. KangR. The BET family in immunity and disease.Signal Transduct. Target. Ther.2021612310.1038/s41392‑020‑00384‑433462181
    [Google Scholar]
  11. PadmanabhanB. MathurS. ManjulaR. TripathiS. Bromodomain and extra-terminal (BET) family proteins: New therapeutic targets in major diseases.J. Biosci.201641229531110.1007/s12038‑016‑9600‑627240990
    [Google Scholar]
  12. SarnikJ. PopławskiT. TokarzP. BET proteins as attractive targets for cancer therapeutics.Int. J. Mol. Sci.202122201110210.3390/ijms22201110234681760
    [Google Scholar]
  13. NguyenM.V. LoofL. FalchookG.S. Bromodomain and extra-terminal (BET) domain protein inhibitors for solid tumor cancers.J. Immunoth. Precis. Oncol.202031162210.4103/JIPO.JIPO_2_2035756176
    [Google Scholar]
  14. CheungK.L. KimC. ZhouM.M. The functions of BET proteins in gene transcription of biology and diseases.Front. Mol. Biosci.2021872877710.3389/fmolb.2021.72877734540900
    [Google Scholar]
  15. DonatiB. LorenziniE. CiarrocchiA. BRD4 and cancer: Going beyond transcriptional regulation.Mol. Cancer201817116410.1186/s12943‑018‑0915‑930466442
    [Google Scholar]
  16. LiangD. YuY. MaZ. Novel strategies targeting bromodomain-containing protein 4 (BRD4) for cancer drug discovery.Eur. J. Med. Chem.202020011242610.1016/j.ejmech.2020.11242632502863
    [Google Scholar]
  17. LiangY. TianJ. WuT. BRD4 in physiology and pathology: “BET” on its partners.BioEssays20214312210018010.1002/bies.20210018034697817
    [Google Scholar]
  18. LiG.Q. GuoW.Z. ZhangY. SengJ.J. ZhangH.P. MaX.X. ZhangG. LiJ. YanB. TangH.W. LiS.S. WangL.D. ZhangS.J. Suppression of BRD4 inhibits human hepatocellular carcinoma by repressing MYC and enhancing BIM expression.Oncotarget2016732462247410.18632/oncotarget.627526575167
    [Google Scholar]
  19. LovénJ. HokeH.A. LinC.Y. LauA. OrlandoD.A. VakocC.R. BradnerJ.E. LeeT.I. YoungR.A. Selective inhibition of tumor oncogenes by disruption of super-enhancers.Cell2013153232033410.1016/j.cell.2013.03.03623582323
    [Google Scholar]
  20. KimS.R. LewisJ.M. CyrenneB.M. MonicoP.F. MirzaF.N. CarlsonK.R. FossF.M. GirardiM. BET inhibition in advanced cutaneous T cell lymphoma is synergistically potentiated by BCL2 inhibition or HDAC inhibition.Oncotarget2018949291932920710.18632/oncotarget.2567030018745
    [Google Scholar]
  21. HuangB. YangX.D. ZhouM.M. OzatoK. ChenL.F. Brd4 coactivates transcriptional activation of NF-kappaB via specific binding to acetylated RelA.Mol. Cell. Biol.20092951375138710.1128/MCB.01365‑0819103749
    [Google Scholar]
  22. JingX. ShaoS. ZhangY. LuoA. ZhaoL. ZhangL. GuS. ZhaoX. BRD4 inhibition suppresses PD-L1 expression in triple-negative breast cancer.Exp. Cell Res.2020392211203410.1016/j.yexcr.2020.11203432339606
    [Google Scholar]
  23. CareyL.A. PerouC.M. LivasyC.A. DresslerL.G. CowanD. ConwayK. KaracaG. TroesterM.A. TseC.K. EdmistonS. DemingS.L. GeradtsJ. CheangM.C.U. NielsenT.O. MoormanP.G. EarpH.S. MillikanR.C. Race, breast cancer subtypes, and survival in the carolina breast cancer study.JAMA2006295212492250210.1001/jama.295.21.249216757721
    [Google Scholar]
  24. ZuberJ. ShiJ. WangE. RappaportA.R. HerrmannH. SisonE.A. MagoonD. QiJ. BlattK. WunderlichM. TaylorM.J. JohnsC. ChicasA. MulloyJ.C. KoganS.C. BrownP. ValentP. BradnerJ.E. LoweS.W. VakocC.R. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia.Nature2011478737052452810.1038/nature1033421814200
    [Google Scholar]
