Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Obsessive-Compulsive Disorder (OCD), a prevalent neuropsychiatric condition, affects approximately 2%-3% of the global population. This paper provides an extensive overview of OCD, detailing its clinical manifestations, neurobiological underpinnings, and therapeutic approaches. It examines OCD's classification shift in the DSM-5, the role of the cortico-striato-thalamo-cortical pathway in its development, and the various factors contributing to its etiology, such as genes, environmental factors, and genetic predispositions. The challenges in diagnosing OCD and the effectiveness of both psychological and pharmacotherapeutic treatments are discussed. The paper also highlights the significant overlap between OCD and other mental health disorders, emphasizing its impact on global disability. Moreover, the role of genetic factors in OCD, including twin studies and gene association studies, is elaborated, underscoring the complex interplay of hereditary and environmental influences in its manifestation. The review further delves into the polygenic nature of OCD, illustrating how multiple genes contribute to its development, and explores the implications of genetic studies in understanding the disorder's complexity. Additionally, this research study delves into the concept of polygenic inheritance in complex diseases, highlighting the role of multiple genes in increasing OCD risk. A Genome-wide Association Study (GWAS) is employed to assess Single Nucleotide Polymorphisms (SNPs) to unearth genetic associations with OCD. This comprehensive analysis provides valuable insights into OCD's genetic landscape, paving the way for enhanced diagnostic approaches and treatment modalities.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232316708240828063527
2024-08-30
2025-04-22
The full text of this item is not currently available.

References

  1. RuscioA.M. SteinD.J. ChiuW.T. KesslerR.C. The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication.Mol. Psychiatry2010151536310.1038/mp.2008.9418725912
    [Google Scholar]
  2. StromN.I. GroveJ. MeierS.M. Bækvad-HansenM. Becker NissenJ. Damm AlsT. HalvorsenM. NordentoftM. MortensenP.B. HougaardD.M. WergeT. MorsO. BørglumA.D. CrowleyJ.J. Bybjerg-GrauholmJ. MattheisenM. Polygenic heterogeneity across obsessive-compulsive disorder subgroups defined by a comorbid diagnosis.Front. Genet.20211271162410.3389/fgene.2021.71162434531895
    [Google Scholar]
  3. Sassano-HigginsS.A. PatoM.T. Obsessive-compulsive disorder: diagnosis, epidemiology, etiology, and treatment.Focus Am. Psychiatr. Publ.201513212914110.1176/appi.focus.130211
    [Google Scholar]
  4. SenovaS. ClairA.H. PalfiS. YelnikJ. DomenechP. MalletL. Deep brain stimulation for refractory obsessive-compulsive disorder: towards an individualized approach.Front. Psychiatry20191090510.3389/fpsyt.2019.0090531920754
    [Google Scholar]
  5. CalzàJ. GürselD.A. Schmitz-KoepB. BremerB. ReinholzL. BerberichG. KochK. Altered cortico–striatal functional connectivity during resting state in obsessive–compulsive disorder.Front. Psychiatry20191031910.3389/fpsyt.2019.0031931133898
    [Google Scholar]
  6. FettesP. SchulzeL. DownarJ. Cortico-striatal-thalamic loop circuits of the orbitofrontal cortex: promising therapeutic targets in psychiatric illness.Front. Syst. Neurosci.2017112510.3389/fnsys.2017.0002528496402
    [Google Scholar]
  7. WoodJ. AhmariS.E. A framework for understanding the emerging role of corticolimbic-ventral striatal networks in OCD-associated repetitive behaviors.Front. Syst. Neurosci.2015917110.3389/fnsys.2015.0017126733823
    [Google Scholar]
  8. WalitzaS. BovéD.S. RomanosM. RennerT. HeldL. SimonsM. WewetzerC. FleischhakerC. RemschmidtH. WarnkeA. GrünblattE. Pilot study on HTR2A promoter polymorphism, −1438G/A (rs6311) and a nearby copy number variation showed association with onset and severity in early onset obsessive–compulsive disorder.J. Neural Transm. (Vienna)2012119450751510.1007/s00702‑011‑0699‑121874579
    [Google Scholar]
  9. EndresD. PollakT.A. BechterK. DenzelD. PitschK. NickelK. RungeK. PankratzB. KlatzmannD. TamouzaR. MalletL. LeboyerM. PrüssH. VoderholzerU. CunninghamJ.L. DomschkeK. Tebartz van ElstL. SchieleM.A. Immunological causes of obsessive-compulsive disorder: is it time for the concept of an “autoimmune OCD” subtype?Transl. Psychiatry2022121510.1038/s41398‑021‑01700‑435013105
    [Google Scholar]
  10. NohH.J. TangR. FlannickJ. O’DushlaineC. SwoffordR. HowriganD. GenereuxD.P. JohnsonJ. van GrootheestG. GrünblattE. AnderssonE. DjurfeldtD.R. PatelP.D. KoltookianM. M HultmanC. PatoM.T. PatoC.N. RasmussenS.A. JenikeM.A. HannaG.L. StewartS.E. KnowlesJ.A. RuhrmannS. GrabeH.J. WagnerM. RückC. MathewsC.A. WalitzaS. CathD.C. FengG. KarlssonE.K. Lindblad-TohK. Integrating evolutionary and regulatory information with a multispecies approach implicates genes and pathways in obsessive-compulsive disorder.Nat. Commun.20178177410.1038/s41467‑017‑00831‑x29042551
    [Google Scholar]
  11. BortolatoM. ChenK. ShihJ.C. Monoamine oxidase inactivation: From pathophysiology to therapeutics.Adv. Drug Deliv. Rev.20086013-141527153310.1016/j.addr.2008.06.00218652859
    [Google Scholar]
  12. RehnS. EslickG.D. BrakouliasV. A meta-analysis of the effectiveness of different cortical targets used in repetitive transcranial magnetic stimulation (rTMS) for the treatment of obsessive-compulsive disorder (OCD).Psychiatr. Q.201889364566510.1007/s11126‑018‑9566‑729423665
    [Google Scholar]
  13. RasgonA. LeeW.H. LeibuE. LairdA. GlahnD. GoodmanW. FrangouS. Neural correlates of affective and non-affective cognition in obsessive compulsive disorder: A meta-analysis of functional imaging studies.Eur. Psychiatry201746253210.1016/j.eurpsy.2017.08.00128992533
    [Google Scholar]
  14. PampaloniI. MarriottS. PessinaE. FisherC. GovenderA. MohamedH. ChandlerA. TyagiH. MorrisL. PallantiS. The global assessment of OCD.Compr. Psychiatry202211815234210.1016/j.comppsych.2022.15234236007341
    [Google Scholar]
  15. SzechtmanH. HarveyB.H. WoodyE.Z. HoffmanK.L. The psychopharmacology of obsessive-compulsive disorder: a preclinical roadmap.Pharmacol. Rev.20207218015110.1124/pr.119.01777231826934
    [Google Scholar]
  16. ChoudhuryT.K. DavidsonJ.E. ViswanathanA. StruttA.M. Deep brain stimulation of the anterior limb of the internal capsule for treatment of therapy-refractory obsessive compulsive disorder (OCD): a case study highlighting neurocognitive and psychiatric changes.Neurocase201723213814510.1080/13554794.2017.131995828457185
    [Google Scholar]
  17. OldaniL. BenattiB. MacellaroM. PortaM. ServelloD. ZekajE. Dell’OssoB. A case of treatment-resistant bipolar depression and comorbid OCD treated with deep brain stimulation of the medial forebrain bundle: 5 years follow-up results.J. Clin. Neurosci.20218910310510.1016/j.jocn.2021.04.03334119251
    [Google Scholar]
  18. AnagnostarasS. MarenS. SageJ.R. GoodrichS. FanselowM.S. Scopolamine and Pavlovian fear conditioning in rats: dose-effect analysis.Neuropsychopharmacology199921673174410.1016/S0893‑133X(99)00083‑410633479
    [Google Scholar]
  19. RobbinsT.W. VaghiM.M. BancaP. Obsessive-compulsive disorder: puzzles and prospects.Neuron20191021274710.1016/j.neuron.2019.01.04630946823
    [Google Scholar]
