Skip to content
2000
image of Hereditary Patterns and Genetic Associations in Obsessive-Compulsive Disorder (OCD): Neuropsychiatric Insights, Genetic Influences, and Treatment Perspectives

Abstract

Obsessive-Compulsive Disorder (OCD), a prevalent neuropsychiatric condition, affects approximately 2%–3% of the global population. This paper provides an extensive overview of OCD, detailing its clinical manifestations, neurobiological underpinnings, and therapeutic approaches. It examines OCD's classification shift in the DSM-5, the role of the cortico-striato-thalamo-cortical pathway in its development, and the various factors contributing to its etiology, such as genes, environmental factors, and genetic predispositions. The challenges in diagnosing OCD and the effectiveness of both psychological and pharmacotherapeutic treatments are discussed. The paper also highlights the significant overlap between OCD and other mental health disorders, emphasizing its impact on global disability. Moreover, the role of genetic factors in OCD, including twin studies and gene association studies, is elaborated, underscoring the complex interplay of hereditary and environmental influences in its manifestation. The review further delves into the polygenic nature of OCD, illustrating how multiple genes contribute to its development, and explores the implications of genetic studies in understanding the disorder's complexity. Additionally, this research study delves into the concept of polygenic inheritance in complex diseases, highlighting the role of multiple genes in increasing OCD risk. A Genome-wide Association Study (GWAS) is employed to assess Single Nucleotide Polymorphisms (SNPs) to unearth genetic associations with OCD. This comprehensive analysis provides valuable insights into OCD's genetic landscape, paving the way for enhanced diagnostic approaches and treatment modalities.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232316708240828063527
2024-08-30
2024-11-21
Loading full text...

Full text loading...

References

  1. Ruscio A.M. Stein D.J. Chiu W.T. Kessler R.C. The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Mol. Psychiatry 2010 15 1 53 63 10.1038/mp.2008.94 18725912
    [Google Scholar]
  2. Strom N.I. Grove J. Meier S.M. Polygenic heterogeneity across obsessive-compulsive disorder subgroups defined by a comorbid diagnosis. Front. Genet. 2021 12 711624 10.3389/fgene.2021.711624 34531895
    [Google Scholar]
  3. Sassano-Higgins S.A. Pato M.T. Obsessive-compulsive disorder: diagnosis, epidemiology, etiology, and treatment. Focus Am. Psychiatr. Publ. 2015 13 2 129 141 10.1176/appi.focus.130211
    [Google Scholar]
  4. Senova S. Clair A.H. Palfi S. Yelnik J. Domenech P. Mallet L. Deep brain stimulation for refractory obsessive-compulsive disorder: towards an individualized approach. Front. Psychiatry 2019 10 905 10.3389/fpsyt.2019.00905 31920754
    [Google Scholar]
  5. Calzà J. Gürsel D.A. Schmitz-Koep B. Altered cortico–striatal functional connectivity during resting state in obsessive–compulsive disorder. Front. Psychiatry 2019 10 319 10.3389/fpsyt.2019.00319 31133898
    [Google Scholar]
  6. Fettes P. Schulze L. Downar J. Cortico-striatal-thalamic loop circuits of the orbitofrontal cortex: promising therapeutic targets in psychiatric illness. Front. Syst. Neurosci. 2017 11 25 10.3389/fnsys.2017.00025 28496402
    [Google Scholar]
  7. Wood J. Ahmari S.E. A framework for understanding the emerging role of corticolimbic-ventral striatal networks in OCD-associated repetitive behaviors. Front. Syst. Neurosci. 2015 9 171 10.3389/fnsys.2015.00171 26733823
    [Google Scholar]
  8. Walitza S. Bové D.S. Romanos M. Pilot study on HTR2A promoter polymorphism, −1438G/A (rs6311) and a nearby copy number variation showed association with onset and severity in early onset obsessive–compulsive disorder. J. Neural Transm. (Vienna) 2012 119 4 507 515 10.1007/s00702‑011‑0699‑1 21874579
    [Google Scholar]
  9. Endres D. Pollak T.A. Bechter K. Immunological causes of obsessive-compulsive disorder: is it time for the concept of an “autoimmune OCD” subtype? Transl. Psychiatry 2022 12 1 5 10.1038/s41398‑021‑01700‑4 35013105
    [Google Scholar]
  10. Noh H.J. Tang R. Flannick J. Integrating evolutionary and regulatory information with a multispecies approach implicates genes and pathways in obsessive-compulsive disorder. Nat. Commun. 2017 8 1 774 10.1038/s41467‑017‑00831‑x 29042551
    [Google Scholar]
  11. Bortolato M. Chen K. Shih J.C. Monoamine oxidase inactivation: From pathophysiology to therapeutics. Adv. Drug Deliv. Rev. 2008 60 13-14 1527 1533 10.1016/j.addr.2008.06.002 18652859
    [Google Scholar]
  12. Rehn S. Eslick G.D. Brakoulias V. A meta-analysis of the effectiveness of different cortical targets used in repetitive transcranial magnetic stimulation (rTMS) for the treatment of obsessive-compulsive disorder (OCD). Psychiatr. Q. 2018 89 3 645 665 10.1007/s11126‑018‑9566‑7 29423665
    [Google Scholar]
  13. Rasgon A. Lee W.H. Leibu E. Neural correlates of affective and non-affective cognition in obsessive compulsive disorder: A meta-analysis of functional imaging studies. Eur. Psychiatry 2017 46 25 32 10.1016/j.eurpsy.2017.08.001 28992533
    [Google Scholar]
  14. Pampaloni I. Marriott S. Pessina E. The global assessment of OCD. Compr. Psychiatry 2022 118 152342 10.1016/j.comppsych.2022.152342 36007341
    [Google Scholar]
  15. Szechtman H. Harvey B.H. Woody E.Z. Hoffman K.L. The psychopharmacology of obsessive-compulsive disorder: a preclinical roadmap. Pharmacol. Rev. 2020 72 1 80 151 10.1124/pr.119.017772 31826934
    [Google Scholar]
  16. Choudhury T.K. Davidson J.E. Viswanathan A. Strutt A.M. Deep brain stimulation of the anterior limb of the internal capsule for treatment of therapy-refractory obsessive compulsive disorder (OCD): a case study highlighting neurocognitive and psychiatric changes. Neurocase 2017 23 2 138 145 10.1080/13554794.2017.1319958 28457185
    [Google Scholar]
  17. Oldani L. Benatti B. Macellaro M. A case of treatment-resistant bipolar depression and comorbid OCD treated with deep brain stimulation of the medial forebrain bundle: 5 years follow-up results. J. Clin. Neurosci. 2021 89 103 105 10.1016/j.jocn.2021.04.033 34119251
    [Google Scholar]
  18. Anagnostaras S. Maren S. Sage J.R. Goodrich S. Fanselow M.S. Scopolamine and Pavlovian fear conditioning in rats: dose-effect analysis. Neuropsychopharmacology 1999 21 6 731 744 10.1016/S0893‑133X(99)00083‑4 10633479
    [Google Scholar]
  19. Robbins T.W. Vaghi M.M. Banca P. Obsessive-compulsive disorder: puzzles and prospects. Neuron 2019 102 1 27 47 10.1016/j.neuron.2019.01.046 30946823
    [Google Scholar]
  20. Mahjani B. Bey K. Boberg J. Burton C. Genetics of obsessive-compulsive disorder. Psychol. Med. 2021 51 13 2247 2259 10.1017/S0033291721001744 34030745
    [Google Scholar]
  21. Fineberg N.A. Hollander E. Pallanti S. Clinical advances in obsessive-compulsive disorder: a position statement by the International College of Obsessive-Compulsive Spectrum Disorders. Int. Clin. Psychopharmacol. 2020 35 4 173 193 10.1097/YIC.0000000000000314 32433254
    [Google Scholar]
  22. Stubbing J. Tolin D.F. Obsessive-compulsive disorder. In: Reference Module in Neuroscience and Biobehavioral Psychology. 2023 10.1016/B978‑0‑323‑91497‑0.00260‑5
    [Google Scholar]
  23. Meyer M. Barreault L. Frismand S. Hingray C. Benefit of cognitive behavioral therapy for post-traumatic stress disorder and obsessive-compulsive disorders in Huntington’s disease: a case report. Neurocase 2022 28 2 188 193 10.1080/13554794.2022.2051562 35465828
    [Google Scholar]
  24. Delgado-Acevedo C. Estay S.F. Radke A.K. Behavioral and synaptic alterations relevant to obsessive-compulsive disorder in mice with increased EAAT3 expression. Neuropsychopharmacology 2019 44 6 1163 1173 10.1038/s41386‑018‑0302‑7 30622300
    [Google Scholar]
  25. Atmaca M. Yildirim H. Yilmaz S. Pituitary gland volumes in patients with obsessive-compulsive disorder before and after cognitive-behavioral therapy. Rev. Bras. Psiquiatr. 2018 40 4 420 423 10.1590/1516‑4446‑2017‑2449 29898196
    [Google Scholar]
  26. Anholt G.E. Aderka I.M. van Balkom A.J.L.M. Age of onset in obsessive–compulsive disorder: admixture analysis with a large sample. Psychol. Med. 2014 44 1 185 194 10.1017/S0033291713000470 23517651
    [Google Scholar]
  27. Fawcett E.J. Power H. Fawcett J.M. Women are at greater risk of OCD than men: a meta-analytic review of OCD prevalence worldwide. J. Clin. Psychiatry 2020 81 4 13075 10.4088/JCP.19r13085 32603559
    [Google Scholar]
  28. Pajouhinia S. Abavisani Y. Rezazadeh Z. Explaining the obsessive-compulsive symptoms based on cognitive flexibility and social cognition. Pract Clin Psychol 2020 8 3 233 242 10.32598/jpcp.8.3.10.717.1
    [Google Scholar]
  29. Kohler K.C. Coetzee B.J. Lochner C. Living with obsessive-compulsive disorder (OCD): a South African narrative. Int. J. Ment. Health Syst. 2018 12 1 73 10.1186/s13033‑018‑0253‑8 30519281
    [Google Scholar]
  30. Hauschildt M. Jelinek L. Randjbar S. Hottenrott B. Moritz S. Generic and illness-specific quality of life in obsessive-compulsive disorder. Behav. Cogn. Psychother. 2010 38 4 417 436 10.1017/S1352465810000275 20529398
    [Google Scholar]
  31. Mayhew A.J. Meyre D.A. Meyre D. Assessing the heritability of complex traits in humans: methodological challenges and opportunities. Curr. Genomics 2017 18 4 332 340 10.2174/1389202918666170307161450 29081689
    [Google Scholar]
  32. Santana L.G. Flores-Mir C. Iglesias-Linares A. Pithon M.M. Marques L.S. Influence of heritability on occlusal traits: a systematic review of studies in twins. Prog. Orthod. 2020 21 1 29 10.1186/s40510‑020‑00330‑8 32864724
    [Google Scholar]
  33. Kim Y. Lee Y. Lee S. On the estimation of heritability with family‐based and population‐based samples. BioMed Res. Int. 2015 2015 1 1 9 10.1155/2015/671349 26339629
    [Google Scholar]