  25. GaoZ. YuanT. ZhouX. NiP. SunG. LiP. ChengZ. WangX. Targeting BRD4 proteins suppresses the growth of NSCLC through downregulation of eIF4E expression.Cancer Biol. Ther.201819540741510.1080/15384047.2018.142392329333921
    [Google Scholar]
  26. JinW. TanH. WuJ. HeG. LiuB. Dual-target inhibitors of bromodomain-containing protein 4 (BRD4) in cancer therapy: Current situation and future directions.Drug Discov. Today202227124625610.1016/j.drudis.2021.08.00734438075
    [Google Scholar]
  27. DuanY. GuanY. QinW. ZhaiX. YuB. LiuH. Targeting Brd4 for cancer therapy: Inhibitors and degraders.MedChemComm20189111779180210.1039/C8MD00198G30542529
    [Google Scholar]
  28. SprianoF. StathisA. BertoniF. Targeting BET bromodomain proteins in cancer: The example of lymphomas.Pharmacol. Ther.202021510763110.1016/j.pharmthera.2020.10763132693114
    [Google Scholar]
  29. SunY. HanJ. WangZ. LiX. SunY. HuZ. Safety and efficacy of bromodomain and extra-terminal inhibitors for the treatment of hematological malignancies and solid tumors: A systematic study of clinical trials.Front. Pharmacol.20211162109310.3389/fphar.2020.62109333574760
    [Google Scholar]
  30. LuT. LuW. LuoC. A patent review of BRD4 inhibitors (2013-2019).Expert Opin. Ther. Pat.2020301578110.1080/13543776.2020.170264531815566
    [Google Scholar]
  31. XuY. VakocC.R. Targeting cancer cells with BET bromodomain inhibitors.Cold Spring Harb. Perspect. Med.201777a02667410.1101/cshperspect.a02667428213432
    [Google Scholar]
  32. DoroshowD.B. EderJ.P. LoRussoP.M. BET inhibitors: A novel epigenetic approach.Ann. Oncol.20172881776178710.1093/annonc/mdx15728838216
    [Google Scholar]
  33. YuL. WangZ. ZhangZ. RenX. LuX. DingK. Small-molecule BET inhibitors in clinical and preclinical development and their therapeutic potential.Curr. Top. Med. Chem.201515877679410.2174/156802661566615030211013525732788
    [Google Scholar]
  34. FuY. ZhangY. SunH. Progress in the development of domain selective inhibitors of the bromo and extra terminal domain family (BET) proteins.Eur. J. Med. Chem.202122611385310.1016/j.ejmech.2021.11385334547507
    [Google Scholar]
  35. AlbrechtB.K. GehlingV.S. HewittM.C. VaswaniR.G. CôtéA. LeblancY. NasveschukC.G. BellonS. BergeronL. CampbellR. CantoneN. CooperM.R. CummingsR.T. JayaramH. JoshiS. MertzJ.A. NeissA. NormantE. O’MearaM. PardoE. PoyF. SandyP. SupkoJ. SimsR.J.III HarmangeJ.C. TaylorA.M. AudiaJ.E. Identification of a benzoisoxazoloazepine inhibitor (CPI-0610) of the bromodomain and extra-terminal (BET) family as a candidate for human clinical trials.J. Med. Chem.20165941330133910.1021/acs.jmedchem.5b0188226815195
    [Google Scholar]
  36. BondD.A. HuangY. ChristianB.A. JaglowskiS. BensonD. AlinariL. BaiocchiR.A. CohenJ.B. BlumK.A. MaddocksK.J. A phase I study of rituximab and buparlisib in patients with relapsed or refractory indolent non-Hodgkin lymphoma.Leuk. Lymphoma20226371750175310.1080/10428194.2022.203415435129029
    [Google Scholar]
  37. MascarenhasJ. HarrisonC. LuptakovaK. ChristoJ. WangJ. MertzJ.A. ColakG. ShaoJ. BobbaS. TrojerP. SenderowiczA. HumphreyJ.S. VerstovsekS. MANIFEST-2, a global, phase 3, randomized, double-blind, active-control study of CPI-0610 and Ruxolitinib vs. placebo and Ruxolitinib in JAK-inhibitor-naive myelofibrosis patients.Blood202013614310.1182/blood‑2020‑140901
    [Google Scholar]
  38. BlumK.A. AbramsonJ. MarisM. FlinnI. GoyA. MertzJ. SimsR. GarnerF. SenderowiczA. YounesA. A phase I study of CPI-0610, a bromodomain and extra terminal protein (BET) inhibitor in patients with relapsed or refractory lymphoma.Ann. Oncol.20182910.1093/annonc/mdy048