  20. MahjaniB. BeyK. BobergJ. BurtonC. Genetics of obsessive-compulsive disorder.Psychol. Med.202151132247225910.1017/S003329172100174434030745
    [Google Scholar]
  21. FinebergN.A. HollanderE. PallantiS. WalitzaS. GrünblattE. Dell’OssoB.M. AlbertU. GellerD.A. BrakouliasV. Janardhan ReddyY.C. ArumughamS.S. ShavittR.G. DrummondL. GranciniB. De CarloV. CinosiE. ChamberlainS.R. IoannidisK. RodriguezC.I. GargK. CastleD. Van AmeringenM. SteinD.J. CarmiL. ZoharJ. MenchonJ.M. Clinical advances in obsessive-compulsive disorder: a position statement by the International College of Obsessive-Compulsive Spectrum Disorders.Int. Clin. Psychopharmacol.202035417319310.1097/YIC.000000000000031432433254
    [Google Scholar]
  22. StubbingJ. TolinD.F. Obsessive-compulsive disorder. Reference Module in Neuroscience and Biobehavioural Psychology202310.1016/B978‑0‑323‑91497‑0.00260‑5
    [Google Scholar]
  23. MeyerM. BarreaultL. FrismandS. HingrayC. Benefit of cognitive behavioural therapy for post-traumatic stress disorder and obsessive-compulsive disorders in Huntington’s disease: a case report.Neurocase202228218819310.1080/13554794.2022.205156235465828
    [Google Scholar]
  24. Delgado-AcevedoC. EstayS.F. RadkeA.K. SenguptaA. EscobarA.P. Henríquez-BelmarF. ReyesC.A. Haro-AcuñaV. UtrerasE. Sotomayor-ZárateR. ChoA. WendlandJ.R. KulkarniA.B. HolmesA. MurphyD.L. ChávezA.E. MoyaP.R. Behavioural and synaptic alterations relevant to obsessive-compulsive disorder in mice with increased EAAT3 expression.Neuropsychopharmacology20194461163117310.1038/s41386‑018‑0302‑730622300
    [Google Scholar]
  25. AtmacaM. YildirimH. YilmazS. CaglarN. BaykaraS. KekilliY. KoseogluF. TurkcaparH. Pituitary gland volumes in patients with obsessive-compulsive disorder before and after cognitive-behavioural therapy.Rev. Bras. Psiquiatr.201840442042310.1590/1516‑4446‑2017‑244929898196
    [Google Scholar]
  26. AnholtG.E. AderkaI.M. van BalkomA.J.L.M. SmitJ.H. SchruersK. van der WeeN.J.A. EikelenboomM. De LucaV. van OppenP. Age of onset in obsessive–compulsive disorder: admixture analysis with a large sample.Psychol. Med.201444118519410.1017/S003329171300047023517651
    [Google Scholar]
  27. FawcettE.J. PowerH. FawcettJ.M. Women are at greater risk of OCD than men: a meta-analytic review of OCD prevalence worldwide.J. Clin. Psychiatry20208141307510.4088/JCP.19r1308532603559
    [Google Scholar]
  28. PajouhiniaS. AbavisaniY. RezazadehZ. Explaining the obsessive-compulsive symptoms based on cognitive flexibility and social cognition.Pract. Clin. Psychol.20208323324210.32598/jpcp.8.3.10.717.1
    [Google Scholar]
  29. KohlerK.C. CoetzeeB.J. LochnerC. Living with obsessive-compulsive disorder (OCD): a South African narrative.Int. J. Ment. Health Syst.20181217310.1186/s13033‑018‑0253‑830519281
    [Google Scholar]
  30. HauschildtM. JelinekL. RandjbarS. HottenrottB. MoritzS. Generic and illness-specific quality of life in obsessive-compulsive disorder.Behav. Cogn. Psychother.201038441743610.1017/S135246581000027520529398
    [Google Scholar]
  31. MayhewA.J. MeyreD. A. and D. Meyre, Assessing the heritability of complex traits in humans: methodological challenges and opportunities. Curr. Genomics201718433234010.2174/138920291866617030716145029081689
    [Google Scholar]
  32. SantanaL.G. Flores-MirC. Iglesias-LinaresA. PithonM.M. MarquesL.S. Influence of heritability on occlusal traits: a systematic review of studies in twins.Prog. Orthod.20202112910.1186/s40510‑020‑00330‑832864724
    [Google Scholar]
  33. KimY. LeeY. LeeS. KimN.H. LimJ. KimY.J. OhJ.H. MinH. LeeM. SeoH.J. LeeS.H. SungJ. ChoN.H. KimB.J. HanB.G. ElstonR.C. WonS. LeeJ. On the estimation of heritability with family‐based and population‐based samples.BioMed Res. Int.2015201511910.1155/2015/67134926339629
    [Google Scholar]
  34. BurtonC.L. ParkL.S. CorfieldE.C. Forget-DuboisN. DupuisA. SinopoliV.M. ShanJ. GoodaleT. ShaheenS.M. CrosbieJ. SchacharR.J. ArnoldP.D. Heritability of obsessive–compulsive trait dimensions in youth from the general population.Transl. Psychiatry20188119110.1038/s41398‑018‑0249‑930228290
    [Google Scholar]
  35. Blanco-VieiraT. RaduaJ. MarcelinoL. BlochM. Mataix-ColsD. do RosárioM.C. The genetic epidemiology of obsessive-compulsive disorder: a systematic review and meta-analysis.Transl. Psychiatry202313123010.1038/s41398‑023‑02433‑237380645
    [Google Scholar]
  36. BurguièreE. MonteiroP. FengG. GraybielA.M. Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors.Science201334061371243124610.1126/science.123238023744950
    [Google Scholar]
  37. BotrosJ. Genetic susceptibility of obsessive-compulsive disorder in the paediatric population.The child health interdisciplinary literature and discovery journal20221110.15173/child.v1i1.3125
    [Google Scholar]
  38. ViswanathB. PurtyA. NestadtG. SamuelsJ.F. Genetics of obsessive-compulsive disorder.Indian J. Psychiatry2019617Suppl. 13710.4103/psychiatry.IndianJPsychiatry_518_1830745675
    [Google Scholar]
  39. FontenelleL.F. YücelM. A clinical staging model for obsessive–compulsive disorder: is it ready for prime time?EClinicalMedicine20197657210.1016/j.eclinm.2019.01.01431193644
    [Google Scholar]
  40. JonnalA.H. GardnerC.O. PrescottC.A. KendlerK.S. Obsessive and compulsive symptoms in a general population sample of female twins.Am. J. Med. Genet.200096679179610.1002/1096‑8628(20001204)96:6<791::AID‑AJMG19>3.0.CO;2‑C11121183
    [Google Scholar]
  41. StromN.I. SodaT. MathewsC.A. DavisL.K. A dimensional perspective on the genetics of obsessive-compulsive disorder.Transl. Psychiatry202111140110.1038/s41398‑021‑01519‑z34290223
    [Google Scholar]
  42. WelchJ.M. LuJ. RodriguizR.M. TrottaN.C. PecaJ. DingJ.D. FelicianoC. ChenM. AdamsJ.P. LuoJ. DudekS.M. WeinbergR.J. CalakosN. WetselW.C. FengG. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice.Nature2007448715689490010.1038/nature0610417713528
    [Google Scholar]
  43. StewartS.E. PlatkoJ. FagernessJ. BirnsJ. JenikeE. SmollerJ.W. PerlisR. LeboyerM. DelormeR. ChabaneN. RauchS.L. JenikeM.A. PaulsD.L. A genetic family-based association study of OLIG2 in obsessive-compulsive disorder.Arch. Gen. Psychiatry200764220921410.1001/archpsyc.64.2.20917283288
    [Google Scholar]
  44. WillourV.L. Yao ShugartY. SamuelsJ. GradosM. CullenB. BienvenuO.J.III WangY. LiangK.Y. ValleD. Hoehn-SaricR. RiddleM. NestadtG. Replication study supports evidence for linkage to 9p24 in obsessive-compulsive disorder.Am. J. Hum. Genet.200475350851310.1086/42389915272418
    [Google Scholar]
  45. SzejkoN. DunalskaA. LombrosoA. McGuireJ.F. PiacentiniJ. Genomics of obsessive-compulsive disorder—toward personalized medicine in the era of big data.Front Pediatr.2021968566010.3389/fped.2021.68566034746045
    [Google Scholar]
  46. ManolioT.A. CollinsF.S. CoxN.J. GoldsteinD.B. HindorffL.A. HunterD.J. McCarthyM.I. RamosE.M. CardonL.R. ChakravartiA. ChoJ.H. GuttmacherA.E. KongA. KruglyakL. MardisE. RotimiC.N. SlatkinM. ValleD. WhittemoreA.S. BoehnkeM. ClarkA.G. EichlerE.E. GibsonG. HainesJ.L. MackayT.F.C. McCarrollS.A. VisscherP.M. Finding the missing heritability of complex diseases.Nature2009461726574775310.1038/nature0849419812666
    [Google Scholar]
  47. FlygareO. AnderssonE. RingbergH. HellstadiusA.C. EdbackenJ. EnanderJ. DahlM. AspvallK. WindhI. RussellA. Mataix-ColsD. RückC. Adapted cognitive behavior therapy for obsessive–compulsive disorder with co-occurring autism spectrum disorder: A clinical effectiveness study.Autism202024119019910.1177/136236131985697431187645