  34. Burton C.L. Park L.S. Corfield E.C. Heritability of obsessive–compulsive trait dimensions in youth from the general population. Transl. Psychiatry 2018 8 1 191 10.1038/s41398‑018‑0249‑9 30228290
    [Google Scholar]
  35. Blanco-Vieira T. Radua J. Marcelino L. Bloch M. Mataix-Cols D. do Rosário M.C. The genetic epidemiology of obsessive-compulsive disorder: a systematic review and meta-analysis. Transl. Psychiatry 2023 13 1 230 10.1038/s41398‑023‑02433‑2 37380645
    [Google Scholar]
  36. Burguière E. Monteiro P. Feng G. Graybiel A.M. Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors. Science 2013 340 6137 1243 1246 10.1126/science.1232380 23744950
    [Google Scholar]
  37. Botros J. Genetic Susceptibility of Obsessive-Compulsive Disorder in The Paediatric Population. The Child Health Interdisciplinary Literature and Discovery Journal 2022 1 1 10.15173/child.v1i1.3125
    [Google Scholar]
  38. Viswanath B. Purty A. Nestadt G. Samuels J.F. Genetics of obsessive-compulsive disorder. Indian J. Psychiatry 2019 61 7 Suppl. 1 37 10.4103/psychiatry.IndianJPsychiatry_518_18 30745675
    [Google Scholar]
  39. Fontenelle L.F. Yücel M. A clinical staging model for obsessive–compulsive disorder: is it ready for prime time? EClinicalMedicine 2019 7 65 72 10.1016/j.eclinm.2019.01.014 31193644
    [Google Scholar]
  40. Jonnal A.H. Gardner C.O. Prescott C.A. Kendler K.S. Obsessive and compulsive symptoms in a general population sample of female twins. Am. J. Med. Genet. 2000 96 6 791 796 10.1002/1096‑8628(20001204)96:6<791:AID‑AJMG19>3.0.CO;2‑C 11121183
    [Google Scholar]
  41. Strom N.I. Soda T. Mathews C.A. Davis L.K. A dimensional perspective on the genetics of obsessive-compulsive disorder. Transl. Psychiatry 2021 11 1 401 10.1038/s41398‑021‑01519‑z 34290223
    [Google Scholar]
  42. Welch J.M. Lu J. Rodriguiz R.M. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature 2007 448 7156 894 900 10.1038/nature06104 17713528
    [Google Scholar]
  43. Stewart S.E. Platko J. Fagerness J. A genetic family-based association study of OLIG2 in obsessive-compulsive disorder. Arch. Gen. Psychiatry 2007 64 2 209 214 10.1001/archpsyc.64.2.209 17283288
    [Google Scholar]
  44. Willour V.L. Yao Shugart Y. Samuels J. Replication study supports evidence for linkage to 9p24 in obsessive-compulsive disorder. Am. J. Hum. Genet. 2004 75 3 508 513 10.1086/423899 15272418
    [Google Scholar]
  45. Szejko N. Dunalska A. Lombroso A. McGuire J.F. Piacentini J. Genomics of Obsessive-Compulsive Disorder—Toward Personalized Medicine in the Era of Big Data. Front Pediatr. 2021 9 685660 10.3389/fped.2021.685660 34746045
    [Google Scholar]
  46. Manolio T.A. Collins F.S. Cox N.J. Finding the missing heritability of complex diseases. Nature 2009 461 7265 747 753 10.1038/nature08494 19812666
    [Google Scholar]
  47. Flygare O. Andersson E. Ringberg H. Adapted cognitive behavior therapy for obsessive–compulsive disorder with co-occurring autism spectrum disorder: A clinical effectiveness study. Autism 2020 24 1 190 199 10.1177/1362361319856974 31187645
    [Google Scholar]
  48. Cand Psychol S.T. The oral, obsessive, and hysterical personality syndromes. A study of hereditary and environmental factors by means of the twin method. Arch. Gen. Psychiatry 1980 37 11 1272 1277 10.1001/archpsyc.1980.01780240070008 7192083
    [Google Scholar]
  49. Eley T.C. Bolton D. O’Connor T.G. Perrin S. Smith P. Plomin R. A twin study of anxiety‐related behaviours in pre‐school children. J. Child Psychol. Psychiatry 2003 44 7 945 960 10.1111/1469‑7610.00179 14531577
    [Google Scholar]
  50. Grünblatt E. Hauser T.U. Walitza S. Imaging genetics in obsessive-compulsive disorder: Linking genetic variations to alterations in neuroimaging. Prog. Neurobiol. 2014 121 114 124 10.1016/j.pneurobio.2014.07.003 25046835
    [Google Scholar]
  51. Brakoulias V. Starcevic V. Belloch A. Comorbidity, age of onset and suicidality in obsessive–compulsive disorder (OCD): An international collaboration. Compr. Psychiatry 2017 76 79 86 10.1016/j.comppsych.2017.04.002 28433854
    [Google Scholar]
  52. Nestadt G. Samuels J. Riddle M.A. The relationship between obsessive–compulsive disorder and anxiety and affective disorders: results from the Johns Hopkins OCD Family Study. Psychol. Med. 2001 31 3 481 487 10.1017/S0033291701003579 11305856
    [Google Scholar]
  53. Bienvenu O.J. Samuels J.F. Riddle M.A. The relationship of obsessive–compulsive disorder to possible spectrum disorders: results from a family study. Biol. Psychiatry 2000 48 4 287 293 10.1016/S0006‑3223(00)00831‑3 10960159
    [Google Scholar]
  54. Dima D. Jogia J. Collier D. Vassos E. Burdick K.E. Frangou S. Independent modulation of engagement and connectivity of the facial network during affect processing by CACNA1C and ANK3 risk genes for bipolar disorder. JAMA Psychiatry 2013 70 12 1303 1311 10.1001/jamapsychiatry.2013.2099 24108394
    [Google Scholar]
  55. Maroteaux L. Ayme-Dietrich E. Aubertin-Kirch G. New therapeutic opportunities for 5-HT2 receptor ligands. Pharmacol. Ther. 2017 170 14 36 10.1016/j.pharmthera.2016.10.008 27771435
    [Google Scholar]
  56. Pauls D.L. Abramovitch A. Rauch S.L. Geller D.A. Obsessive–compulsive disorder: an integrative genetic and neurobiological perspective. Nat. Rev. Neurosci. 2014 15 6 410 424 10.1038/nrn3746 24840803
    [Google Scholar]
  57. Yan J. Wang H. Liu Y. Shao C. Analysis of gene regulatory networks in the mammalian circadian rhythm. PLOS Comput. Biol. 2008 4 10 e1000193 10.1371/journal.pcbi.1000193 18846204
    [Google Scholar]
  58. Zwir Nawrocki J.S.I. Uncovering the complex genetics of human temperament. Mol. Psychiatry 2018 25 10 2275 2294
    [Google Scholar]
  59. Warburton A. Breen G. Bubb V.J. Quinn J.P. A GWAS SNP for schizophrenia is linked to the internal MIR137 promoter and supports differential allele-specific expression. Schizophr. Bull. 2016 42 4 1003 1008 10.1093/schbul/sbv144 26429811
    [Google Scholar]
  60. Lee L.C. Cho Y.C. Lin P.J. Yeh T.C. Chang C.Y. Yeh T.K. Influence of genetic variants of the N‐methyl‐D‐aspartate receptor on emotion and social behavior in adolescents. Neural Plast. 2016 2016 1 1 8 10.1155/2016/6851592 26819771
    [Google Scholar]
  61. Ozaki K. Ohnishi Y. Iida A. Functional SNPs in the lymphotoxin-α gene that are associated with susceptibility to myocardial infarction. Nat. Genet. 2002 32 4 650 654 10.1038/ng1047 12426569
    [Google Scholar]
  62. Xu J. Guo Y. Identification of gene loci that overlap between mental disorders and poor prognosis of cancers. Front. Psychiatry 2021 12 678943 10.3389/fpsyt.2021.678943 34262492
    [Google Scholar]
  63. Simpson H.B. Foa E.B. Liebowitz M.R. Cognitive-behavioral therapy vs risperidone for augmenting serotonin reuptake inhibitors in obsessive-compulsive disorder: a randomized clinical trial. JAMA Psychiatry 2013 70 11 1190 1199 10.1001/jamapsychiatry.2013.1932 24026523
    [Google Scholar]
  64. van Wel J.H.P. Kuypers K.P.C. Theunissen E.L. Bosker W.M. Bakker K. Ramaekers J.G. Effects of acute MDMA intoxication on mood and impulsivity: role of the 5-HT2 and 5-HT1 receptors. PLoS One 2012 7 7 e40187 10.1371/journal.pone.0040187 22808116
    [Google Scholar]
  65. Rajkumar R.P. SAPAP3, SPRED2, and obsessive-compulsive disorder: the search for fundamental phenotypes. Front. Mol. Neurosci. 2023 16 1095455 10.3389/fnmol.2023.1095455 37324590
    [Google Scholar]
  66. Witte JS Genome-wide association studies and beyond. Annu Rev Public Health 2010 31 1 9 20, 4, 20 10.1146/annurev.publhealth.012809.103723 20235850
    [Google Scholar]
  67. Sebastiani P. Timofeev N. Dworkis D.A. Perls T.T. Steinberg M.H. Genome‐wide association studies and the genetic dissection of complex traits. Am. J. Hematol. 2009 84 8 504 515 10.1002/ajh.21440 19569043
    [Google Scholar]
  68. Costas Costas J. Exon-focused genome-wide association study of obsessive-compulsive disorder and shared polygenic risk with schizophrenia. Transl. Psychiatry 2016 6 3 e768 10.1038/tp.2016.34
    [Google Scholar]
  69. Klein M.O. Battagello D.S. Cardoso A.R. Hauser D.N. Bittencourt J.C. Correa R.G. Dopamine: functions, signaling, and association with neurological diseases. Cell. Mol. Neurobiol. 2019 39 1 31 59 10.1007/s10571‑018‑0632‑3 30446950
    [Google Scholar]
  70. Siminovitch K.A. PTPN22 and autoimmune disease. Nat. Genet. 2004 36 12 1248 1249 10.1038/ng1204‑1248 15565104
    [Google Scholar]
  71. Wang K. Zhang H. Kugathasan S. Diverse genome-wide association studies associate the IL12/IL23 pathway with Crohn Disease. Am. J. Hum. Genet. 2009 84 3 399 405 10.1016/j.ajhg.2009.01.026 19249008
    [Google Scholar]
  72. Bryzgalov L.O. Korbolina E.E. Brusentsov I.I. Leberfarb E.Y. Bondar N.P. Merkulova T.I. Novel functional variants at the GWAS-implicated loci might confer risk to major depressive disorder, bipolar affective disorder and schizophrenia. BMC Neurosci. 2018 19 S1 Suppl. 1 22 10.1186/s12868‑018‑0414‑3 29745862
    [Google Scholar]
  73. Zhou Y. Danbolt N.C. Glutamate as a neurotransmitter in the healthy brain. J. Neural Transm. (Vienna) 2014 121 8 799 817 10.1007/s00702‑014‑1180‑8 24578174
    [Google Scholar]
  74. Naaz S. Balachander S. Srinivasa Murthy N. Association of SAPAP3 allelic variants with symptom dimensions and pharmacological treatment response in obsessive–compulsive disorder. Exp. Clin. Psychopharmacol. 2022 30 1 106 112 10.1037/pha0000422 32730059
    [Google Scholar]
  75. Shang Y. Wang N. Zhang E. Liu Q. Li H. Zhao X. The brain-derived neurotrophic factor Val66Met polymorphism is associated with female obsessive-compulsive disorder: An updated meta-analysis of 2765 obsessive-compulsive disorder cases and 5558 controls. Front. Psychiatry 2022 12 685041 10.3389/fpsyt.2021.685041 35095581
    [Google Scholar]
  76. Hall D. Dhilla A. Charalambous A. Gogos J.A. Karayiorgou M. Sequence variants of the brain-derived neurotrophic factor (BDNF) gene are strongly associated with obsessive-compulsive disorder. Am. J. Hum. Genet. 2003 73 2 370 376 10.1086/377003 12836135