    [Google Scholar]
  39. XuL. JiaoJ. SunX. SangW. GaoX. YangP. YanD. SongX. SunC. LiuM. QinY. TianY. ZhuF. ZengL. LiZ. XuK. Cladribine Induces ATF4 mediated apoptosis and synergizes with SAHA in diffuse Large B-Cell lymphoma cells.Int. J. Med. Sci.202017101375138410.7150/ijms.4179332624694
    [Google Scholar]
  40. DelmoreJ.E. IssaG.C. LemieuxM.E. RahlP.B. ShiJ. JacobsH.M. KastritisE. GilpatrickT. ParanalR.M. QiJ. ChesiM. SchinzelA.C. McKeownM.R. HeffernanT.P. VakocC.R. BergsagelP.L. GhobrialI.M. RichardsonP.G. YoungR.A. HahnW.C. AndersonK.C. KungA.L. BradnerJ.E. MitsiadesC.S. BET bromodomain inhibition as a therapeutic strategy to target c-Myc.Cell2011146690491710.1016/j.cell.2011.08.01721889194
    [Google Scholar]
  41. WuX. LiuD. GaoX. XieF. TaoD. XiaoX. WangL. JiangG. ZengF. Inhibition of BRD4 suppresses cell proliferation and induces apoptosis in renal cell carcinoma.Cell. Physiol. Biochem.20174151947195610.1159/00047240728391274
    [Google Scholar]
  42. YangH. WeiL. XunY. YangA. YouH. BRD4: An emerging prospective therapeutic target in glioma.Mol. Ther. Oncolytics20212111410.1016/j.omto.2021.03.00533851008
    [Google Scholar]
  43. LiuN. LingR. TangX. YuY. ZhouY. ChenD. Post-translational modifications of BRD4: Therapeutic targets for tumor.Front. Oncol.20221284770110.3389/fonc.2022.84770135402244
    [Google Scholar]
  44. SchwalmM.P. KnappS. BET bromodomain inhibitors.Curr. Opin. Chem. Biol.20226810214810.1016/j.cbpa.2022.10214835462054
    [Google Scholar]
  45. WhiteM.E. FengerJ.M. CarsonW.E.III Emerging roles of and therapeutic strategies targeting BRD4 in cancer.Cell. Immunol.2019337485310.1016/j.cellimm.2019.02.00130832981
    [Google Scholar]
  46. ZhangS. ChenY. TianC. HeY. TianZ. WanY. LiuT. Dual-target inhibitors based on BRD4: Novel therapeutic approaches for cancer.Curr. Med. Chem.20212891775179510.2174/092986732766620061017445332520674
    [Google Scholar]
  47. BauerK. BerghoffA.S. PreusserM. HellerG. ZielinskiC.C. ValentP. GruntT.W. Degradation of BRD4 : A promising treatment approach not only for hematologic but also for solid cancer.Am. J. Cancer Res.2021112530545Available from: http://dx.doi.org/https://pubmed.ncbi.nlm.nih.gov/33575085/ 33575085
    [Google Scholar]
  48. KharenkoO. A. HansenH. C. Novel approaches to targeting BRD4.Drug Discov Today Technol201724192410.1016/j.ddtec.2017.10.003
    [Google Scholar]
  49. BasheerF. HuntlyB.J.P. BET bromodomain inhibitors in leukemia.Exp. Hematol.201543871873110.1016/j.exphem.2015.06.00426163798
    [Google Scholar]
  50. ChapuyB. McKeownM.R. LinC.Y. MontiS. RoemerM.G.M. QiJ. RahlP.B. SunH.H. YedaK.T. DoenchJ.G. ReichertE. KungA.L. RodigS.J. YoungR.A. ShippM.A. BradnerJ.E. Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma.Cancer Cell201324677779010.1016/j.ccr.2013.11.00324332044
    [Google Scholar]
  51. LiW. GuptaS.K. HanW. KundsonR.A. NelsonS. KnutsonD. GreippP.T. ElsawaS.F. SotomayorE.M. GuptaM. Targeting MYC activity in double-hit lymphoma with MYC and BCL2 and/or BCL6 rearrangements with epigenetic bromodomain inhibitors.J. Hematol. Oncol.20191217310.1186/s13045‑019‑0761‑231288832
    [Google Scholar]
  52. SiuK.T. RamachandranJ. YeeA.J. EdaH. SantoL. PanaroniC. MertzJ.A. SimsR.J.III CooperM.R. RajeN. Preclinical activity of CPI-0610, a novel small-molecule bromodomain and extra-terminal protein inhibitor in the therapy of multiple myeloma.Leukemia20173181760176910.1038/leu.2016.35527890933