    [Google Scholar]
  48. Cand PsycholS.T. The oral, obsessive, and hysterical personality syndromes. A study of hereditary and environmental factors by means of the twin method.Arch. Gen. Psychiatry198037111272127710.1001/archpsyc.1980.017802400700087192083
    [Google Scholar]
  49. EleyT.C. BoltonD. O’ConnorT.G. PerrinS. SmithP. PlominR. A twin study of anxiety‐related behaviours in pre‐school children.J. Child Psychol. Psychiatry200344794596010.1111/1469‑7610.0017914531577
    [Google Scholar]
  50. GrünblattE. HauserT.U. WalitzaS. Imaging genetics in obsessive-compulsive disorder: Linking genetic variations to alterations in neuroimaging.Prog. Neurobiol.201412111412410.1016/j.pneurobio.2014.07.00325046835
    [Google Scholar]
  51. BrakouliasV. StarcevicV. BellochA. BrownC. FerraoY.A. FontenelleL.F. LochnerC. MarazzitiD. MatsunagaH. MiguelE.C. ReddyY.C.J. do RosarioM.C. ShavittR.G. Shyam SundarA. SteinD.J. TorresA.R. ViswasamK. Comorbidity, age of onset and suicidality in obsessive–compulsive disorder (OCD): An international collaboration.Compr. Psychiatry201776798610.1016/j.comppsych.2017.04.00228433854
    [Google Scholar]
  52. NestadtG. SamuelsJ. RiddleM.A. LiangK.Y. BienvenuO.J. Hoehn-SaricR. GradosM. CullenB. The relationship between obsessive–compulsive disorder and anxiety and affective disorders: results from the Johns Hopkins OCD Family Study.Psychol. Med.200131348148710.1017/S003329170100357911305856
    [Google Scholar]
  53. BienvenuO.J. SamuelsJ.F. RiddleM.A. Hoehn-SaricR. LiangK.Y. CullenB.A.M. GradosM.A. NestadtG. The relationship of obsessive–compulsive disorder to possible spectrum disorders: results from a family study.Biol. Psychiatry200048428729310.1016/S0006‑3223(00)00831‑310960159
    [Google Scholar]
  54. DimaD. JogiaJ. CollierD. VassosE. BurdickK.E. FrangouS. Independent modulation of engagement and connectivity of the facial network during affect processing by CACNA1C and ANK3 risk genes for bipolar disorder.JAMA Psychiatry201370121303131110.1001/jamapsychiatry.2013.209924108394
    [Google Scholar]
  55. MaroteauxL. Ayme-DietrichE. Aubertin-KirchG. BanasS. QuentinE. LawsonR. MonassierL. New therapeutic opportunities for 5-HT2 receptor ligands.Pharmacol. Ther.2017170143610.1016/j.pharmthera.2016.10.00827771435
    [Google Scholar]
  56. PaulsD.L. AbramovitchA. RauchS.L. GellerD.A. Obsessive–compulsive disorder: an integrative genetic and neurobiological perspective.Nat. Rev. Neurosci.201415641042410.1038/nrn374624840803
    [Google Scholar]
  57. YanJ. WangH. LiuY. ShaoC. Analysis of gene regulatory networks in the mammalian circadian rhythm.PLOS Comput. Biol.2008410e100019310.1371/journal.pcbi.100019318846204
    [Google Scholar]
  58. Zwir NawrockiJ.S.I. Uncovering the complex genetics of human temperament.Mol Psychiatry.2018251022752294
    [Google Scholar]
  59. WarburtonA. BreenG. BubbV.J. QuinnJ.P. A GWAS SNP for schizophrenia is linked to the internal MIR137 promoter and supports differential allele-specific expression.Schizophr. Bull.20164241003100810.1093/schbul/sbv14426429811
    [Google Scholar]
  60. LeeL.C. ChoY.C. LinP.J. YehT.C. ChangC.Y. YehT.K. Influence of genetic variants of the N‐methyl‐D‐aspartate receptor on emotion and social behavior in adolescents.Neural Plast.2016201611810.1155/2016/685159226819771
    [Google Scholar]
  61. OzakiK. OhnishiY. IidaA. SekineA. YamadaR. TsunodaT. SatoH. SatoH. HoriM. NakamuraY. TanakaT. Functional SNPs in the lymphotoxin-α gene that are associated with susceptibility to myocardial infarction.Nat. Genet.200232465065410.1038/ng104712426569
    [Google Scholar]
  62. XuJ. GuoY. Identification of gene loci that overlap between mental disorders and poor prognosis of cancers.Front. Psychiatry20211267894310.3389/fpsyt.2021.67894334262492
    [Google Scholar]
  63. SimpsonH.B. FoaE.B. LiebowitzM.R. HuppertJ.D. CahillS. MaherM.J. McLeanC.P. BenderJ.Jr MarcusS.M. WilliamsM.T. WeaverJ. VermesD. Van MeterP.E. RodriguezC.I. PowersM. PintoA. ImmsP. HahnC.G. CampeasR. Cognitive-behavioural therapy vs risperidone for augmenting serotonin reuptake inhibitors in obsessive-compulsive disorder: a randomized clinical trial.JAMA Psychiatry201370111190119910.1001/jamapsychiatry.2013.193224026523
    [Google Scholar]
  64. van WelJ.H.P. KuypersK.P.C. TheunissenE.L. BoskerW.M. BakkerK. RamaekersJ.G. Effects of acute MDMA intoxication on mood and impulsivity: role of the 5-HT2 and 5-HT1 receptors.PLoS One201277e4018710.1371/journal.pone.004018722808116
    [Google Scholar]
  65. RajkumarR.P. SAPAP3, SPRED2, and obsessive-compulsive disorder: the search for fundamental phenotypes.Front. Mol. Neurosci.202316109545510.3389/fnmol.2023.109545537324590
    [Google Scholar]
  66. WitteJ.S. Genome-wide association studies and beyond.Annu. Rev. Public Health2010311920, 4, 2010.1146/annurev.publhealth.012809.10372320235850
    [Google Scholar]
  67. SebastianiP. TimofeevN. DworkisD.A. PerlsT.T. SteinbergM.H. Genome‐wide association studies and the genetic dissection of complex traits.Am. J. Hematol.200984850451510.1002/ajh.2144019569043
    [Google Scholar]
  68. Costas CostasJ. Exon-focused genome-wide association study of obsessive-compulsive disorder and shared polygenic risk with schizophrenia.Transl Psychiatry.201663e76810.1038/tp.2016.34
    [Google Scholar]
  69. KleinM.O. BattagelloD.S. CardosoA.R. HauserD.N. BittencourtJ.C. CorreaR.G. Dopamine: functions, signaling, and association with neurological diseases.Cell. Mol. Neurobiol.2019391315910.1007/s10571‑018‑0632‑330446950
    [Google Scholar]
  70. SiminovitchK.A. PTPN22 and autoimmune disease.Nat. Genet.200436121248124910.1038/ng1204‑124815565104
    [Google Scholar]
  71. WangK. ZhangH. KugathasanS. AnneseV. BradfieldJ.P. RussellR.K. SleimanP.M.A. ImielinskiM. GlessnerJ. HouC. WilsonD.C. WaltersT. KimC. FrackeltonE.C. LionettiP. BarabinoA. Van LimbergenJ. GutheryS. DensonL. PiccoliD. LiM. DubinskyM. SilverbergM. GriffithsA. GrantS.F.A. SatsangiJ. BaldassanoR. HakonarsonH. Diverse genome-wide association studies associate the IL12/IL23 pathway with Crohn Disease.Am. J. Hum. Genet.200984339940510.1016/j.ajhg.2009.01.02619249008
    [Google Scholar]
  72. BryzgalovL.O. KorbolinaE.E. BrusentsovI.I. LeberfarbE.Y. BondarN.P. MerkulovaT.I. Novel functional variants at the GWAS-implicated loci might confer risk to major depressive disorder, bipolar affective disorder and schizophrenia.BMC Neurosci.201819S1Suppl. 12210.1186/s12868‑018‑0414‑329745862
    [Google Scholar]
  73. ZhouY. DanboltN.C. Glutamate as a neurotransmitter in the healthy brain.J. Neural Transm. (Vienna)2014121879981710.1007/s00702‑014‑1180‑824578174
    [Google Scholar]
  74. NaazS. BalachanderS. Srinivasa MurthyN. MsB. SudR. SahaP. NarayanaswamyJ.C. Reddy YCJ. JainS. PurushottamM. ViswanathB. Association of SAPAP3 allelic variants with symptom dimensions and pharmacological treatment response in obsessive–compulsive disorder.Exp. Clin. Psychopharmacol.202230110611210.1037/pha000042232730059
    [Google Scholar]
  75. ShangY. WangN. ZhangE. LiuQ. LiH. ZhaoX. The brain-derived neurotrophic factor Val66Met polymorphism is associated with female obsessive-compulsive disorder: An updated meta-analysis of 2765 obsessive-compulsive disorder cases and 5558 controls.Front. Psychiatry20221268504110.3389/fpsyt.2021.68504135095581