    [Google Scholar]
  77. Harman W.W. McKim R.H. Mogar R.E. Fadiman J. Stolaroff M.J. Psychedelic agents in creative problem-solving: a pilot study. Psychol. Rep. 1966 19 1 211 227 10.2466/pr0.1966.19.1.211 5942087
    [Google Scholar]
  78. Chen V.C-H. Effects of selective serotonin reuptake inhibitors on glaucoma: A nationwide population-based study. PLoS One 2017 12 3 e0173005
    [Google Scholar]
  79. Deakin J.F.W. The origins of ‘5-HT and mechanisms of defence’ by Deakin and Graeff: A personal perspective. J. Psychopharmacol. 2013 27 12 1084 1089 10.1177/0269881113503508 24067790
    [Google Scholar]
  80. Andrade R. Haj-Dahmane S. Serotonin neuron diversity in the dorsal raphe. ACS Chem. Neurosci. 2013 4 1 22 25 10.1021/cn300224n 23336040
    [Google Scholar]
  81. Walther D.J. Peter J.U. Bashammakh S. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 2003 299 5603 76 6 10.1126/science.1078197 12511643
    [Google Scholar]
  82. Blue M.E. Molliver M.E. 6-hydroxydopamine induces serotonergic axon sprouting in cerebral cortex of newborn rat. Brain Res. Dev. Brain Res. 1987 32 2 255 269 10.1016/0165‑3806(87)90106‑4 3105821
    [Google Scholar]
  83. Beaudet A. Descarries L. Quantitative data on serotonin nerve terminals in adult rat neocortex. Brain Res. 1976 111 2 301 309 10.1016/0006‑8993(76)90775‑7 949604
    [Google Scholar]
  84. Amilhon B. Lepicard È. Renoir T. VGLUT3 (vesicular glutamate transporter type 3) contribution to the regulation of serotonergic transmission and anxiety. J. Neurosci. 2010 30 6 2198 2210 10.1523/JNEUROSCI.5196‑09.2010 20147547
    [Google Scholar]
  85. Chen S.K. Tvrdik P. Peden E. Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 2010 141 5 775 785 10.1016/j.cell.2010.03.055 20510925
    [Google Scholar]
  86. Neumann J. Hofmann B. Dhein S. Gergs U. Cardiac roles of serotonin (5-HT) and 5-HT-receptors in health and disease. Int. J. Mol. Sci. 2023 24 5 4765 10.3390/ijms24054765 36902195
    [Google Scholar]
  87. Halperin D. Reber G. Influence of antidepressants on hemostasis. Dialogues Clin. Neurosci. 2007 9 1 47 59 10.31887/DCNS.2007.9.1/dhalperin 17506225
    [Google Scholar]
  88. Berger M. Gray J.A. Roth B.L. The expanded biology of serotonin. Annu. Rev. Med. 2009 60 1 355 366 10.1146/annurev.med.60.042307.110802 19630576
    [Google Scholar]
  89. Yabut J.M. Crane J.D. Green A.E. Keating D.J. Khan W.I. Steinberg G.R. Emerging roles for serotonin in regulating metabolism: new implications for an ancient molecule. Endocr. Rev. 2019 40 4 1092 1107 10.1210/er.2018‑00283 30901029
    [Google Scholar]
  90. Bockaert J. Claeysen S. Bécamel C. Dumuis A. Marin P. Neuronal 5-HT metabotropic receptors: fine-tuning of their structure, signaling, and roles in synaptic modulation. Cell Tissue Res. 2006 326 2 553 572 10.1007/s00441‑006‑0286‑1 16896947
    [Google Scholar]
  91. Miquel M.C. Kia H.K. Boni C. Postnatal development and localization of 5-HTIA receptor mRNA in rat forebrain and cerebellum. Brain Res. Dev. Brain Res. 1994 80 1-2 149 157 10.1016/0165‑3806(94)90099‑X 7955340
    [Google Scholar]
  92. Miquel M.C. Emerit M.B. Nosjean A. Differential subcellular localization of the 5‐HT 3 ‐A s receptor subunit in the rat central nervous system. Eur. J. Neurosci. 2002 15 3 449 457 10.1046/j.0953‑816x.2001.01872.x 11876772
    [Google Scholar]
  93. Mengod Los Arcos G. Palacios J.M. Cortés R. Cartography of 5-HT1A and 5-HT2A Receptor Subtypes in Prefrontal Cortex and Its Projections. ACS Chem. Neurosci. 2015 6 7 1089 1098
    [Google Scholar]
  94. Sotelo C. Cholley B. El Mestikawy S. Gozlan H. Hamon M. Direct immunohistochemical evidence of the existence of 5‐HT1A autoreceptors on serotoninergic neurons in the midbrain raphe nuclei. Eur. J. Neurosci. 1990 2 12 1144 1154 10.1111/j.1460‑9568.1990.tb00026.x 12106075
    [Google Scholar]
  95. Burnet P.W.J. Eastwood S.L. Lacey K. Harrison P.J. The distribution of 5-HT1A and 5-HT2A receptor mRNA in human brain. Brain Res. 1995 676 1 157 168 10.1016/0006‑8993(95)00104‑X 7796165
    [Google Scholar]
  96. Kikuoka R. Miyazaki I. Kubota N. Mirtazapine exerts astrocyte-mediated dopaminergic neuroprotection. Sci. Rep. 2020 10 1 20698 10.1038/s41598‑020‑77652‑4 33244123
    [Google Scholar]
  97. Katayama J. Yakushiji T. Akaike N. Characterization of the K+ current mediated by 5-HT1A receptor in the acutely dissociated rat dorsal raphe neurons. Brain Res. 1997 745 1-2 283 292 10.1016/S0006‑8993(96)01141‑9 9037420
    [Google Scholar]
  98. Mogha A. Guariglia S.R. Debata P.R. Wen G.Y. Banerjee P. Serotonin 1A receptor-mediated signaling through ERK and PKCα is essential for normal synaptogenesis in neonatal mouse hippocampus. Transl. Psychiatry 2012 2 1 e66 e66 10.1038/tp.2011.58 22832728
    [Google Scholar]
  99. Liu J. Cao L. Li H. Abnormal resting-state functional connectivity in patients with obsessive-compulsive disorder: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2022 135 104574 10.1016/j.neubiorev.2022.104574 35151769
    [Google Scholar]
  100. Moyano S. Río J.D. Frechilla D. Role of hippocampal CaMKII in serotonin 5-HT(1A) receptor-mediated learning deficit in rats. Neuropsychopharmacology 2004 29 12 2216 2224 10.1038/sj.npp.1300504 15199370
    [Google Scholar]
  101. Cai X. Gu Z. Zhong P. Ren Y. Yan Z. Serotonin 5-HT1A receptors regulate AMPA receptor channels through inhibiting Ca2+/calmodulin-dependent kinase II in prefrontal cortical pyramidal neurons. J. Biol. Chem. 2002 277 39 36553 36562 10.1074/jbc.M203752200 12149253
    [Google Scholar]
  102. Bai F. Yin T. Johnstone E.M. Molecular cloning and pharmacological characterization of the guinea pig 5-HT1E receptor. Eur. J. Pharmacol. 2004 484 2-3 127 139 10.1016/j.ejphar.2003.11.019 14744596
    [Google Scholar]
  103. Vila-Pueyo M. Targeted 5-HT1F therapies for migraine. Neurotherapeutics 2018 15 2 291 303 10.1007/s13311‑018‑0615‑6 29488143
    [Google Scholar]
  104. Barnes N.M. Ahern G.P. Becamel C. International Union of Basic and Clinical Pharmacology. CX. Classification of receptors for 5-hydroxytryptamine; pharmacology and function. Pharmacol. Rev. 2021 73 1 310 520 10.1124/pr.118.015552 33370241
    [Google Scholar]
  105. Leysen J. 5-HT2 Receptors. Curr. Drug Targets CNS Neurol. Disord. 2004 3 1 11 26 10.2174/1568007043482598 14965241
    [Google Scholar]
  106. Boczek T. Mackiewicz J. Sobolczyk M. The role of G protein-coupled receptors (GPCRs) and calcium signaling in schizophrenia. Focus on GPCRs activated by neurotransmitters and chemokines. Cells 2021 10 5 1228 10.3390/cells10051228 34067760
    [Google Scholar]
  107. Weisstaub N.V. Zhou M. Lira A. Cortical 5-HT2A receptor signaling modulates anxiety-like behaviors in mice. Science 2006 313 5786 536 540 10.1126/science.1123432 16873667
    [Google Scholar]
  108. Bressa G.M. Marini S. Gregori S. Serotonin S2 receptors blockage and generalized anxiety disorders. A double-blind study on ritanserin and lorazepam. Int. J. Clin. Pharmacol. Res. 1987 7 2 111 119 3108171
    [Google Scholar]
  109. Zanoveli J.M. Nogueira R.L. Zangrossi H. Jr Chronic imipramine treatment sensitizes 5-HT1A and 5-HT2A receptors in the dorsal periaqueductal gray matter: evidence from the elevated T-maze test of anxiety. Behav. Pharmacol. 2005 16 7 543 552 10.1097/01.fbp.0000179280.05654.5a 16170231
    [Google Scholar]
  110. Harvey J.A. Schlosberg A.J. Yunger L.M. Behavioral correlates of serotonin depletion. Behavioral Pharmacology FASEB Monographs. Boston, MA Springer 1975 4 10.1007/978‑1‑4684‑2634‑2_8
    [Google Scholar]
  111. Catlow B.J. Song S. Paredes D.A. Kirstein C.L. Sanchez-Ramos J. Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning. Exp. Brain Res. 2013 228 4 481 491 10.1007/s00221‑013‑3579‑0 23727882
    [Google Scholar]
  112. Gewirtz J.C. Chen A.C. Terwilliger R. Duman R.C. Marek G.J. Modulation of DOI-induced increases in cortical BDNF expression by group II mGlu receptors. Pharmacol. Biochem. Behav. 2002 73 2 317 326 10.1016/S0091‑3057(02)00844‑4 12117585
    [Google Scholar]
  113. Wang P. Zhao Q. Xu T. Interaction between PGRN gene and the early trauma on clinical characteristics in patients with obsessive-compulsive disorder. J. Affect. Disord. 2020 263 134 140 10.1016/j.jad.2019.11.111 31818769
    [Google Scholar]
  114. Kursar J.D. Nelson D.L. Wainscott D.B. Baez M. Molecular cloning, functional expression, and mRNA tissue distribution of the human 5-hydroxytryptamine2B receptor. Mol. Pharmacol. 1994 46 2 227 234 8078486
    [Google Scholar]
  115. Kauer J.A. Malenka R.C. Synaptic plasticity and addiction. Nat. Rev. Neurosci. 2007 8 11 844 858 10.1038/nrn2234 17948030
    [Google Scholar]
  116. Wirth A. Holst K. Ponimaskin E. How serotonin receptors regulate morphogenic signalling in neurons. Prog. Neurobiol. 2017 151 35 56 10.1016/j.pneurobio.2016.03.007 27013076
    [Google Scholar]
  117. Radke A.K. Piantadosi P.T. Uhl G.R. Hall F.S. Holmes A. Improved visual discrimination learning in mice with partial 5-HT2B gene deletion. Neurosci. Lett. 2020 738 135378 10.1016/j.neulet.2020.135378 32920046
    [Google Scholar]
  118. Thompson A.J. Lummis S.C. 5-HT3 receptors. Curr. Pharm. Des. 2006 12 28 3615 3630 10.2174/138161206778522029 17073663
    [Google Scholar]
  119. Berg K.A. Clarke W.P. Cunningham K.A. Spampinato U. Fine-tuning serotonin2c receptor function in the brain: Molecular and functional implications. Neuropharmacology 2008 55 6 969 976 10.1016/j.neuropharm.2008.06.014 18602407
    [Google Scholar]
  120. Maricq A.V. Peterson A.S. Brake A.J. Myers R.M. Julius D. Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 1991 254 5030 432 437 10.1126/science.1718042 1718042
    [Google Scholar]
  121. Bijak M. Misgeld U. Effects of serotonin through serotonin1A and serotonin4 receptors on inhibition in the guinea-pig dentate gyrus in vitro. Neuroscience 1997 78 4 1017 1026 10.1016/S0306‑4522(96)00666‑5 9174070
    [Google Scholar]