    [Google Scholar]
  53. ZhaoL. OkhovatJ.P. HongE.K. KimY.H. WoodG.S. Preclinical studies support combined inhibition of BET family proteins and histone deacetylases as epigenetic therapy for cutaneous T-cell lymphoma.Neoplasia2019211829210.1016/j.neo.2018.11.00630529073
    [Google Scholar]
  54. KotekarA. SinghA.K. DevaiahB.N. BRD4 and MYC : Power couple in transcription and disease.FEBS J.20222902048204210.1111/febs.1658035866356
    [Google Scholar]
  55. XiaY. ZhangX. The spectrum of MYC alterations in diffuse large B-cell lymphoma.Acta Haematol.2020143652052810.1159/00050589232074595
    [Google Scholar]
  56. CuccoF. BarransS. ShaC. ClipsonA. CrouchS. DobsonR. ChenZ. ThompsonJ.S. CareM.A. CumminT. CaddyJ. LiuH. RobinsonA. SchuhA. FitzgibbonJ. PainterD. SmithA. RomanE. ToozeR. BurtonC. DaviesA.J. WestheadD.R. JohnsonP.W.M. DuM.Q. Distinct genetic changes reveal evolutionary history and heterogeneous molecular grade of DLBCL with MYC/BCL2 double-hit.Leukemia20203451329134110.1038/s41375‑019‑0691‑631844144
    [Google Scholar]
  57. SavageK.J. JohnsonN.A. Ben-NeriahS. ConnorsJ.M. SehnL.H. FarinhaP. HorsmanD.E. GascoyneR.D. MYC gene rearrangements are associated with a poor prognosis in diffuse large B-cell lymphoma patients treated with R-CHOP chemotherapy.Blood2009114173533353710.1182/blood‑2009‑05‑22009519704118
    [Google Scholar]
  58. KarubeK. CampoE. MYC alterations in diffuse large B-cell lymphomas.Semin. Hematol.20155229710610.1053/j.seminhematol.2015.01.00925805589
    [Google Scholar]
  59. WangW.G. LiuZ.B. JiangX.N. LeeJ. ZhouX.Y. LiX.Q. MYC protein dysregulation is driven by BCR-PI3K signalling in diffuse large B-cell lymphoma.Histopathology201771577878510.1111/his.1328728639315
    [Google Scholar]
  60. PortaC. PaglinoC. MoscaA. Targeting PI3K/Akt/mTOR signaling in cancer.Front. Oncol.201446410.3389/fonc.2014.0006424782981
    [Google Scholar]
  61. TanY. WangL. DuY. LiuX. ChenZ. WengX. GuoJ. ChenH. WangM. WangX. Inhibition of BRD4 suppresses tumor growth in prostate cancer via the enhancement of FOXO1 expression.Int. J. Oncol.20185362503251710.3892/ijo.2018.457730272279
    [Google Scholar]
  62. RhyasenG.W. HattersleyM.M. YaoY. DulakA. WangW. PetterutiP. DaleI.L. BoikoS. CheungT. ZhangJ. WenS. CastriottaL. LawsonD. CollinsM. BaoL. AhdesmakiM.J. WalkerG. O’ConnorG. YehT.C. RabowA.A. DryJ.R. ReimerC. LyneP. MillsG.B. FawellS.E. WaringM.J. ZindaM. ClarkE. ChenH. AZD5153: A novel bivalent BET bromodomain inhibitor highly active against hematologic malignancies.Mol. Cancer Ther.201615112563257410.1158/1535‑7163.MCT‑16‑014127573426
    [Google Scholar]
  63. VannK.R. PalD. SmithA.L. SaharN. KrishnaiahM. El-GamalD. KutateladzeT.G. Combinatorial inhibition of BTK, PI3K-AKT and BRD4-MYC as a strategy for treatment of mantle cell lymphoma.Molecular Biomedicine202231210.1186/s43556‑021‑00066‑935031886
    [Google Scholar]
  64. MiaoY. MedeirosL.J. Xu-MonetteZ.Y. LiJ. YoungK.H. Dysregulation of cell survival in diffuse large B cell lymphoma: Mechanisms and therapeutic targets.Front. Oncol.2019910710.3389/fonc.2019.0010730881917
    [Google Scholar]
  65. HertingF. FriessT. UmañaP. MiddletonS. KleinC. Chemotherapy-free, triple combination of obinutuzumab, venetoclax and idasanutlin: Antitumor activity in xenograft models of non-Hodgkin lymphoma.Leuk. Lymphoma20185961482148510.1080/10428194.2017.137674028914567
    [Google Scholar]