    [Google Scholar]
  76. HallD. DhillaA. CharalambousA. GogosJ.A. KarayiorgouM. Sequence variants of the brain-derived neurotrophic factor (BDNF) gene are strongly associated with obsessive-compulsive disorder.Am. J. Hum. Genet.200373237037610.1086/37700312836135
    [Google Scholar]
  77. HarmanW.W. McKimR.H. MogarR.E. FadimanJ. StolaroffM.J. Psychedelic agents in creative problem-solving: a pilot study.Psychol. Rep.196619121122710.2466/pr0.1966.19.1.2115942087
    [Google Scholar]
  78. ChenV.C.-H. Effects of selective serotonin reuptake inhibitors on glaucoma: A nationwide population-based study.PLoS One2017123e0173005
    [Google Scholar]
  79. DeakinJ.F.W. The origins of ‘5-HT and mechanisms of defence’ by Deakin and Graeff: A personal perspective.J. Psychopharmacol.201327121084108910.1177/026988111350350824067790
    [Google Scholar]
  80. AndradeR. Haj-DahmaneS. Serotonin neuron diversity in the dorsal raphe.ACS Chem. Neurosci.201341222510.1021/cn300224n23336040
    [Google Scholar]
  81. WaltherD.J. PeterJ.U. BashammakhS. HörtnaglH. VoitsM. FinkH. BaderM. Synthesis of serotonin by a second tryptophan hydroxylase isoform.Science20032995603767610.1126/science.107819712511643
    [Google Scholar]
  82. BlueM.E. MolliverM.E. 6-hydroxydopamine induces serotonergic axon sprouting in cerebral cortex of newborn rat.Brain Res. Dev. Brain Res.198732225526910.1016/0165‑3806(87)90106‑43105821
    [Google Scholar]
  83. BeaudetA. DescarriesL. Quantitative data on serotonin nerve terminals in adult rat neocortex.Brain Res.1976111230130910.1016/0006‑8993(76)90775‑7949604
    [Google Scholar]
  84. AmilhonB. LepicardÈ. RenoirT. MongeauR. PopaD. PoirelO. MiotS. GrasC. GardierA.M. GallegoJ. HamonM. LanfumeyL. GasnierB. GirosB. El MestikawyS. VGLUT3 (vesicular glutamate transporter type 3) contribution to the regulation of serotonergic transmission and anxiety.J. Neurosci.20103062198221010.1523/JNEUROSCI.5196‑09.201020147547
    [Google Scholar]
  85. ChenS.K. TvrdikP. PedenE. ChoS. WuS. SpangrudeG. CapecchiM.R. Hematopoietic origin of pathological grooming in Hoxb8 mutant mice.Cell2010141577578510.1016/j.cell.2010.03.05520510925
    [Google Scholar]
  86. NeumannJ. HofmannB. DheinS. GergsU. Cardiac roles of serotonin (5-HT) and 5-HT-receptors in health and disease.Int. J. Mol. Sci.2023245476510.3390/ijms2405476536902195
    [Google Scholar]
  87. HalperinD. ReberG. Influence of antidepressants on hemostasis.Dialogues Clin. Neurosci.200791475910.31887/DCNS.2007.9.1/dhalperin17506225
    [Google Scholar]
  88. BergerM. GrayJ.A. RothB.L. The expanded biology of serotonin.Annu. Rev. Med.200960135536610.1146/annurev.med.60.042307.11080219630576
    [Google Scholar]
  89. YabutJ.M. CraneJ.D. GreenA.E. KeatingD.J. KhanW.I. SteinbergG.R. Emerging roles for serotonin in regulating metabolism: new implications for an ancient molecule.Endocr. Rev.20194041092110710.1210/er.2018‑0028330901029
    [Google Scholar]
  90. BockaertJ. ClaeysenS. BécamelC. DumuisA. MarinP. Neuronal 5-HT metabotropic receptors: fine-tuning of their structure, signaling, and roles in synaptic modulation.Cell Tissue Res.2006326255357210.1007/s00441‑006‑0286‑116896947
    [Google Scholar]
  91. MiquelM.C. KiaH.K. BoniC. DoucetE. DavalG. MatthiessenL. HamonM. VergéD. Postnatal development and localization of 5-HTIA receptor mRNA in rat forebrain and cerebellum.Brain Res. Dev. Brain Res.1994801-214915710.1016/0165‑3806(94)90099‑X7955340
    [Google Scholar]
  92. MiquelM.C. EmeritM.B. NosjeanA. SimonA. RumajogeeP. BrisorgueilM.J. DoucetE. HamonM. VergéD. Differential subcellular localization of the 5‐HT 3 ‐A s receptor subunit in the rat central nervous system.Eur. J. Neurosci.200215344945710.1046/j.0953‑816x.2001.01872.x11876772
    [Google Scholar]
  93. Mengod Los ArcosG. PalaciosJ.M. CortésR. Cartography of 5-HT1A and 5-HT2A receptor subtypes in prefrontal cortex and its projections.ACS Chem Neurosci.201567108998
    [Google Scholar]
  94. SoteloC. CholleyB. El MestikawyS. GozlanH. HamonM. Direct immunohistochemical evidence of the existence of 5‐HT1A autoreceptors on serotoninergic neurons in the midbrain raphe nuclei.Eur. J. Neurosci.19902121144115410.1111/j.1460‑9568.1990.tb00026.x12106075
    [Google Scholar]
  95. BurnetP.W.J. EastwoodS.L. LaceyK. HarrisonP.J. The distribution of 5-HT1A and 5-HT2A receptor mRNA in human brain.Brain Res.1995676115716810.1016/0006‑8993(95)00104‑X7796165
    [Google Scholar]
  96. KikuokaR. MiyazakiI. KubotaN. MaedaM. KagawaD. MoriyamaM. SatoA. MurakamiS. KitamuraY. SendoT. AsanumaM. Mirtazapine exerts astrocyte-mediated dopaminergic neuroprotection.Sci. Rep.20201012069810.1038/s41598‑020‑77652‑433244123
    [Google Scholar]
  97. KatayamaJ. YakushijiT. AkaikeN. Characterization of the K+ current mediated by 5-HT1A receptor in the acutely dissociated rat dorsal raphe neurons.Brain Res.19977451-228329210.1016/S0006‑8993(96)01141‑99037420
    [Google Scholar]
  98. MoghaA. GuarigliaS.R. DebataP.R. WenG.Y. BanerjeeP. Serotonin 1A receptor-mediated signaling through ERK and PKCα is essential for normal synaptogenesis in neonatal mouse hippocampus.Transl. Psychiatry201221e66e6610.1038/tp.2011.5822832728
    [Google Scholar]
  99. LiuJ. CaoL. LiH. GaoY. BuX. LiangK. BaoW. ZhangS. QiuH. LiX. HuX. LuL. ZhangL. HuX. HuangX. GongQ. Abnormal resting-state functional connectivity in patients with obsessive-compulsive disorder: A systematic review and meta-analysis.Neurosci. Biobehav. Rev.202213510457410.1016/j.neubiorev.2022.10457435151769
    [Google Scholar]
  100. MoyanoS. RíoJ.D. FrechillaD. Role of hippocampal CaMKII in serotonin 5-HT(1A) receptor-mediated learning deficit in rats.Neuropsychopharmacology200429122216222410.1038/sj.npp.130050415199370
    [Google Scholar]
  101. CaiX. GuZ. ZhongP. RenY. YanZ. Serotonin 5-HT1A receptors regulate AMPA receptor channels through inhibiting Ca2+/calmodulin-dependent kinase II in prefrontal cortical pyramidal neurons.J. Biol. Chem.200227739365533656210.1074/jbc.M20375220012149253
    [Google Scholar]
  102. BaiF. YinT. JohnstoneE.M. SuC. VargaG. LittleS.P. NelsonD.L. Molecular cloning and pharmacological characterization of the guinea pig 5-HT1E receptor.Eur. J. Pharmacol.20044842-312713910.1016/j.ejphar.2003.11.01914744596
    [Google Scholar]
  103. Vila-PueyoM. Targeted 5-HT1F therapies for migraine.Neurotherapeutics201815229130310.1007/s13311‑018‑0615‑629488143
    [Google Scholar]
  104. BarnesN.M. AhernG.P. BecamelC. BockaertJ. CamilleriM. Chaumont-DubelS. ClaeysenS. CunninghamK.A. FoneK.C. GershonM. Di GiovanniG. GoodfellowN.M. HalberstadtA.L. HartleyR.M. HassaineG. Herrick-DavisK. HoviusR. LacivitaE. LambeE.K. LeopoldoM. LevyF.O. LummisS.C.R. MarinP. MaroteauxL. McCrearyA.C. NelsonD.L. NeumaierJ.F. Newman-TancrediA. NuryH. RobertsA. RothB.L. RoumierA. SangerG.J. TeitlerM. SharpT. VillalónC.M. VogelH. WattsS.W. HoyerD. International Union of Basic and Clinical Pharmacology. CX. Classification of receptors for 5-hydroxytryptamine; pharmacology and function.Pharmacol. Rev.202173131052010.1124/pr.118.01555233370241
    [Google Scholar]
  105. LeysenJ. 5-HT2 Receptors.Curr. Drug Targets CNS Neurol. Disord.200431112610.2174/156800704348259814965241