  122. Niesler B. Frank B. Kapeller J. Rappold G.A. Cloning, physical mapping and expression analysis of the human 5-HT3 serotonin receptor-like genes HTR3C, HTR3D and HTR3E. Gene 2003 310 101 111 10.1016/S0378‑1119(03)00503‑1 12801637
    [Google Scholar]
  123. Bianchi C. Rodi D. Marino S. Beani L. Siniscalchi A. Dual effects of 5-HT4 receptor activation on GABA release from guinea pig hippocampal slices. Neuroreport 2002 13 17 2177 2180 10.1097/00001756‑200212030‑00003 12488792
    [Google Scholar]
  124. Tecott L.H. Maricq A.V. Julius D. Nervous system distribution of the serotonin 5-HT3 receptor mRNA. Proc. Natl. Acad. Sci. USA 1993 90 4 1430 1434 10.1073/pnas.90.4.1430 8434003
    [Google Scholar]
  125. Nayak S.V. Rondé P. Spier A.D. Lummis S.C.R. Nichols R.A. Calcium changes induced by presynaptic 5-hydroxytryptamine-3 serotonin receptors on isolated terminals from various regions of the rat brain. Neuroscience 1999 91 1 107 117 10.1016/S0306‑4522(98)00520‑X 10336063
    [Google Scholar]
  126. Krzywkowski K. Davies P.A. Feinberg-Zadek P.L. Bräuner-Osborne H. Jensen A.A. High-frequency HTR3B variant associated with major depression dramatically augments the signaling of the human 5-HT 3AB receptor. Proc. Natl. Acad. Sci. USA 2008 105 2 722 727 10.1073/pnas.0708454105 18184810
    [Google Scholar]
  127. Katsurabayashi S. Kubota H. Tokutomi N. Akaike N. A distinct distribution of functional presynaptic 5-HT receptor subtypes on GABAergic nerve terminals projecting to single hippocampal CA1 pyramidal neurons. Neuropharmacology 2003 44 8 1022 1030 10.1016/S0028‑3908(03)00103‑5 12763095
    [Google Scholar]
  128. Barthet G. Gaven F. Framery B. Uncoupling and endocytosis of 5-hydroxytryptamine 4 receptors. Distinct molecular events with different GRK2 requirements. J. Biol. Chem. 2005 280 30 27924 27934 10.1074/jbc.M502272200 15919661
    [Google Scholar]
  129. Compan V. Zhou M. Grailhe R. Attenuated response to stress and novelty and hypersensitivity to seizures in 5-HT4 receptor knock-out mice. J. Neurosci. 2004 24 2 412 419 10.1523/JNEUROSCI.2806‑03.2004 14724239
    [Google Scholar]
  130. Consolo S. Arnaboldi S. Giorgi S. Russi G. Ladinsky H. 5-HT4 receptor stimulation facilitates acetylcholine release in rat frontal cortex. Neuroreport 1994 5 10 1230 1232 10.1097/00001756‑199406020‑00018 7919171
    [Google Scholar]
  131. Lucas G. Compan V. Charnay Y. Frontocortical 5-HT4 receptors exert positive feedback on serotonergic activity: Viral transfections, subacute and chronic treatments with 5-HT4 agonists. Biol. Psychiatry 2005 57 8 918 925 10.1016/j.biopsych.2004.12.023 15820713
    [Google Scholar]
  132. Lucas G. Rymar V.V. Du J. Serotonin(4) (5-HT(4)) receptor agonists are putative antidepressants with a rapid onset of action. Neuron 2007 55 5 712 725 10.1016/j.neuron.2007.07.041 17785179
    [Google Scholar]
  133. Bonhomme N. De Deurwaèrdere P. Le Moal M. Spampinato U. Evidence for 5-HT4 receptor subtype involvement in the enhancement of striatal dopamine release induced by serotonin: a microdialysis study in the halothane-anesthetized rat. Neuropharmacology 1995 34 3 269 279 10.1016/0028‑3908(94)00145‑I 7543190
    [Google Scholar]
  134. Covington H.E. III Lobo M.K. Maze I. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J. Neurosci. 2010 30 48 16082 16090 10.1523/JNEUROSCI.1731‑10.2010 21123555
    [Google Scholar]
  135. Alizadeh N. Nosrat N. Jahani Z. Ahmadiani A. Asadi S. Shams J. Association of HTR1A gene polymorphisms with obsessive–compulsive disorder and its treatment response: the influence of sex and clinical characteristics. Int. J. Neurosci. 2019 129 3 264 272 10.1080/00207454.2018.1526799 30232922
    [Google Scholar]
  136. Nelson D. 5-HT5 Receptors. Curr. Drug Targets CNS Neurol. Disord. 2004 3 1 53 58 10.2174/1568007043482606 14965244
    [Google Scholar]
  137. Gérard C. Martres M.P. Lefèvre K. Immuno-localization of serotonin 5-HT6 receptor-like material in the rat central nervous system. Brain Res. 1997 746 1-2 207 219 10.1016/S0006‑8993(96)01224‑3 9037500
    [Google Scholar]
  138. Hamon M. Doucet E. Lefèvre K. Antibodies and antisense oligonucleotide for probing the distribution and putative functions of central 5-HT6 receptors. Neuropsychopharmacology 1999 21 2 Suppl. 68S 76S 10.1016/S0893‑133X(99)00044‑5 10432491
    [Google Scholar]
  139. Lieben C.K.J. Blokland A. Şık A. Sung E. van Nieuwenhuizen P. Schreiber R. The selective 5-HT6 receptor antagonist Ro4368554 restores memory performance in cholinergic and serotonergic models of memory deficiency in the rat. Neuropsychopharmacology 2005 30 12 2169 2179 10.1038/sj.npp.1300777 15957009
    [Google Scholar]
  140. Hirst W.D. Stean T.O. Rogers D.C. SB-399885 is a potent, selective 5-HT6 receptor antagonist with cognitive enhancing properties in aged rat water maze and novel object recognition models. Eur. J. Pharmacol. 2006 553 1-3 109 119 10.1016/j.ejphar.2006.09.049 17069795
    [Google Scholar]
  141. Baca-Garcia E. Vaquero-Lorenzo C. Diaz-Hernandez M. Association between obsessive–compulsive disorder and a variable number of tandem repeats polymorphism in intron 2 of the serotonin transporter gene. Prog. Neuropsychopharmacol. Biol. Psychiatry 2007 31 2 416 420 10.1016/j.pnpbp.2006.10.016 17174018
    [Google Scholar]
  142. Enoch M.A. Kaye W.H. Rotondo A. Greenberg B.D. Murphy D.L. Goldman D. 5-HT2A promoter polymorphism −1438G/A, anorexia nervosa, and obsessive-compulsive disorder. Lancet 1998 351 9118 1785 1786 10.1016/S0140‑6736(05)78746‑8 9635956
    [Google Scholar]
  143. Sinopoli V.M. Erdman L. Burton C.L. Serotonin system gene variants and regional brain volume differences in pediatric OCD. Brain Imaging Behav. 2020 14 5 1612 1625 10.1007/s11682‑019‑00092‑w 31187473
    [Google Scholar]
  144. Dickel D.E. Veenstra-VanderWeele J. Bivens N.C. Association studies of serotonin system candidate genes in early-onset obsessive-compulsive disorder. Biol. Psychiatry 2007 61 3 322 329 10.1016/j.biopsych.2006.09.030 17241828
    [Google Scholar]
  145. Lennertz L. Wagner M. Frommann I. A coding variant of the novel serotonin receptor subunit 5-HT3E influences sustained attention in schizophrenia patients. Eur. Neuropsychopharmacol. 2010 20 6 414 420 10.1016/j.euroneuro.2010.02.012 20356718
    [Google Scholar]
  146. Best J.A. Nijhout H.F. Reed M.C. Homeostatic mechanisms in dopamine synthesis and release: a mathematical model. Theor. Biol. Med. Model. 2009 6 1 21 10.1186/1742‑4682‑6‑21 19740446
    [Google Scholar]
  147. Jiang C. Ma X. Qi S. Association between TNF-α-238G/A gene polymorphism and OCD susceptibility. Medicine (Baltimore) 2018 97 5 e9769 10.1097/MD.0000000000009769 29384866
    [Google Scholar]
  148. Yao W.D. Gainetdinov R.R. Arbuckle M.I. Identification of PSD-95 as a regulator of dopamine-mediated synaptic and behavioral plasticity. Neuron 2004 41 4 625 638 10.1016/S0896‑6273(04)00048‑0 14980210
    [Google Scholar]
  149. Carlsson A. A paradigm shift in brain research. Science 2001 294 5544 1021 1024 10.1126/science.1066969 11691978
    [Google Scholar]
  150. Elsworth J.D. Roth R.H. Dopamine synthesis, uptake, metabolism, and receptors: relevance to gene therapy of Parkinson’s disease. Exp. Neurol. 1997 144 1 4 9 10.1006/exnr.1996.6379 9126143
    [Google Scholar]
  151. Prasad A.A. Pasterkamp R.J. Axon guidance in the dopamine system. In: Development and Engineering of Dopamine Neurons. 2009 91 100
    [Google Scholar]
  152. Jaber M. Robinson S.W. Missale C. Caron M.G. Dopamine receptors and brain function. Neuropharmacology 1996 35 11 1503 1519 10.1016/S0028‑3908(96)00100‑1 9025098
    [Google Scholar]
  153. Neve K.A. Seamans J.K. Trantham-Davidson H. Dopamine receptor signaling. J. Recept. Signal Transduct. Res. 2004 24 3 165 205 10.1081/RRS‑200029981
    [Google Scholar]
  154. Missale C. Nash S.R. Robinson S.W. Jaber M. Caron M.G. Dopamine receptors: from structure to function. Physiol. Rev. 1998 78 1 189 225 10.1152/physrev.1998.78.1.189 9457173
    [Google Scholar]
  155. Ford C.P. The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neuroscience 2014 282 13 22 10.1016/j.neuroscience.2014.01.025 24463000
    [Google Scholar]
  156. Light K.J. Joyce P.R. Luty S.E. Preliminary evidence for an association between a dopamine D3 receptor gene variant and obsessive‐compulsive personality disorder in patients with major depression. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 2006 141B 4 409 413 10.1002/ajmg.b.30308 16583407
    [Google Scholar]
  157. McGregor N.W. Lochner C. Stein D.J. Hemmings S.M.J. Polymorphisms within the neuronal cadherin (CDH2) gene are associated with obsessive-compulsive disorder (OCD) in a South African cohort. Metab. Brain Dis. 2016 31 1 191 196 10.1007/s11011‑015‑9693‑x 26093892
    [Google Scholar]
  158. Millet B. Chabane N. Delorme R. Association between the dopamine receptor D4 (DRD4) gene and obsessive‐compulsive disorder. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 2003 116B 1 55 59 10.1002/ajmg.b.10034 12497615
    [Google Scholar]
  159. Frisch A. Michaelovsky E. Rockah R. Association between obsessive-compulsive disorder and polymorphisms of genes encoding components of the serotonergic and dopaminergic pathways. Eur. Neuropsychopharmacol. 2000 10 3 205 209 10.1016/S0924‑977X(00)00071‑7 10793323
    [Google Scholar]
  160. Hemmings S. Kinnear C.J. Niehaus D.J. Investigating the role of dopaminergic and serotonergic candidate genes in obsessive-compulsive disorder. Eur. Neuropsychopharmacol. 2003 13 2 93 98 10.1016/S0924‑977X(02)00129‑3 12650952
    [Google Scholar]
  161. Kumar P. Rai V. Catechol-O-methyltransferase gene Val158Met polymorphism and obsessive compulsive disorder susceptibility: a meta-analysis. Metab. Brain Dis. 2020 35 2 241 251 10.1007/s11011‑019‑00495‑0 31879835
    [Google Scholar]
  162. Gassó P. Ortiz A.E. Mas S. Association between genetic variants related to glutamatergic, dopaminergic and neurodevelopment pathways and white matter microstructure in child and adolescent patients with obsessive–compulsive disorder. J. Affect. Disord. 2015 186 284 292 10.1016/j.jad.2015.07.035 26254621