  66. KuoH.P. EzellS.A. SchweighoferK.J. CheungL.W.K. HsiehS. ApatiraM. SirisawadM. EckertK. HsuS.J. ChenC.T. BeaupreD.M. VerseleM. ChangB.Y. Combination of ibrutinib and ABT-199 in diffuse large B-cell lymphoma and follicular lymphoma.Mol. Cancer Ther.20171671246125610.1158/1535‑7163.MCT‑16‑055528428442
    [Google Scholar]
  67. FilippakopoulosP. QiJ. PicaudS. ShenY. SmithW.B. FedorovO. MorseE.M. KeatesT. HickmanT.T. FelletarI. PhilpottM. MunroS. McKeownM.R. WangY. ChristieA.L. WestN. CameronM.J. SchwartzB. HeightmanT.D. La ThangueN. FrenchC.A. WiestO. KungA.L. KnappS. BradnerJ.E. Selective inhibition of BET bromodomains.Nature201046873271067107310.1038/nature0950420871596
    [Google Scholar]
  68. RahmanS. SowaM.E. OttingerM. SmithJ.A. ShiY. HarperJ.W. HowleyP.M. The Brd4 extraterminal domain confers transcription activation independent of pTEFb by recruiting multiple proteins, including NSD3.Mol. Cell. Biol.201131132641265210.1128/MCB.01341‑1021555454
    [Google Scholar]
  69. FuL. TianM. LiX. LiJ. HuangJ. OuyangL. ZhangY. LiuB. Inhibition of BET bromodomains as a therapeutic strategy for cancer drug discovery.Oncotarget2015685501551610.18632/oncotarget.355125849938
    [Google Scholar]
  70. FiskusW. SharmaS. QiJ. ValentaJ.A. SchaubL.J. ShahB. PethK. PortierB.P. RodriguezM. DevarajS.G.T. ZhanM. ShengJ. IyerS.P. BradnerJ.E. BhallaK.N. Highly active combination of BRD4 antagonist and histone deacetylase inhibitor against human acute myelogenous leukemia cells.Mol. Cancer Ther.20141351142115410.1158/1535‑7163.MCT‑13‑077024435446
    [Google Scholar]
  71. ManzottiG. CiarrocchiA. SancisiV. Inhibition of BET proteins and histone deacetylase (HDACs): Crossing roads in cancer therapy.Cancers201911330410.3390/cancers1103030430841549
    [Google Scholar]
  72. GusyatinerO. BadyP. PhamM.D.T. LeiY. ParkJ. DanielR.T. DelorenziM. HegiM.E. BET inhibitors repress expression of interferon-stimulated genes and synergize with HDAC inhibitors in glioblastoma.Neuro-oncol.202123101680169210.1093/neuonc/noab11533987681
    [Google Scholar]
  73. BagratuniT. MavrianouN. GavalasN.G. TzannisK. ArapinisC. LiontosM. ChristodoulouM.I. ThomakosN. HaidopoulosD. RodolakisA. KastritisE. ScorilasA. DimopoulosM.A. BamiasA. JQ1 inhibits tumour growth in combination with cisplatin and suppresses JAK/STAT signalling pathway in ovarian cancer.Eur. J. Cancer202012612513510.1016/j.ejca.2019.11.01731927213
    [Google Scholar]
  74. ZhangP. LiR. XiaoH. LiuW. ZengX. XieG. YangW. ShiL. YinY. TaoK. BRD4 Inhibitor AZD5153 suppresses the proliferation of colorectal cancer cells and sensitizes the anticancer effect of PARP Inhibitor.Int. J. Biol. Sci.20191591942195410.7150/ijbs.3416231523195
    [Google Scholar]
  75. MascarenhasJ. KremyanskayaM. PatriarcaA. HarrisonC. BoseP. RampalR.K. PalandriF. DevosT. PassamontiF. HobbsG. TalpazM. VannucchiA. KiladjianJ.J. VerstovsekS. HoffmanR. SalamaM.E. ChenD. TavernaP. ChangA. ColakG. KleinS. GuptaV. MPN-375 BET inhibitor pelabresib (CPI-0610) combined with ruxolitinib in patients with myelofibrosis : JAK inhibitor-naïe or with suboptimal response to ruxolitinib : Preliminary data from the MANIFEST Study.Clin. Lymphoma Myeloma Leuk.2022222S335S33610.1016/S2152‑2650(22)01456‑236164005
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673244868231017043517
Loading
/content/journals/cmc/10.2174/0109298673244868231017043517
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): apoptosis; BRD4; CPI-0610; p38; SAHA; STAT3
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test