    [Google Scholar]
  106. BoczekT. MackiewiczJ. SobolczykM. WawrzyniakJ. LisekM. FerencB. GuoF. ZylinskaL. The role of G protein-coupled receptors (GPCRs) and calcium signaling in schizophrenia. Focus on GPCRs activated by neurotransmitters and chemokines.Cells2021105122810.3390/cells1005122834067760
    [Google Scholar]
  107. WeisstaubN.V. ZhouM. LiraA. LambeE. González-MaesoJ. HornungJ.P. SibilleE. UnderwoodM. ItoharaS. DauerW.T. AnsorgeM.S. MorelliE. MannJ.J. TothM. AghajanianG. SealfonS.C. HenR. GingrichJ.A. Cortical 5-HT2A receptor signaling modulates anxiety-like behaviors in mice.Science2006313578653654010.1126/science.112343216873667
    [Google Scholar]
  108. BressaG.M. MariniS. GregoriS. Serotonin S2 receptors blockage and generalized anxiety disorders. A double-blind study on ritanserin and lorazepam.Int. J. Clin. Pharmacol. Res.1987721111193108171
    [Google Scholar]
  109. ZanoveliJ.M. NogueiraR.L. ZangrossiH.Jr Chronic imipramine treatment sensitizes 5-HT1A and 5-HT2A receptors in the dorsal periaqueductal gray matter: evidence from the elevated T-maze test of anxiety.Behav. Pharmacol.200516754355210.1097/01.fbp.0000179280.05654.5a16170231
    [Google Scholar]
  110. HarveyJ.A. SchlosbergA.J. YungerL.M. Behavioural correlates of serotonin depletion. In: Behavioural Pharmacology. FASEB MonographsSpringerBoston, MA1975410.1007/978‑1‑4684‑2634‑2_8
    [Google Scholar]
  111. CatlowB.J. SongS. ParedesD.A. KirsteinC.L. Sanchez-RamosJ. Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning.Exp. Brain Res.2013228448149110.1007/s00221‑013‑3579‑023727882
    [Google Scholar]
  112. GewirtzJ.C. ChenA.C. TerwilligerR. DumanR.C. MarekG.J. Modulation of DOI-induced increases in cortical BDNF expression by group II mGlu receptors.Pharmacol. Biochem. Behav.200273231732610.1016/S0091‑3057(02)00844‑412117585
    [Google Scholar]
  113. WangP. ZhaoQ. XuT. GuQ. LiuQ. WangY. LinG.N. WangZ. Interaction between PGRN gene and the early trauma on clinical characteristics in patients with obsessive-compulsive disorder.J. Affect. Disord.202026313414010.1016/j.jad.2019.11.11131818769
    [Google Scholar]
  114. KursarJ.D. NelsonD.L. WainscottD.B. BaezM. Molecular cloning, functional expression, and mRNA tissue distribution of the human 5-hydroxytryptamine2B receptor.Mol. Pharmacol.19944622272348078486
    [Google Scholar]
  115. KauerJ.A. MalenkaR.C. Synaptic plasticity and addiction.Nat. Rev. Neurosci.200781184485810.1038/nrn223417948030
    [Google Scholar]
  116. WirthA. HolstK. PonimaskinE. How serotonin receptors regulate morphogenic signalling in neurons.Prog. Neurobiol.2017151355610.1016/j.pneurobio.2016.03.00727013076
    [Google Scholar]
  117. RadkeA.K. PiantadosiP.T. UhlG.R. HallF.S. HolmesA. Improved visual discrimination learning in mice with partial 5-HT2B gene deletion.Neurosci. Lett.202073813537810.1016/j.neulet.2020.13537832920046
    [Google Scholar]
  118. ThompsonA.J. LummisS.C. 5-HT3 receptors.Curr. Pharm. Des.200612283615363010.2174/13816120677852202917073663
    [Google Scholar]
  119. BergK.A. ClarkeW.P. CunninghamK.A. SpampinatoU. Fine-tuning serotonin2c receptor function in the brain: Molecular and functional implications.Neuropharmacology200855696997610.1016/j.neuropharm.2008.06.01418602407
    [Google Scholar]
  120. MaricqA.V. PetersonA.S. BrakeA.J. MyersR.M. JuliusD. Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel.Science1991254503043243710.1126/science.17180421718042
    [Google Scholar]
  121. BijakM. MisgeldU. Effects of serotonin through serotonin1A and serotonin4 receptors on inhibition in the guinea-pig dentate gyrus in vitro.Neuroscience19977841017102610.1016/S0306‑4522(96)00666‑59174070
    [Google Scholar]
  122. NieslerB. FrankB. KapellerJ. RappoldG.A. Cloning, physical mapping and expression analysis of the human 5-HT3 serotonin receptor-like genes HTR3C, HTR3D and HTR3E.Gene200331010111110.1016/S0378‑1119(03)00503‑112801637
    [Google Scholar]
  123. BianchiC. RodiD. MarinoS. BeaniL. SiniscalchiA. Dual effects of 5-HT4 receptor activation on GABA release from guinea pig hippocampal slices.Neuroreport200213172177218010.1097/00001756‑200212030‑0000312488792
    [Google Scholar]
  124. TecottL.H. MaricqA.V. JuliusD. Nervous system distribution of the serotonin 5-HT3 receptor mRNA.Proc. Natl. Acad. Sci. USA19939041430143410.1073/pnas.90.4.14308434003
    [Google Scholar]
  125. NayakS.V. RondéP. SpierA.D. LummisS.C.R. NicholsR.A. Calcium changes induced by presynaptic 5-hydroxytryptamine-3 serotonin receptors on isolated terminals from various regions of the rat brain.Neuroscience199991110711710.1016/S0306‑4522(98)00520‑X10336063
    [Google Scholar]
  126. KrzywkowskiK. DaviesP.A. Feinberg-ZadekP.L. Bräuner-OsborneH. JensenA.A. High-frequency HTR3B variant associated with major depression dramatically augments the signaling of the human 5-HT 3AB receptor.Proc. Natl. Acad. Sci. USA2008105272272710.1073/pnas.070845410518184810
    [Google Scholar]
  127. KatsurabayashiS. KubotaH. TokutomiN. AkaikeN. A distinct distribution of functional presynaptic 5-HT receptor subtypes on GABAergic nerve terminals projecting to single hippocampal CA1 pyramidal neurons.Neuropharmacology20034481022103010.1016/S0028‑3908(03)00103‑512763095
    [Google Scholar]
  128. BarthetG. GavenF. FrameryB. ShinjoK. NakamuraT. ClaeysenS. BockaertJ. DumuisA. Uncoupling and endocytosis of 5-hydroxytryptamine 4 receptors. Distinct molecular events with different GRK2 requirements.J. Biol. Chem.200528030279242793410.1074/jbc.M50227220015919661
    [Google Scholar]
  129. CompanV. ZhouM. GrailheR. GazzaraR.A. MartinR. GingrichJ. DumuisA. BrunnerD. BockaertJ. HenR. Attenuated response to stress and novelty and hypersensitivity to seizures in 5-HT4 receptor knock-out mice.J. Neurosci.200424241241910.1523/JNEUROSCI.2806‑03.200414724239
    [Google Scholar]
  130. ConsoloS. ArnaboldiS. GiorgiS. RussiG. LadinskyH. 5-HT4 receptor stimulation facilitates acetylcholine release in rat frontal cortex.Neuroreport19945101230123210.1097/00001756‑199406020‑000187919171
    [Google Scholar]
  131. LucasG. CompanV. CharnayY. NeveR.L. NestlerE.J. BockaertJ. BarrotM. DebonnelG. Frontocortical 5-HT4 receptors exert positive feedback on serotonergic activity: Viral transfections, subacute and chronic treatments with 5-HT4 agonists.Biol. Psychiatry200557891892510.1016/j.biopsych.2004.12.02315820713
    [Google Scholar]
  132. LucasG. RymarV.V. DuJ. Mnie-FilaliO. BisgaardC. MantaS. Lambas-SenasL. WiborgO. HaddjeriN. PiñeyroG. SadikotA.F. DebonnelG. Serotonin(4) (5-HT(4)) receptor agonists are putative antidepressants with a rapid onset of action.Neuron200755571272510.1016/j.neuron.2007.07.04117785179
    [Google Scholar]
  133. BonhommeN. De DeurwaèrdereP. Le MoalM. SpampinatoU. Evidence for 5-HT4 receptor subtype involvement in the enhancement of striatal dopamine release induced by serotonin: a microdialysis study in the halothane-anesthetized rat.Neuropharmacology199534326927910.1016/0028‑3908(94)00145‑I7543190
    [Google Scholar]
  134. CovingtonH.E.III LoboM.K. MazeI. VialouV. HymanJ.M. ZamanS. LaPlantQ. MouzonE. GhoseS. TammingaC.A. NeveR.L. DeisserothK. NestlerE.J. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex.J. Neurosci.20103048160821609010.1523/JNEUROSCI.1731‑10.201021123555
    [Google Scholar]