    [Google Scholar]
  163. Yelamanchi S.D. Jayaram S. Thomas J.K. A pathway map of glutamate metabolism. J. Cell Commun. Signal. 2016 10 1 69 75 10.1007/s12079‑015‑0315‑5 26635200
    [Google Scholar]
  164. Papes F. Surpili M.J. Langone F. Trigo J.R. Arruda P. The essential amino acid lysine acts as precursor of glutamate in the mammalian central nervous system. FEBS Lett. 2001 488 1-2 34 38 10.1016/S0014‑5793(00)02401‑7 11163791
    [Google Scholar]
  165. Centelles J.J. Centelles J.J. Excitatory amino acid neurotransmission Pathways for metabolism storage and reuptake of glutamate in brain. Front. Biosci. 1998 3 4 A314 10.2741/A314 9665875
    [Google Scholar]
  166. Baker D.A. Xi Z.X. Shen H. Swanson C.J. Kalivas P.W. The origin and neuronal function of in vivo nonsynaptic glutamate. J. Neurosci. 2002 22 20 9134 9141 10.1523/JNEUROSCI.22‑20‑09134.2002 12388621
    [Google Scholar]
  167. Pal M.M. Glutamate: The master neurotransmitter and its implications in chronic stress and mood disorders. Front. Hum. Neurosci. 2021 15 722323 10.3389/fnhum.2021.722323 34776901
    [Google Scholar]
  168. Watkins JC Jane DE The glutamate story. Br J Pharmacol 2006 147 (Suppl 1)(Suppl. 1) S100 S108 16402093
    [Google Scholar]
  169. Conn P.J. Pin J.P. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 1997 37 1 205 237 10.1146/annurev.pharmtox.37.1.205 9131252
    [Google Scholar]
  170. Suárez-Pozos E. Thomason E.J. Fuss B. Glutamate transporters: expression and function in oligodendrocytes. Neurochem. Res. 2020 45 3 551 560 10.1007/s11064‑018‑02708‑x 30628017
    [Google Scholar]
  171. Furness D.N. Dehnes Y. Akhtar A.Q. A quantitative assessment of glutamate uptake into hippocampal synaptic terminals and astrocytes: New insights into a neuronal role for excitatory amino acid transporter 2 (EAAT2). Neuroscience 2008 157 1 80 94 10.1016/j.neuroscience.2008.08.043 18805467
    [Google Scholar]
  172. Crupi R. Impellizzeri D. Cuzzocrea S. Role of metabotropic glutamate receptors in neurological disorders. Front. Mol. Neurosci. 2019 12 20 10.3389/fnmol.2019.00020 30800054
    [Google Scholar]
  173. Laube B. Kuhse J. Betz H. Evidence for a tetrameric structure of recombinant NMDA receptors. J. Neurosci. 1998 18 8 2954 2961 10.1523/JNEUROSCI.18‑08‑02954.1998 9526012
    [Google Scholar]
  174. Mano I. Teichberg V.I. A tetrameric subunit stoichiometry for a glutamate receptor–channel complex. Neuroreport 1998 9 2 327 331 10.1097/00001756‑199801260‑00027 9507977
    [Google Scholar]
  175. Rosenmund C. Stern-Bach Y. Stevens C.F. The tetrameric structure of a glutamate receptor channel. Science 1998 280 5369 1596 1599 10.1126/science.280.5369.1596
    [Google Scholar]
  176. Arnold P.D. MacMaster F.P. Richter M.A. Glutamate receptor gene (GRIN2B) associated with reduced anterior cingulate glutamatergic concentration in pediatric obsessive–compulsive disorder. Psychiatry Res. Neuroimaging 2009 172 2 136 139 10.1016/j.pscychresns.2009.02.005 19324536
    [Google Scholar]
  177. Dickel D.E. Veenstra-VanderWeele J. Cox N.J. Association testing of the positional and functional candidate gene SLC1A1/EAAC1 in early-onset obsessive-compulsive disorder. Arch. Gen. Psychiatry 2006 63 7 778 785 10.1001/archpsyc.63.7.778 16818867
    [Google Scholar]
  178. Kohlrausch F.B. Giori I.G. Melo-Felippe F.B. Association of GRIN2B gene polymorphism and Obsessive Compulsive disorder and symptom dimensions: A pilot study. Psychiatry Res. 2016 243 152 155 10.1016/j.psychres.2016.06.027 27394963
    [Google Scholar]
  179. Ortiz A.E. Gassó P. Mas S. Association between genetic variants of serotonergic and glutamatergic pathways and the concentration of neurometabolites of the anterior cingulate cortex in paediatric patients with obsessive–compulsive disorder. World J. Biol. Psychiatry 2016 17 5 394 404 10.3109/15622975.2015.1111524 26505676
    [Google Scholar]
  180. Szeszko P.R. Ardekani B.A. Ashtari M. White matter abnormalities in obsessive-compulsive disorder: a diffusion tensor imaging study. Arch. Gen. Psychiatry 2005 62 7 782 790 10.1001/archpsyc.62.7.782 15997020
    [Google Scholar]
  181. Hounie A.G. Cappi C. Cordeiro Q. TNF-alpha polymorphisms are associated with obsessive-compulsive disorder. Neurosci. Lett. 2008 442 2 86 90 10.1016/j.neulet.2008.07.022 18639610
    [Google Scholar]
  182. Cengiz M. Okutan S.N. Bayoglu B. Sakalli Kani A. Bayar R. Kocabasoglu N. Genetic polymorphism of the serotonin transporter gene, SLC6A4 rs16965628, is associated with obsessive compulsive disorder. Genet. Test. Mol. Biomarkers 2015 19 5 228 234 10.1089/gtmb.2014.0319 25751280
    [Google Scholar]
  183. Stamatis C.A. Engelmann J.B. Ziegler C. Domschke K. Hasler G. Timpano K.R. A neuroeconomic investigation of 5-HTT / 5-HT1A gene variation, social anxiety, and risk-taking behavior. Anxiety Stress Coping 2020 33 2 176 192 10.1080/10615806.2020.1722597 32009446
    [Google Scholar]
  184. Mas S. Pagerols M. Gassó P. Role ofGAD2 andHTR1B genes in early‐onset obsessive‐compulsive disorder: results from transmission disequilibrium study. Genes Brain Behav. 2014 13 4 409 417 10.1111/gbb.12128 24571444
    [Google Scholar]
  185. Deng M. Wang Y. Yu S. Exploring Association Between Serotonin and Neurogenesis Related Genes in Obsessive-Compulsive Disorder in Chinese Han People: Promising Association Between DMRT2, miR-30a-5p, and Early-Onset Patients. Front. Psychiatry 2022 13 857574 10.3389/fpsyt.2022.857574 35633798
    [Google Scholar]
  186. Boloc D. Mas S. Rodriguez N. Genetic associations of serotoninergic and GABAergic genes in an extended collection of early-onset obsessive-compulsive disorder trios. J. Child Adolesc. Psychopharmacol. 2019 29 2 152 157 10.1089/cap.2018.0073 30351181
    [Google Scholar]
  187. Gomes C.K.F. Vieira-Fonseca T. Melo-Felippe F.B. de Salles Andrade J.B. Fontenelle L.F. Kohlrausch F.B. Association analysis of SLC6A4 and HTR2A genes with obsessive-compulsive disorder: Influence of the STin2 polymorphism. Compr. Psychiatry 2018 82 1 6 10.1016/j.comppsych.2017.12.004 29331882
    [Google Scholar]
  188. Sina M. Ahmadiani A. Asadi S. Shams J. Association of serotonin receptor 2a haplotypes with obsessive–compulsive disorder and its treatment response in Iranian patients: a genetic and pharmacogenetic study. Neuropsychiatr. Dis. Treat. 2018 14 1199 1209 10.2147/NDT.S163946 29785111
    [Google Scholar]
  189. Unschuld P.G. Ising M. Erhardt A. Polymorphisms in the serotonin receptor gene HTR2A are associated with quantitative traits in panic disorder. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 2007 144B 4 424 429 10.1002/ajmg.b.30412 17440930
    [Google Scholar]
  190. Kim H.W. Kang J.I. Lee S.H. Common variants of HTR3 genes are associated with obsessive-compulsive disorder and its phenotypic expression. Sci. Rep. 2016 6 1 32564 10.1038/srep32564 27616601
    [Google Scholar]
  191. Grünblatt E. Marinova Z. Roth A. Combining genetic and epigenetic parameters of the serotonin transporter gene in obsessive-compulsive disorder. J. Psychiatr. Res. 2018 96 209 217 10.1016/j.jpsychires.2017.10.010 29102815
    [Google Scholar]
  192. Sutcliffe J.S. Delahanty R.J. Prasad H.C. Allelic heterogeneity at the serotonin transporter locus (SLC6A4) confers susceptibility to autism and rigid-compulsive behaviors. Am. J. Hum. Genet. 2005 77 2 265 279 10.1086/432648 15995945
    [Google Scholar]
  193. Dennen C.A. Blum K. Bowirrat A. Genetic addiction risk severity assessment identifies polymorphic reward genes as antecedents to reward deficiency syndrome (RDS) hypodopaminergia’s effect on addictive and non-addictive behaviors in a nuclear family. J. Pers. Med. 2022 12 11 1864 10.3390/jpm12111864 36579592
    [Google Scholar]
  194. Lochner C. McGregor N. Hemmings S. Symmetry symptoms in obsessive-compulsive disorder: clinical and genetic correlates. Rev. Bras. Psiquiatr. 2015 38 1 17 23 10.1590/1516‑4446‑2014‑1619 26291046
    [Google Scholar]
  195. Savitz J. Hodgkinson C.A. Martin-Soelch C. The functional DRD3 Ser9Gly polymorphism (rs6280) is pleiotropic, affecting reward as well as movement. PLoS One 2013 8 1 e54108 10.1371/journal.pone.0054108 23365649
    [Google Scholar]
  196. Alonso P. Gratacós M. Segalàs C. Association between the NMDA glutamate receptor GRIN2B gene and obsessive–compulsive disorder. J. Psychiatry Neurosci. 2012 37 4 273 281 10.1503/jpn.110109 22433450
    [Google Scholar]
  197. Cai J. Zhang W. Yi Z. Influence of polymorphisms in genes SLC1A1, GRIN2B, and GRIK2 on clozapine-induced obsessive–compulsive symptoms. Psychopharmacology (Berl.) 2013 230 1 49 55 10.1007/s00213‑013‑3137‑2 23660601
    [Google Scholar]
  198. Sampaio A.S. Fagerness J. Crane J. Association between polymorphisms in GRIK2 gene and obsessive-compulsive disorder: a family-based study. CNS Neurosci. Ther. 2011 17 3 141 147 10.1111/j.1755‑5949.2009.00130.x 20370803
    [Google Scholar]
  199. Takenouchi T. Hashida N. Torii C. Kosaki R. Takahashi T. Kosaki K. 1p34.3 deletion involving GRIK 3: Further clinical implication of GRIK family glutamate receptors in the pathogenesis of developmental delay. Am. J. Med. Genet. A. 2014 164 2 456 460 10.1002/ajmg.a.36240 24449200
    [Google Scholar]
  200. Abdolhosseinzadeh S. Sina M. Ahmadiani A. Asadi S. Shams J. Genetic and pharmacogenetic study of glutamate transporter (SLC1A1) in Iranian patients with obsessive-compulsive disorder. J. Clin. Pharm. Ther. 2019 44 1 39 48 10.1111/jcpt.12766 30315580
    [Google Scholar]
  201. de Salles Andrade J.B. Giori I.G. Melo-Felippe F.B. Vieira-Fonseca T. Fontenelle L.F. Kohlrausch F.B. Glutamate transporter gene polymorphisms and obsessive-compulsive disorder: A case-control association study. J. Clin. Neurosci. 2019 62 53 59 10.1016/j.jocn.2019.01.009 30661718
    [Google Scholar]
  202. Huang X Liu J Cong J, Zhang X. Association between the slc1a1 glutamate transporter gene and obsessive-compulsive disorder in the chinese han population Neuropsychiatr. Dis. Treat. 2021 17 347 354 10.2147/NDT.S281623 33574671