  135. AlizadehN. NosratN. JahaniZ. AhmadianiA. AsadiS. ShamsJ. Association of HTR1A gene polymorphisms with obsessive–compulsive disorder and its treatment response: the influence of sex and clinical characteristics.Int. J. Neurosci.2019129326427210.1080/00207454.2018.152679930232922
    [Google Scholar]
  136. NelsonD. 5-HT5 receptors.Curr. Drug Targets CNS Neurol. Disord.200431535810.2174/156800704348260614965244
    [Google Scholar]
  137. GérardC. MartresM.P. LefèvreK. MiquelM.C. VergéD. LanfumeyL. DoucetE. HamonM. El MestikawyS. Immuno-localization of serotonin 5-HT6 receptor-like material in the rat central nervous system.Brain Res.19977461-220721910.1016/S0006‑8993(96)01224‑39037500
    [Google Scholar]
  138. HamonM. DoucetE. LefèvreK. MiquelM.C. LanfumeyL. InsaustiR. FrechillaD. Del RioJ. VergéD. Antibodies and antisense oligonucleotide for probing the distribution and putative functions of central 5-HT6 receptors.Neuropsychopharmacology1999212Suppl.68S76S10.1016/S0893‑133X(99)00044‑510432491
    [Google Scholar]
  139. LiebenC.K.J. BloklandA. ŞıkA. SungE. van NieuwenhuizenP. SchreiberR. The selective 5-HT6 receptor antagonist Ro4368554 restores memory performance in cholinergic and serotonergic models of memory deficiency in the rat.Neuropsychopharmacology200530122169217910.1038/sj.npp.130077715957009
    [Google Scholar]
  140. HirstW.D. SteanT.O. RogersD.C. SunterD. PughP. MossS.F. BromidgeS.M. RileyG. SmithD.R. BartlettS. HeidbrederC.A. AtkinsA.R. LacroixL.P. DawsonL.A. FoleyA.G. ReganC.M. UptonN. SB-399885 is a potent, selective 5-HT6 receptor antagonist with cognitive enhancing properties in aged rat water maze and novel object recognition models.Eur. J. Pharmacol.20065531-310911910.1016/j.ejphar.2006.09.04917069795
    [Google Scholar]
  141. Baca-GarciaE. Vaquero-LorenzoC. Diaz-HernandezM. Rodriguez-SalgadoB. Dolengevich-SegalH. Arrojo-RomeroM. Botillo-MartinC. CeverinoA. PiquerasJ.F. Perez-RodriguezM.M. Saiz-RuizJ. Association between obsessive–compulsive disorder and a variable number of tandem repeats polymorphism in intron 2 of the serotonin transporter gene.Prog. Neuropsychopharmacol. Biol. Psychiatry200731241642010.1016/j.pnpbp.2006.10.01617174018
    [Google Scholar]
  142. EnochM.A. KayeW.H. RotondoA. GreenbergB.D. MurphyD.L. GoldmanD. 5-HT2A promoter polymorphism −1438G/A, anorexia nervosa, and obsessive-compulsive disorder.Lancet199835191181785178610.1016/S0140‑6736(05)78746‑89635956
    [Google Scholar]
  143. SinopoliV.M. ErdmanL. BurtonC.L. EasterP. RajendramR. BaldwinG. PetermanK. CosteJ. ShaheenS-M. HannaG.L. RosenbergD.R. ArnoldP.D. Serotonin system gene variants and regional brain volume differences in pediatric OCD.Brain Imaging Behav.20201451612162510.1007/s11682‑019‑00092‑w31187473
    [Google Scholar]
  144. DickelD.E. Veenstra-VanderWeeleJ. BivensN.C. WuX. FischerD.J. Van Etten-LeeM. HimleJ.A. LeventhalB.L. CookE.H.Jr HannaG.L. Association studies of serotonin system candidate genes in early-onset obsessive-compulsive disorder.Biol. Psychiatry200761332232910.1016/j.biopsych.2006.09.03017241828
    [Google Scholar]
  145. LennertzL. WagnerM. FrommannI. Schulze-RauschenbachS. SchuhmacherA. KühnK.U. PukropR. KlosterkötterJ. WölwerW. GaebelW. RietschelM. HäfnerH. MaierW. MössnerR. A coding variant of the novel serotonin receptor subunit 5-HT3E influences sustained attention in schizophrenia patients.Eur. Neuropsychopharmacol.201020641442010.1016/j.euroneuro.2010.02.01220356718
    [Google Scholar]
  146. BestJ.A. NijhoutH.F. ReedM.C. Homeostatic mechanisms in dopamine synthesis and release: a mathematical model.Theor. Biol. Med. Model.2009612110.1186/1742‑4682‑6‑2119740446
    [Google Scholar]
  147. JiangC. MaX. QiS. HanG. LiY. LiuY. LiuL. Association between TNF-α-238G/A gene polymorphism and OCD susceptibility.Medicine (Baltimore)2018975e976910.1097/MD.000000000000976929384866
    [Google Scholar]
  148. YaoW.D. GainetdinovR.R. ArbuckleM.I. SotnikovaT.D. CyrM. BeaulieuJ.M. TorresG.E. GrantS.G.N. CaronM.G. Identification of PSD-95 as a regulator of dopamine-mediated synaptic and behavioural plasticity.Neuron200441462563810.1016/S0896‑6273(04)00048‑014980210
    [Google Scholar]
  149. CarlssonA. A paradigm shift in brain research.Science200129455441021102410.1126/science.106696911691978
    [Google Scholar]
  150. ElsworthJ.D. RothR.H. Dopamine synthesis, uptake, metabolism, and receptors: relevance to gene therapy of Parkinson’s disease.Exp. Neurol.199714414910.1006/exnr.1996.63799126143
    [Google Scholar]
  151. PrasadA.A. PasterkampR.J. Axon guidance in the dopamine system. In: Development and Engineering of Dopamine Neurons200991100
    [Google Scholar]
  152. JaberM. RobinsonS.W. MissaleC. CaronM.G. Dopamine receptors and brain function.Neuropharmacology199635111503151910.1016/S0028‑3908(96)00100‑19025098
    [Google Scholar]
  153. NeveK.A. SeamansJ.K. Trantham-DavidsonH. Dopamine receptor signaling.J Recept Signal Transduct Res.200424316520510.1081/RRS‑200029981
    [Google Scholar]
  154. MissaleC. NashS.R. RobinsonS.W. JaberM. CaronM.G. Dopamine receptors: from structure to function.Physiol. Rev.199878118922510.1152/physrev.1998.78.1.1899457173
    [Google Scholar]
  155. FordC.P. The role of D2-autoreceptors in regulating dopamine neuron activity and transmission.Neuroscience2014282132210.1016/j.neuroscience.2014.01.02524463000
    [Google Scholar]
  156. LightK.J. JoyceP.R. LutyS.E. MulderR.T. FramptonC.M.A. JoyceL.R.M. MillerA.L. KennedyM.A. Preliminary evidence for an association between a dopamine D3 receptor gene variant and obsessive‐compulsive personality disorder in patients with major depression.Am. J. Med. Genet. B. Neuropsychiatr. Genet.2006141B440941310.1002/ajmg.b.3030816583407
    [Google Scholar]
  157. McGregorN.W. LochnerC. SteinD.J. HemmingsS.M.J. Polymorphisms within the neuronal cadherin (CDH2) gene are associated with obsessive-compulsive disorder (OCD) in a South African cohort.Metab. Brain Dis.201631119119610.1007/s11011‑015‑9693‑x26093892
    [Google Scholar]
  158. MilletB. ChabaneN. DelormeR. LeboyerM. LeroyS. PoirierM.F. BourdelM.C. Mouren-SimeoniM.C. RouillonF. LooH. KrebsM.O. Association between the dopamine receptor D4 (DRD4) gene and obsessive‐compulsive disorder.Am. J. Med. Genet. B. Neuropsychiatr. Genet.2003116B1555910.1002/ajmg.b.1003412497615
    [Google Scholar]
  159. FrischA. MichaelovskyE. RockahR. AmirI. HermeshH. LaorN. FuchsC. ZoharJ. LererB. BuniakS.F. LandaS. PoyurovskyM. ShapiraB. WeizmanR. Association between obsessive-compulsive disorder and polymorphisms of genes encoding components of the serotonergic and dopaminergic pathways.Eur. Neuropsychopharmacol.200010320520910.1016/S0924‑977X(00)00071‑710793323
    [Google Scholar]
  160. HemmingsS. KinnearC.J. NiehausD.J. Moolman-SmookJ.C. LochnerC. KnowlesJ.A. CorfieldV.A. SteinD.J. Investigating the role of dopaminergic and serotonergic candidate genes in obsessive-compulsive disorder.Eur. Neuropsychopharmacol.2003132939810.1016/S0924‑977X(02)00129‑312650952
    [Google Scholar]
  161. KumarP. RaiV. Catechol-O-methyltransferase gene Val158Met polymorphism and obsessive compulsive disorder susceptibility: a meta-analysis.Metab. Brain Dis.202035224125110.1007/s11011‑019‑00495‑031879835
    [Google Scholar]