    [Google Scholar]
  203. Arnold P.D. Sicard T. Burroughs E. Richter M.A. Kennedy J.L. Glutamate transporter gene SLC1A1 associated with obsessive-compulsive disorder. Arch. Gen. Psychiatry 2006 63 7 769 776 10.1001/archpsyc.63.7.769 16818866
    [Google Scholar]
  204. Kim H.W. Kang J.I. Hwang E.H. Kim S.J. Association between glutamate transporter gene polymorphisms and obsessive-compulsive disorder/trait empathy in a Korean population. PLoS One 2018 13 1 e0190593 10.1371/journal.pone.0190593 29304071
    [Google Scholar]
  205. Wendland J.R. Moya P.R. Timpano K.R. A haplotype containing quantitative trait loci for SLC1A1 gene expression and its association with obsessive-compulsive disorder. Arch. Gen. Psychiatry 2009 66 4 408 416 10.1001/archgenpsychiatry.2009.6 19349310
    [Google Scholar]
  206. Wu K. Hanna G.L. Easter P. Kennedy J.L. Rosenberg D.R. Arnold P.D. Glutamate system genes and brain volume alterations in pediatric obsessive-compulsive disorder: A preliminary study. Psychiatry Res. Neuroimaging 2013 211 3 214 220 10.1016/j.pscychresns.2012.07.003 23154099
    [Google Scholar]
  207. Bi Y. Ren D. Guo Z. Influence and interaction of genetic, cognitive, neuroendocrine and personalistic markers to antidepressant response in Chinese patients with major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021 104 110036 10.1016/j.pnpbp.2020.110036 32702381
    [Google Scholar]
  208. Liu Y. Zhang L. Mei R. The role of SliTrk5 in central nervous system. BioMed Res. Int. 2022 2022 1 1 10 10.1155/2022/4678026 35872846
    [Google Scholar]
  209. McGregor N.W. Hemmings S.M.J. Erdman L. Calmarza-Font I. Stein D.J. Lochner C. Modification of the association between early adversity and obsessive-compulsive disorder by polymorphisms in the MAOA, MAOB and COMT genes. Psychiatry Res. 2016 246 527 532 10.1016/j.psychres.2016.10.044 27821364
    [Google Scholar]
  210. Chmielowiec K. Chmielowiec J. Masiak J. Associations between the COMT rs4680 gene polymorphism and personality dimensions and anxiety in patients with a diagnosis of other stimulants dependence. Genes (Basel) 2022 13 10 1768 10.3390/genes13101768 36292653
    [Google Scholar]
  211. Melo-Felippe F.B. de Salles Andrade J.B. Giori I.G. Vieira-Fonseca T. Fontenelle L.F. Kohlrausch F.B. Catechol-O-methyltransferase gene polymorphisms in specific obsessive–compulsive disorder patients’ subgroups. J. Mol. Neurosci. 2016 58 1 129 136 10.1007/s12031‑015‑0697‑0 26687156
    [Google Scholar]
  212. Mössner R. Walitza S. Geller F. Transmission disequilibrium of polymorphic variants in the tryptophan hydroxylase-2 gene in children and adolescents with obsessive–compulsive disorder. Int. J. Neuropsychopharmacol. 2006 9 4 437 442 10.1017/S1461145705005997 16146581
    [Google Scholar]
  213. Mattheisen M. Samuels J.F. Wang Y. Genome-wide association study in obsessive-compulsive disorder: results from the OCGAS. Mol. Psychiatry 2015 20 3 337 344 10.1038/mp.2014.43 24821223
    [Google Scholar]
  214. Wu H. Wang X. Xiao Z. Association between SLC1A1 gene and early-onset OCD in the Han Chinese population: a case-control study. J. Mol. Neurosci. 2013 50 2 353 359 10.1007/s12031‑013‑9995‑6 23564280
    [Google Scholar]
  215. Goodman W.K. Storch E.A. Sheth S.A. Harmonizing the neurobiology and treatment of obsessive-compulsive disorder. Am. J. Psychiatry 2021 178 1 17 29 10.1176/appi.ajp.2020.20111601 33384007
    [Google Scholar]
  216. Rădulescu A. Herron J. Kennedy C. Scimemi A. Global and local excitation and inhibition shape the dynamics of the cortico-striatal-thalamo-cortical pathway. Sci. Rep. 2017 7 1 7608 10.1038/s41598‑017‑07527‑8 28790376
    [Google Scholar]
  217. Bonelli R.M. Cummings J.L. Frontal-subcortical circuitry and behavior. Dialogues Clin. Neurosci. 2007 9 2 141 151 10.31887/DCNS.2007.9.2/rbonelli 17726913
    [Google Scholar]
  218. Ting J.T. Feng G. Neurobiology of obsessive–compulsive disorder: insights into neural circuitry dysfunction through mouse genetics. Curr. Opin. Neurobiol. 2011 21 6 842 848 10.1016/j.conb.2011.04.010 21605970
    [Google Scholar]
  219. Aouci R. El Soudany M. Maakoul Z. Dlx5/6 Expression Levels in Mouse GABAergic Neurons Regulate Adult Parvalbumin Neuronal Density and Anxiety/Compulsive Behaviours. Cells 2022 11 11 1739 10.3390/cells11111739 35681437
    [Google Scholar]
  220. Greer J.M. Capecchi M.R. Hoxb8 is required for normal grooming behavior in mice. Neuron 2002 33 1 23 34 10.1016/S0896‑6273(01)00564‑5 11779477
    [Google Scholar]
  221. Cath D.C. van Grootheest D.S. Willemsen G. van Oppen P. Boomsma D.I. Environmental factors in obsessive-compulsive behavior: evidence from discordant and concordant monozygotic twins. Behav. Genet. 2008 38 2 108 120 10.1007/s10519‑007‑9185‑9 18188688
    [Google Scholar]
  222. Brander G. Rydell M. Kuja-Halkola R. Association of perinatal risk factors with obsessive-compulsive disorder: a population-based birth cohort, sibling control study. JAMA Psychiatry 2016 73 11 1135 1144 10.1001/jamapsychiatry.2016.2095 27706475
    [Google Scholar]
  223. Riffkin J. Yücel M. Maruff P. A manual and automated MRI study of anterior cingulate and orbito-frontal cortices, and caudate nucleus in obsessive-compulsive disorder: comparison with healthy controls and patients with schizophrenia. Psychiatry Res. Neuroimaging 2005 138 2 99 113 10.1016/j.pscychresns.2004.11.007 15766634
    [Google Scholar]
  224. Biria M. Cantonas L-M. Banca P. Magnetic Resonance Spectroscopy (MRS) and Positron Emission Tomography (PET) Imaging in Obsessive-Compulsive Disorder. Curr. Top. Behav. Neurosci. 2021 49 231 268
    [Google Scholar]
  225. Eng G.K. Sim K. Chen S.H.A. Meta-analytic investigations of structural grey matter, executive domain-related functional activations, and white matter diffusivity in obsessive compulsive disorder: An integrative review. Neurosci. Biobehav. Rev. 2015 52 233 257 10.1016/j.neubiorev.2015.03.002 25766413
    [Google Scholar]
  226. Bowen Z. Changlian T. Qian L. Gray matter abnormalities of orbitofrontal cortex and striatum in drug-naive adult patients with obsessive-compulsive disorder. Front. Psychiatry 2021 12 674568 10.3389/fpsyt.2021.674568 34168582
    [Google Scholar]
  227. Pinto B.S. Cavendish B.A. da Silva P.H.R. The effects of transcranial direct current stimulation in obsessive–compulsive disorder symptoms: a meta-analysis and integrated electric fields modeling analysis. Biomedicines 2022 11 1 80 10.3390/biomedicines11010080 36672588
    [Google Scholar]
  228. Posner J. Marsh R. Maia T.V. Peterson B.S. Gruber A. Simpson H.B. Reduced functional connectivity within the limbic cortico‐striato‐thalamo‐cortical loop in unmedicated adults with obsessive‐compulsive disorder. Hum. Brain Mapp. 2014 35 6 2852 2860 10.1002/hbm.22371 24123377
    [Google Scholar]
  229. Jangwan N.S. Ashraf G.M. Ram V. Brain augmentation and neuroscience technologies: current applications, challenges, ethics and future prospects. Front. Syst. Neurosci. 2022 16 1000495 10.3389/fnsys.2022.1000495 36211589
    [Google Scholar]
  230. Bendriss G. MacDonald R. McVeigh C. Microbial Reprogramming in Obsessive–Compulsive Disorders: A Review of Gut–Brain Communication and Emerging Evidence. Int. J. Mol. Sci. 2023 24 15 11978 10.3390/ijms241511978 37569349
    [Google Scholar]
  231. Nazzi C. Avenanti A. Battaglia S. The Involvement of Antioxidants in Cognitive Decline and Neurodegeneration: Mens Sana in Corpore Sano. Antioxidants 2024 13 6 701 10.3390/antiox13060701 38929140
    [Google Scholar]
  232. Wang L. Chen Y. Wang M. Zhao C. Qiao D. Relationship between gene-environment interaction and obsessive-compulsive disorder: A systematic review. J. Psychiatr. Res. 2023 164 281 290 10.1016/j.jpsychires.2023.06.004 37390623
    [Google Scholar]
  233. Brander G. Pérez-Vigil A. Larsson H. Mataix-Cols D. Systematic review of environmental risk factors for Obsessive-Compulsive Disorder: A proposed roadmap from association to causation. Neurosci. Biobehav. Rev. 2016 65 36 62 10.1016/j.neubiorev.2016.03.011 27013116
    [Google Scholar]
  234. Carpenter L. Chung M.C. Childhood trauma in obsessive compulsive disorder: The roles of alexithymia and attachment. Psychol. Psychother. 2011 84 4 367 388 10.1111/j.2044‑8341.2010.02003.x 22903881
    [Google Scholar]
  235. Kart A. Türkçapar H. The effects of childhood emotional abuse on aggressive obsessions among patients with obsessive compulsive disorder may be mediated by symptoms of depression and anxiety. Psychiatry Clin Psychopharmacol 2019 29 4 411 417 10.1080/24750573.2019.1636483
    [Google Scholar]
  236. Chang K. Frankovich J. Cooperstock M. Clinical evaluation of youth with pediatric acute-onset neuropsychiatric syndrome (PANS): recommendations from the 2013 PANS Consensus Conference. J. Child Adolesc. Psychopharmacol. 2015 25 1 3 13 10.1089/cap.2014.0084 25325534
    [Google Scholar]
  237. den Braber A. Zilhão N.R. Fedko I.O. Obsessive–compulsive symptoms in a large population-based twin-family sample are predicted by clinically based polygenic scores and by genome-wide SNPs. Transl. Psychiatry 2016 6 2 e731 e1 10.1038/tp.2015.223 26859814
    [Google Scholar]
  238. Guglielmi V. Vulink N.C.C. Denys D. Wang Y. Samuels J.F. Nestadt G. Obsessive-compulsive disorder and female reproductive cycle events: results from the OCD and reproduction collaborative study. Depress. Anxiety 2014 31 12 979 987 10.1002/da.22234 24421066
    [Google Scholar]
  239. Hanna G.L. Veenstra-VanderWeele J. Cox N.J. Genome‐wide linkage analysis of families with obsessive‐compulsive disorder ascertained through pediatric probands. Am. J. Med. Genet. 2002 114 5 541 552 10.1002/ajmg.10519 12116192
    [Google Scholar]
  240. Real E. Gratacòs M. Labad J. Interaction of SLC1A1 gene variants and life stress on pharmacological resistance in obsessive–compulsive disorder. Pharmacogenomics J. 2013 13 5 470 475 10.1038/tpj.2012.30 22776887
    [Google Scholar]