  162. GassóP. OrtizA.E. MasS. MorerA. CalvoA. BargallóN. LafuenteA. LázaroL. Association between genetic variants related to glutamatergic, dopaminergic and neurodevelopment pathways and white matter microstructure in child and adolescent patients with obsessive–compulsive disorder.J. Affect. Disord.201518628429210.1016/j.jad.2015.07.03526254621
    [Google Scholar]
  163. YelamanchiS.D. JayaramS. ThomasJ.K. GundimedaS. KhanA.A. SinghalA. Keshava PrasadT.S. PandeyA. SomaniB.L. GowdaH. A pathway map of glutamate metabolism.J. Cell Commun. Signal.2016101697510.1007/s12079‑015‑0315‑526635200
    [Google Scholar]
  164. PapesF. SurpiliM.J. LangoneF. TrigoJ.R. ArrudaP. The essential amino acid lysine acts as precursor of glutamate in the mammalian central nervous system.FEBS Lett.20014881-2343810.1016/S0014‑5793(00)02401‑711163791
    [Google Scholar]
  165. CentellesJ.J. CentellesJ.J. Excitatory amino acid neurotransmission Pathways for metabolism storage and reuptake of glutamate in brain.Front. Biosci.199834A31410.2741/A3149665875
    [Google Scholar]
  166. BakerD.A. XiZ.X. ShenH. SwansonC.J. KalivasP.W. The origin and neuronal function of in vivo nonsynaptic glutamate.J. Neurosci.200222209134914110.1523/JNEUROSCI.22‑20‑09134.200212388621
    [Google Scholar]
  167. PalM.M. Glutamate: The master neurotransmitter and its implications in chronic stress and mood disorders.Front. Hum. Neurosci.20211572232310.3389/fnhum.2021.72232334776901
    [Google Scholar]
  168. WatkinsJ.C. JaneD.E. The glutamate story.Br. J. Pharmacol.2006147Suppl 1Suppl. 1S100S10816402093
    [Google Scholar]
  169. ConnP.J. PinJ.P. Pharmacology and functions of metabotropic glutamate receptors.Annu. Rev. Pharmacol. Toxicol.199737120523710.1146/annurev.pharmtox.37.1.2059131252
    [Google Scholar]
  170. Suárez-PozosE. ThomasonE.J. FussB. Glutamate transporters: expression and function in oligodendrocytes.Neurochem. Res.202045355156010.1007/s11064‑018‑02708‑x30628017
    [Google Scholar]
  171. FurnessD.N. DehnesY. AkhtarA.Q. RossiD.J. HamannM. GrutleN.J. GundersenV. HolmsethS. LehreK.P. UllensvangK. WojewodzicM. ZhouY. AttwellD. DanboltN.C. A quantitative assessment of glutamate uptake into hippocampal synaptic terminals and astrocytes: New insights into a neuronal role for excitatory amino acid transporter 2 (EAAT2).Neuroscience20081571809410.1016/j.neuroscience.2008.08.04318805467
    [Google Scholar]
  172. CrupiR. ImpellizzeriD. CuzzocreaS. Role of metabotropic glutamate receptors in neurological disorders.Front. Mol. Neurosci.2019122010.3389/fnmol.2019.0002030800054
    [Google Scholar]
  173. LaubeB. KuhseJ. BetzH. Evidence for a tetrameric structure of recombinant NMDA receptors.J. Neurosci.19981882954296110.1523/JNEUROSCI.18‑08‑02954.19989526012
    [Google Scholar]
  174. ManoI. TeichbergV.I. A tetrameric subunit stoichiometry for a glutamate receptor–channel complex.Neuroreport19989232733110.1097/00001756‑199801260‑000279507977
    [Google Scholar]
  175. RosenmundC. Stern-BachY. StevensC.F. The tetrameric structure of a glutamate receptor channel.Science199828053691596910.1126/science.280.5369.1596
    [Google Scholar]
  176. ArnoldP.D. MacMasterF.P. RichterM.A. HannaG.L. SicardT. BurroughsE. MirzaY. EasterP.C. RoseM. KennedyJ.L. RosenbergD.R. Glutamate receptor gene (GRIN2B) associated with reduced anterior cingulate glutamatergic concentration in pediatric obsessive–compulsive disorder.Psychiatry Res. Neuroimaging2009172213613910.1016/j.pscychresns.2009.02.00519324536
    [Google Scholar]
  177. DickelD.E. Veenstra-VanderWeeleJ. CoxN.J. WuX. FischerD.J. Van Etten-LeeM. HimleJ.A. LeventhalB.L. CookE.H.Jr HannaG.L. Association testing of the positional and functional candidate gene SLC1A1/EAAC1 in early-onset obsessive-compulsive disorder.Arch. Gen. Psychiatry200663777878510.1001/archpsyc.63.7.77816818867
    [Google Scholar]
  178. KohlrauschF.B. GioriI.G. Melo-FelippeF.B. Vieira-FonsecaT. VelardeL.G.C. de Salles AndradeJ.B. FontenelleL.F. Association of GRIN2B gene polymorphism and Obsessive Compulsive disorder and symptom dimensions: A pilot study.Psychiatry Res.201624315215510.1016/j.psychres.2016.06.02727394963
    [Google Scholar]
  179. OrtizA.E. GassóP. MasS. FalconC. BargallóN. LafuenteA. LázaroL. Association between genetic variants of serotonergic and glutamatergic pathways and the concentration of neurometabolites of the anterior cingulate cortex in paediatric patients with obsessive–compulsive disorder.World J. Biol. Psychiatry201617539440410.3109/15622975.2015.111152426505676
    [Google Scholar]
  180. SzeszkoP.R. ArdekaniB.A. AshtariM. MalhotraA.K. RobinsonD.G. BilderR.M. LimK.O. White matter abnormalities in obsessive-compulsive disorder: a diffusion tensor imaging study.Arch. Gen. Psychiatry200562778279010.1001/archpsyc.62.7.78215997020
    [Google Scholar]
  181. HounieA.G. CappiC. CordeiroQ. SampaioA.S. MoraesI. RosárioM.C. PaláciosS.A. GoldbergA.C. ValladaH.P. Machado-LimaA. NakanoE. KalilJ. PaulsD. PereiraC.A.B. GuilhermeL. MiguelE.C. TNF-alpha polymorphisms are associated with obsessive-compulsive disorder.Neurosci. Lett.20084422869010.1016/j.neulet.2008.07.02218639610
    [Google Scholar]
  182. CengizM. OkutanS.N. BayogluB. Sakalli KaniA. BayarR. KocabasogluN. Genetic polymorphism of the serotonin transporter gene, SLC6A4 rs16965628, is associated with obsessive compulsive disorder.Genet. Test. Mol. Biomarkers201519522823410.1089/gtmb.2014.031925751280
    [Google Scholar]
  183. StamatisC.A. EngelmannJ.B. ZieglerC. DomschkeK. HaslerG. TimpanoK.R. A neuroeconomic investigation of 5-HTT / 5-HT1A gene variation, social anxiety, and risk-taking behavior.Anxiety Stress Coping202033217619210.1080/10615806.2020.172259732009446
    [Google Scholar]
  184. MasS. PagerolsM. GassóP. OrtizA. RodriguezN. MorerA. PlanaM.T. LafuenteA. LazaroL. Role of GAD2 and HTR1B genes in early‐onset obsessive‐compulsive disorder: results from transmission disequilibrium study.Genes Brain Behav.201413440941710.1111/gbb.1212824571444
    [Google Scholar]
  185. DengM. WangY. YuS. FanQ. QiuJ. WangZ. XiaoZ. Exploring association between serotonin and neurogenesis related genes in obsessive-compulsive disorder in chinese han people: Promising association between DMRT2, miR-30a-5p, and early-onset patients.Front. Psychiatry20221385757410.3389/fpsyt.2022.85757435633798
    [Google Scholar]
  186. BolocD. MasS. RodriguezN. OrtizA.E. MorerA. PlanaM.T. LafuenteA. LazaroL. GassóP. Genetic associations of serotoninergic and GABAergic genes in an extended collection of early-onset obsessive-compulsive disorder trios.J. Child Adolesc. Psychopharmacol.201929215215710.1089/cap.2018.007330351181
    [Google Scholar]
  187. GomesC.K.F. Vieira-FonsecaT. Melo-FelippeF.B. de Salles AndradeJ.B. FontenelleL.F. KohlrauschF.B. Association analysis of SLC6A4 and HTR2A genes with obsessive-compulsive disorder: Influence of the STin2 polymorphism.Compr. Psychiatry2018821610.1016/j.comppsych.2017.12.00429331882
    [Google Scholar]
  188. SinaM. AhmadianiA. AsadiS. ShamsJ. Association of serotonin receptor 2a haplotypes with obsessive–compulsive disorder and its treatment response in Iranian patients: a genetic and pharmacogenetic study.Neuropsychiatr. Dis. Treat.2018141199120910.2147/NDT.S16394629785111
    [Google Scholar]