  241. Mahjani B. Klei L. Mattheisen M. The genetic architecture of obsessive-compulsive disorder: contribution of liability to OCD from alleles across the frequency spectrum. Am. J. Psychiatry 2022 179 3 216 225 10.1176/appi.ajp.2021.21010101 34789012
    [Google Scholar]
  242. Ching T.H.W. Grazioplene R. Bohner C. Safety, tolerability, and clinical and neural effects of single-dose psilocybin in obsessive–compulsive disorder: protocol for a randomized, double-blind, placebo-controlled, non-crossover trial. Front. Psychiatry 2023 14 1178529 10.3389/fpsyt.2023.1178529 37181888
    [Google Scholar]
  243. Gupta P. Pharmacogenetics, pharmacogenomics and ayurgenomics for personalized medicine: A paradigm shift. Indian J. Pharm. Sci. 2015 77 2 135 141 10.4103/0250‑474X.156543 26009644
    [Google Scholar]
  244. Narayanaswamy J.C. Hazari N. Venkatasubramanian G. Neuroimaging findings in obsessive–compulsive disorder: A narrative review to elucidate neurobiological underpinnings. Indian J. Psychiatry 2019 61 7 Suppl. 1 9 10.4103/psychiatry.IndianJPsychiatry_525_18 30745673
    [Google Scholar]
  245. Zai G. Pharmacogenetics of Obsessive-Compulsive Disorder: An Evidence-Update. Curr. Top. Behav. Neurosci. 2021 49 385 398 10.1007/7854_2020_205
    [Google Scholar]
  246. Radosavljevic M. Svob Strac D. Jancic J. Samardzic J. The role of pharmacogenetics in personalizing the antidepressant and anxiolytic therapy. Genes (Basel) 2023 14 5 1095 10.3390/genes14051095 37239455
    [Google Scholar]
  247. Brunoni A.R. Carracedo A. Amigo O.M. Association of BDNF, HTR2A, TPH1, SLC6A4, and COMT polymorphisms with tDCS and escitalopram efficacy: ancillary analysis of a double-blind, placebo-controlled trial. Br. J. Psychiatry 2020 42 2 128 135 10.1590/1516‑4446‑2019‑0620 31721892
    [Google Scholar]
  248. Nassan M. Pharmacokinetic pharmacogenetic prescribing guidelines for antidepressants: a template for psychiatric precision medicine. Mayo Clinic Proceedings 2016 10.1016/j.mayocp.2016.02.023
    [Google Scholar]
  249. Pittenger C. Pharmacotherapeutic Strategies and New Targets in OCD. Curr. Top. Behav. Neurosci. 2021 49 331 384 10.1007/7854_2020_204
    [Google Scholar]
  250. Kuo H.W. Liu S.C. Tsou H.H. CYP1A2 genetic polymorphisms are associated with early antidepressant escitalopram metabolism and adverse reactions. Pharmacogenomics 2013 14 10 1191 1201 10.2217/pgs.13.105 23859573
    [Google Scholar]
  251. Chappell K. Colle R. Bouligand J. The MAOA rs979605 genetic polymorphism is differentially associated with clinical improvement following antidepressant treatment between male and female depressed patients. Int. J. Mol. Sci. 2022 24 1 497 10.3390/ijms24010497 36613935
    [Google Scholar]
  252. Benedetti F. Dallaspezia S. Colombo C. Lorenzi C. Pirovano A. Smeraldi E. Effect of catechol-O-methyltransferase Val(108/158)Met polymorphism on antidepressant efficacy of fluvoxamine. Eur. Psychiatry 2010 25 8 476 478 10.1016/j.eurpsy.2009.12.007 20619611
    [Google Scholar]
  253. Preskorn S.H. Rode R. Personalized medicine in the treatment of a patient with obsessive-compulsive disorder with clomipramine. J. Psychiatr. Pract. 2023 29 6 469 475 10.1097/PRA.0000000000000750 37948171
    [Google Scholar]
  254. Mini E. Nobili S. Pharmacogenetics: implementing personalized medicine. Clin. Cases Miner. Bone Metab. 2009 6 1 17 24 22461093
    [Google Scholar]
  255. Nakao M. Shirotsuki K. Sugaya N. Cognitive–behavioral therapy for management of mental health and stress-related disorders: Recent advances in techniques and technologies. Biopsychosoc. Med. 2021 15 1 16 10.1186/s13030‑021‑00219‑w 34602086
    [Google Scholar]
  256. Franklin M. Kozak M.J. Cashman L.A. Coles M. Rheingold A.A. Foa E.B. Cognitive-behavioral treatment of pediatric obsessive-compulsive disorder: an open clinical trial. J. Am. Acad. Child Adolesc. Psychiatry 1998 37 4 412 419 10.1097/00004583‑199804000‑00019 9549962
    [Google Scholar]
  257. Freeman J.B. Garcia A.M. Coyne L. Early childhood OCD: preliminary findings from a family-based cognitive-behavioral approach. J. Am. Acad. Child Adolesc. Psychiatry 2008 47 5 593 602 10.1097/CHI.0b013e31816765f9 18356758
    [Google Scholar]
  258. Piacentini J. Bergman R.L. Chang S. Controlled comparison of family cognitive behavioral therapy and psychoeducation/relaxation training for child obsessive-compulsive disorder. J. Am. Acad. Child Adolesc. Psychiatry 2011 50 11 1149 1161 10.1016/j.jaac.2011.08.003 22024003
    [Google Scholar]
  259. Andersson E. Enander J. Andrén P. Internet-based cognitive behaviour therapy for obsessive–compulsive disorder: a randomized controlled trial. Psychol. Med. 2012 42 10 2193 2203 10.1017/S0033291712000244 22348650
    [Google Scholar]
  260. Farris S.G. McLean C.P. Van Meter P.E. Simpson H.B. Foa E.B. Treatment response, symptom remission, and wellness in obsessive-compulsive disorder. J. Clin. Psychiatry 2013 74 7 685 690 10.4088/JCP.12m07789 23945445
    [Google Scholar]
  261. Bais M. Figee M. Denys D. Neuromodulation in obsessive-compulsive disorder. Psychiatr. Clin. North Am. 2014 37 3 393 413 10.1016/j.psc.2014.06.003 25150569
    [Google Scholar]
  262. Nuttin B. Cosyns P. Demeulemeester H. Gybels J. Meyerson B. Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet 1999 354 9189 1526 10.1016/S0140‑6736(99)02376‑4 10551504
    [Google Scholar]
  263. Tastevin M. Spatola G. Régis J. Lançon C. Richieri R. Deep brain stimulation in the treatment of obsessive-compulsive disorder: current perspectives. Neuropsychiatr. Dis. Treat. 2019 15 1259 1272 10.2147/NDT.S178207 31190832
    [Google Scholar]
  264. Coenen V.A. Schlaepfer T.E. Goll P. The medial forebrain bundle as a target for deep brain stimulation for obsessive-compulsive disorder. CNS Spectr. 2017 22 3 282 289 10.1017/S1092852916000286 27268576
    [Google Scholar]
  265. Franzini A. Messina G. Gambini O. Deep-brain stimulation of the nucleus accumbens in obsessive compulsive disorder: clinical, surgical and electrophysiological considerations in two consecutive patients. Neurol. Sci. 2010 31 3 353 359 10.1007/s10072‑009‑0214‑8 20127500
    [Google Scholar]
  266. Rauch S.L. Dougherty D.D. Malone D. A functional neuroimaging investigation of deep brain stimulation in patients with obsessive–compulsive disorder. J. Neurosurg. 2006 104 4 558 565 10.3171/jns.2006.104.4.558 16619660
    [Google Scholar]
  267. Belotto-Silva C. Diniz J.B. Malavazzi D.M. Group cognitive-behavioral therapy versus selective serotonin reuptake inhibitors for obsessive-compulsive disorder: A practical clinical trial. J. Anxiety Disord. 2012 26 1 25 31 10.1016/j.janxdis.2011.08.008 21907540
    [Google Scholar]
  268. Andersson E. Steneby S. Karlsson K. Long-term efficacy of Internet-based cognitive behavior therapy for obsessive–compulsive disorder with or without booster: a randomized controlled trial. Psychol. Med. 2014 44 13 2877 2887 10.1017/S0033291714000543 25066102
    [Google Scholar]
  269. Vause T. Jaksic H. Neil N. Frijters J.C. Jackiewicz G. Feldman M. Functional behavior-based cognitive-behavioral therapy for obsessive compulsive behavior in children with autism spectrum disorder: A randomized controlled trial. J. Autism Dev. Disord. 2020 50 7 2375 2388 10.1007/s10803‑018‑3772‑x 30293128
    [Google Scholar]
  270. Wang P. Gu W. Gao J. Protocol for a pragmatic trial of pharmacotherapy options following unsatisfactory initial treatment in OCD (PROCEED). Front. Psychiatry 2022 13 822976 10.3389/fpsyt.2022.822976 35651818
    [Google Scholar]
  271. Smits J.A.J. Monfils M.H. Otto M.W. CO2 reactivity as a biomarker of exposure-based therapy non-response: study protocol. BMC Psychiatry 2022 22 1 831 10.1186/s12888‑022‑04478‑x 36575425
    [Google Scholar]
  272. Welter M.L. Alves Dos Santos J.F. Clair A.H. Deep brain stimulation of the subthalamic, accumbens, or caudate nuclei for patients with severe obsessive-compulsive disorder: a randomized crossover controlled study. Biol. Psychiatry 2021 90 10 e45 e47 10.1016/j.biopsych.2020.07.013 33012521
    [Google Scholar]
  273. Mallet L. Polosan M. Jaafari N. Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. N. Engl. J. Med. 2008 359 20 2121 2134 10.1056/NEJMoa0708514 19005196
    [Google Scholar]
  274. Kellner M. Drug treatment of obsessive-compulsive disorder. Dialogues Clin. Neurosci. 2010 12 2 187 197 10.31887/DCNS.2010.12.2/mkellner 20623923
    [Google Scholar]
  275. Kayser R.R. Raskin M. Snorrason I. Hezel D.M. Haney M. Simpson H.B. Cannabinoid augmentation of exposure-based psychotherapy for obsessive-compulsive disorder. J. Clin. Psychopharmacol. 2020 40 2 207 210 10.1097/JCP.0000000000001179 32068563
    [Google Scholar]
  276. Zheng H. Efficacy of fluvoxamine combined with extended-release methylphenidate on treatment-refractory obsessive-compulsive disorder. Zhong nan da xue xue bao. Yi xue ban= Journal of Central South University. Med. Sci. 2018 43 11 1230 1235
    [Google Scholar]
  277. Pallanti S. Bernardi S. Antonini S. Singh N. Hollander E. Ondansetron augmentation in treatment-resistant obsessive-compulsive disorder: a preliminary, single-blind, prospective study. CNS Drugs 2009 23 12 1047 1055 10.2165/11530240‑000000000‑00000 19958042
    [Google Scholar]
  278. Costa D.L.C. Diniz J.B. Requena G. Randomized, double-blind, placebo-controlled trial of N-acetylcysteine augmentation for treatment-resistant obsessive-compulsive disorder. J. Clin. Psychiatry 2017 78 7 e766 e773 10.4088/JCP.16m11101 28617566
    [Google Scholar]
  279. Grassi G. Cecchelli C. Vignozzi L. Pacini S. Investigational and experimental drugs to treat obsessive-compulsive disorder. J. Exp. Pharmacol. 2021 12 695 706 10.2147/JEP.S255375 33447096
    [Google Scholar]
  280. Bejerot S. Sigra Stein S. Welin E. Eklund D. Hylén U. Humble M.B. Rituximab as an adjunctive treatment for schizophrenia spectrum disorder or obsessive-compulsive disorder: Two open-label pilot studies on treatment-resistant patients. J. Psychiatr. Res. 2023 158 319 329 10.1016/j.jpsychires.2022.12.003 36638622
    [Google Scholar]
  281. Westwell-Roper C. Best J.R. Elbe D. Celecoxib versus placebo as an adjunct to treatment-as-usual in children and youth with obsessive–compulsive disorder: protocol for a single-site randomised quadruple-blind phase II study. BMJ Open 2022 12 1 e054296 10.1136/bmjopen‑2021‑054296 35105633
    [Google Scholar]
  282. Viswanath B. Narayanaswamy J.C. Cherian A.V. Reddy Y.C.J. Math S.B. Is familial obsessive-compulsive disorder different from sporadic obsessive-compulsive disorder? A comparison of clinical characteristics, comorbidity and treatment response. Psychopathology 2011 44 2 83 89 10.1159/000317776 21196809
    [Google Scholar]
  283. Browne H.A. Gair S.L. Scharf J.M. Grice D.E. Genetics of obsessive-compulsive disorder and related disorders. Psychiatr. Clin. North Am. 2014 37 3 319 335 10.1016/j.psc.2014.06.002 25150565
    [Google Scholar]
  284. Stein K. Maruf A.A. Müller D.J. Bishop J.R. Bousman C.A. Serotonin transporter genetic variation and antidepressant response and tolerability: a systematic review and meta-analysis. J. Pers. Med. 2021 11 12 1334 10.3390/jpm11121334 34945806
    [Google Scholar]
  285. Zhou D.D. Zhou X.X. Lv Z. Comparative efficacy and tolerability of antipsychotics as augmentations in adults with treatment-resistant obsessive-compulsive disorder: A network meta-analysis. J. Psychiatr. Res. 2019 111 51 58 10.1016/j.jpsychires.2019.01.014 30677645
    [Google Scholar]
  286. Verma M. Kulshrestha S. Puri A. Genome Sequencing. Methods Mol. Biol. 2017 1525 3 33 10.1007/978‑1‑4939‑6622‑6_1
    [Google Scholar]
  287. Mellis R. Chandler N. Chitty L.S. Next-generation sequencing and the impact on prenatal diagnosis. Expert Rev. Mol. Diagn. 2018 18 8 689 699 10.1080/14737159.2018.1493924 29962246
    [Google Scholar]
  288. Collins F.S. Doudna J.A. Lander E.S. Rotimi C.N. Human molecular genetics and genomics—important advances and exciting possibilities. N. Engl. J. Med. 2021 384 1 1 4 10.1056/NEJMp2030694 33393745
    [Google Scholar]
  289. Ferraioli F. Culicetto L. Cecchetti L. Virtual Reality Exposure Therapy for Treating Fear of Contamination Disorders: A Systematic Review of Healthy and Clinical Populations. Brain Sci. 2024 14 5 510 10.3390/brainsci14050510 38790488
    [Google Scholar]
  290. Torres-Castaño A. Rivero-Santana A. Perestelo-Pérez L. Transcranial magnetic stimulation for the treatment of cocaine addiction: A systematic review. J. Clin. Med. 2021 10 23 5595 10.3390/jcm10235595 34884297
    [Google Scholar]
  291. Mao L. Hu M. Luo L. Wu Y. Lu Z. Zou J. The effectiveness of exposure and response prevention combined with pharmacotherapy for obsessive-compulsive disorder: A systematic review and meta-analysis. Front. Psychiatry 2022 13 973838 10.3389/fpsyt.2022.973838 36186855
    [Google Scholar]
  292. Grant J.E. Hook R. Valle S. Chesivoir E. Chamberlain S.R. Tolcapone in obsessive-compulsive disorder: a randomized double-blind placebo-controlled crossover trial. Int. Clin. Psychopharmacol. 2021 36 5 225 229 10.1097/YIC.0000000000000368 34310432
    [Google Scholar]
  293. Rodriguez C.I. Bender J. Jr Marcus S.M. Snape M. Rynn M. Simpson H.B. Minocycline augmentation of pharmacotherapy in obsessive-compulsive disorder: an open-label trial. J. Clin. Psychiatry 2010 71 9 1247 1249 10.4088/JCP.09l05805blu 20923629
    [Google Scholar]
  294. Mowla A. Ghaedsharaf M. Pregabalin augmentation for resistant obsessive–compulsive disorder: a double-blind placebo-controlled clinical trial. CNS Spectr. 2020 25 4 552 556 10.1017/S1092852919001500 31648655
    [Google Scholar]
  295. Bernstein G.A. Cullen K.R. Harris E.C. Sertraline effects on striatal resting-state functional connectivity in youth with obsessive-compulsive disorder: a pilot study. J. Am. Acad. Child Adolesc. Psychiatry 2019 58 5 486 495 10.1016/j.jaac.2018.07.897 30768407
    [Google Scholar]
  296. Rodriguez C.I. Bender J. Jr Morrison S. Mehendru R. Tolin D. Simpson H.B. Does extended release methylphenidate help adults with hoarding disorder?: a case series. J. Clin. Psychopharmacol. 2013 33 3 444 447 10.1097/JCP.0b013e318290115e 23609401
    [Google Scholar]
  297. Pitsikas N. The role of nitric oxide (NO) modulators in obsessive-compulsive disorder (OCD). Nitric Oxide 2023 134-135 38 43 10.1016/j.niox.2023.04.001 37028750
    [Google Scholar]
  298. Garakani A. Murrough J.W. Freire R.C. Pharmacotherapy of anxiety disorders: current and emerging treatment options. Front. Psychiatry 2020 11 595584 10.3389/fpsyt.2020.595584 33424664
    [Google Scholar]
  299. Pittenger C. Bloch M.H. Wasylink S. Riluzole augmentation in treatment-refractory obsessive-compulsive disorder: a pilot randomized placebo-controlled trial. J. Clin. Psychiatry 2015 76 8 1075 1084 10.4088/JCP.14m09123 26214725
    [Google Scholar]
  300. Bhatt S. Anitha K. Chellappan D.K. Targeting inflammatory signaling in obsessive compulsive disorder: a promising approach. Metab. Brain Dis. 2023 39 2 335 346 10.1007/s11011‑023‑01314‑3 37950815
    [Google Scholar]
  301. Rodriguez C.I. Kegeles L.S. Levinson A. Randomized controlled crossover trial of ketamine in obsessive-compulsive disorder: proof-of-concept. Neuropsychopharmacology 2013 38 12 2475 2483 10.1038/npp.2013.150 23783065
    [Google Scholar]
  302. Wilkowska A. Wiglusz M.S. Gałuszko-Wegielnik M. Włodarczyk A. Cubała W.J. Antianhedonic effect of repeated ketamine infusions in patients with treatment resistant depression. Front. Psychiatry 2021 12 704330 10.3389/fpsyt.2021.704330 34733182
    [Google Scholar]
  303. Singh D.D. Verma R. Parimoo P. Potential therapeutic relevance of CRISPR/Cas9 guided epigenetic regulations for neuropsychiatric disorders. Curr. Top. Med. Chem. 2021 21 10 878 894 10.2174/1568026621666210317154502 33739246
    [Google Scholar]
  304. Raison C.L. Miller A.H. Malaise, melancholia and madness: The evolutionary legacy of an inflammatory bias. Brain Behav. Immun. 2013 31 1 8 10.1016/j.bbi.2013.04.009 23639523
    [Google Scholar]
  305. Shahcheraghi S.H. Gene Therapy for Neuropsychiatric Disorders: Potential Targets and Tools. CNS Neurol. Disord. Drug Targets 2023 22 1 51 65
    [Google Scholar]
  306. Shalbafan M. Celecoxib as an adjuvant to fluvoxamine in moderate to severe obsessive-compulsive disorder: A double-blind, placebo-controlled, randomized trial. Pharmacopsychiatry 2015 48 4-5 136 140 10.1055/s‑0035‑1549929
    [Google Scholar]
  307. Spartz E.J. Freeman G.M. Jr Brown K. Farhadian B. Thienemann M. Frankovich J. Course of neuropsychiatric symptoms after introduction and removal of nonsteroidal anti-inflammatory drugs: a pediatric observational study. J. Child Adolesc. Psychopharmacol. 2017 27 7 652 659 10.1089/cap.2016.0179 28696783
    [Google Scholar]
  308. Hirschtritt M.E. Bloch M.H. Mathews C.A. Obsessive-Compulsive Disorder. JAMA 2017 317 13 1358 1367 10.1001/jama.2017.2200 28384832
    [Google Scholar]
  309. Morishita T. Fayad S.M. Goodman W.K. Surgical neuroanatomy and programming in deep brain stimulation for obsessive compulsive disorder. Neuromodulation 2014 17 4 312 319 10.1111/ner.12141 24345303
    [Google Scholar]
  310. Luyten L. Hendrickx S. Raymaekers S. Gabriëls L. Nuttin B. Electrical stimulation in the bed nucleus of the stria terminalis alleviates severe obsessive-compulsive disorder. Mol. Psychiatry 2016 21 9 1272 1280 10.1038/mp.2015.124 26303665
    [Google Scholar]
  311. Karas P.J. Lee S. Jimenez-Shahed J. Goodman W.K. Viswanathan A. Sheth S.A. Deep brain stimulation for obsessive compulsive disorder: evolution of surgical stimulation target parallels changing model of dysfunctional brain circuits. Front. Neurosci. 2019 12 998 10.3389/fnins.2018.00998 30670945
    [Google Scholar]
  312. Gunter R.W. Whittal M.L. Dissemination of cognitive-behavioral treatments for anxiety disorders: Overcoming barriers and improving patient access. Clin. Psychol. Rev. 2010 30 2 194 202 10.1016/j.cpr.2009.11.001 19942331
    [Google Scholar]
  313. Norberg M.M. Krystal J.H. Tolin D.F. A meta-analysis of D-cycloserine and the facilitation of fear extinction and exposure therapy. Biol. Psychiatry 2008 63 12 1118 1126 10.1016/j.biopsych.2008.01.012 18313643
    [Google Scholar]
  314. Storch E.A. Murphy T.K. Goodman W.K. A preliminary study of D-cycloserine augmentation of cognitive-behavioral therapy in pediatric obsessive-compulsive disorder. Biol. Psychiatry 2010 68 11 1073 1076 10.1016/j.biopsych.2010.07.015 20817153
    [Google Scholar]
  315. Lack C.W. Obsessive-compulsive disorder: Evidence-based treatments and future directions for research. World J. Psychiatry 2012 2 6 86 90 10.5498/wjp.v2.i6.86 24175173
    [Google Scholar]
  316. Sanikhani N.S. Modarressi M.H. Jafari P. The effect of Lactobacillus casei consumption in improvement of obsessive–compulsive disorder: an animal study. Probiotics Antimicrob. Proteins 2020 12 4 1409 1419 10.1007/s12602‑020‑09642‑x 32124236
    [Google Scholar]
  317. Shmelkov SV Hormigo A Jing D Slitrk5 deficiency impairs corticostriatal circuitry and leads to obsessive-compulsive–like behaviors in mice. Nat Med 2010 16 5 598 602, 1p, 602 10.1038/nm.2125 20418887
    [Google Scholar]
  318. Kreitzer A.C. Physiology and pharmacology of striatal neurons. Annu. Rev. Neurosci. 2009 32 1 127 147 10.1146/annurev.neuro.051508.135422 19400717
    [Google Scholar]
  319. Chou-Green J.M. Holscher T.D. Dallman M.F. Akana S.F. Compulsive behavior in the 5-HT2C receptor knockout mouse. Physiol. Behav. 2003 78 4-5 641 649 10.1016/S0031‑9384(03)00047‑7 12782219
    [Google Scholar]
  320. Zike I.D. Chohan M.O. Kopelman J.M. OCD candidate gene SLC1A1 /EAAT3 impacts basal ganglia-mediated activity and stereotypic behavior. Proc. Natl. Acad. Sci. USA 2017 114 22 5719 5724 10.1073/pnas.1701736114 28507136
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232316708240828063527
Loading
/content/journals/cgt/10.2174/0115665232316708240828063527
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test