  189. UnschuldP.G. IsingM. ErhardtA. LucaeS. KloiberS. KohliM. SalyakinaD. WeltT. KernN. LiebR. UhrM. BinderE.B. Müller-MyhsokB. HolsboerF. KeckM.E. Polymorphisms in the serotonin receptor gene HTR2A are associated with quantitative traits in panic disorder.Am. J. Med. Genet. B. Neuropsychiatr. Genet.2007144B442442910.1002/ajmg.b.3041217440930
    [Google Scholar]
  190. KimH.W. KangJ.I. LeeS.H. AnS.K. SohnS.Y. HwangE.H. LeeS.Y. KimS.J. Common variants of HTR3 genes are associated with obsessive-compulsive disorder and its phenotypic expression.Sci. Rep.2016613256410.1038/srep3256427616601
    [Google Scholar]
  191. GrünblattE. MarinovaZ. RothA. GardiniE. BallJ. GeisslerJ. WojdaczT.K. RomanosM. WalitzaS. Combining genetic and epigenetic parameters of the serotonin transporter gene in obsessive-compulsive disorder.J. Psychiatr. Res.20189620921710.1016/j.jpsychires.2017.10.01029102815
    [Google Scholar]
  192. SutcliffeJ.S. DelahantyR.J. PrasadH.C. McCauleyJ.L. HanQ. JiangL. LiC. FolsteinS.E. BlakelyR.D. Allelic heterogeneity at the serotonin transporter locus (SLC6A4) confers susceptibility to autism and rigid-compulsive behaviors.Am. J. Hum. Genet.200577226527910.1086/43264815995945
    [Google Scholar]
  193. DennenC.A. BlumK. BowirratA. ThanosP.K. ElmanI. CeccantiM. BadgaiyanR.D. McLaughlinT. GuptaA. BajajA. BaronD. DownsB.W. BagchiD. GoldM.S. Genetic addiction risk severity assessment identifies polymorphic reward genes as antecedents to reward deficiency syndrome (RDS) hypodopaminergia’s effect on addictive and non-addictive behaviors in a nuclear family.J. Pers. Med.20221211186410.3390/jpm1211186436579592
    [Google Scholar]
  194. LochnerC. McGregorN. HemmingsS. HarveyB.H. BreetE. SwanevelderS. SteinD.J. Symmetry symptoms in obsessive-compulsive disorder: clinical and genetic correlates.Rev. Bras. Psiquiatr.2015381172310.1590/1516‑4446‑2014‑161926291046
    [Google Scholar]
  195. SavitzJ. HodgkinsonC.A. Martin-SoelchC. ShenP.H. SzczepanikJ. NugentA. HerscovitchP. GraceA.A. GoldmanD. DrevetsW.C. The functional DRD3 Ser9Gly polymorphism (rs6280) is pleiotropic, affecting reward as well as movement.PLoS One201381e5410810.1371/journal.pone.005410823365649
    [Google Scholar]
  196. AlonsoP. GratacósM. SegalàsC. EscaramísG. RealE. BayésM. LabadJ. López-SolàC. EstivillX. MenchónJ.M. Association between the NMDA glutamate receptor GRIN2B gene and obsessive–compulsive disorder.J. Psychiatry Neurosci.201237427328110.1503/jpn.11010922433450
    [Google Scholar]
  197. CaiJ. ZhangW. YiZ. LuW. WuZ. ChenJ. YuS. FangY. ZhangC. Influence of polymorphisms in genes SLC1A1, GRIN2B, and GRIK2 on clozapine-induced obsessive–compulsive symptoms.Psychopharmacology (Berl.)20132301495510.1007/s00213‑013‑3137‑223660601
    [Google Scholar]
  198. SampaioA.S. FagernessJ. CraneJ. LeboyerM. DelormeR. PaulsD.L. StewartS.E. Association between polymorphisms in GRIK2 gene and obsessive-compulsive disorder: a family-based study.CNS Neurosci. Ther.201117314114710.1111/j.1755‑5949.2009.00130.x20370803
    [Google Scholar]
  199. TakenouchiT. HashidaN. ToriiC. KosakiR. TakahashiT. KosakiK. 1p34.3 deletion involving GRIK 3 : Further clinical implication of GRIK family glutamate receptors in the pathogenesis of developmental delay.Am. J. Med. Genet. A.2014164245646010.1002/ajmg.a.3624024449200
    [Google Scholar]
  200. AbdolhosseinzadehS. SinaM. AhmadianiA. AsadiS. ShamsJ. Genetic and pharmacogenetic study of glutamate transporter (SLC1A1) in Iranian patients with obsessive-compulsive disorder.J. Clin. Pharm. Ther.2019441394810.1111/jcpt.1276630315580
    [Google Scholar]
  201. de Salles AndradeJ.B. GioriI.G. Melo-FelippeF.B. Vieira-FonsecaT. FontenelleL.F. KohlrauschF.B. Glutamate transporter gene polymorphisms and obsessive-compulsive disorder: A case-control association study.J. Clin. Neurosci.201962535910.1016/j.jocn.2019.01.00930661718
    [Google Scholar]
  202. HuangX. LiuJ. CongJ. ZhangX. Association between the slc1a1 glutamate transporter gene and obsessive-compulsive disorder in the chinese han population.Neuropsychiatr. Dis. Treat.20211734735410.2147/NDT.S28162333574671
    [Google Scholar]
  203. ArnoldP.D. SicardT. BurroughsE. RichterM.A. KennedyJ.L. Glutamate transporter gene SLC1A1 associated with obsessive-compulsive disorder.Arch. Gen. Psychiatry200663776977610.1001/archpsyc.63.7.76916818866
    [Google Scholar]
  204. KimH.W. KangJ.I. HwangE.H. KimS.J. Association between glutamate transporter gene polymorphisms and obsessive-compulsive disorder/trait empathy in a Korean population.PLoS One2018131e019059310.1371/journal.pone.019059329304071
    [Google Scholar]
  205. WendlandJ.R. MoyaP.R. TimpanoK.R. AnavitarteA.P. KruseM.R. WheatonM.G. Ren-PattersonR.F. MurphyD.L. A haplotype containing quantitative trait loci for SLC1A1 gene expression and its association with obsessive-compulsive disorder.Arch. Gen. Psychiatry200966440841610.1001/archgenpsychiatry.2009.619349310
    [Google Scholar]
  206. WuK. HannaG.L. EasterP. KennedyJ.L. RosenbergD.R. ArnoldP.D. Glutamate system genes and brain volume alterations in pediatric obsessive-compulsive disorder: A preliminary study.Psychiatry Res. Neuroimaging2013211321422010.1016/j.pscychresns.2012.07.00323154099
    [Google Scholar]
  207. BiY. RenD. GuoZ. MaG. XuF. ChenZ. AnL. ZhangN. JiL. YuanF. LiuL. HouB. YangF. YuS. YiZ. XuY. HeL. SunX. DongZ. WuS. ZhaoL. CaiC. LiX. YuT. ShiY. HeG. Influence and interaction of genetic, cognitive, neuroendocrine and personalistic markers to antidepressant response in Chinese patients with major depression.Prog. Neuropsychopharmacol. Biol. Psychiatry202110411003610.1016/j.pnpbp.2020.11003632702381
    [Google Scholar]
  208. LiuY. ZhangL. MeiR. AiM. PangR. XiaD. ChenL. ZhongL. The role of SliTrk5 in central nervous system.BioMed Res. Int.20222022111010.1155/2022/467802635872846
    [Google Scholar]
  209. McGregorN.W. HemmingsS.M.J. ErdmanL. Calmarza-FontI. SteinD.J. LochnerC. Modification of the association between early adversity and obsessive-compulsive disorder by polymorphisms in the MAOA, MAOB and COMT genes.Psychiatry Res.201624652753210.1016/j.psychres.2016.10.04427821364
    [Google Scholar]
  210. ChmielowiecK. ChmielowiecJ. MasiakJ. Strońska-PlutaA. ŚmiarowskaM. BorońA. GrzywaczA. Associations between the COMT rs4680 gene polymorphism and personality dimensions and anxiety in patients with a diagnosis of other stimulants dependence.Genes (Basel)20221310176810.3390/genes1310176836292653
    [Google Scholar]
  211. Melo-FelippeF.B. de Salles AndradeJ.B. GioriI.G. Vieira-FonsecaT. FontenelleL.F. KohlrauschF.B. Catechol-O-methyltransferase gene polymorphisms in specific obsessive–compulsive disorder patients’ subgroups.J. Mol. Neurosci.201658112913610.1007/s12031‑015‑0697‑026687156
    [Google Scholar]
  212. MössnerR. WalitzaS. GellerF. ScheragA. GutknechtL. JacobC. BoguschL. RemschmidtH. SimonsM. Herpertz-DahlmannB. FleischhakerC. SchulzE. WarnkeA. HinneyA. WewetzerC. LeschK.P. Transmission disequilibrium of polymorphic variants in the tryptophan hydroxylase-2 gene in children and adolescents with obsessive–compulsive disorder.Int. J. Neuropsychopharmacol.20069443744210.1017/S146114570500599716146581
    [Google Scholar]
  213. MattheisenM. SamuelsJ.F. WangY. GreenbergB.D. FyerA.J. McCrackenJ.T. GellerD.A. MurphyD.L. KnowlesJ.A. GradosM.A. RiddleM.A. RasmussenS.A. McLaughlinN.C. NurmiE.L. AsklandK.D. QinH-D. CullenB.A. PiacentiniJ. PaulsD.L. BienvenuO.J. StewartS.E. LiangK-Y. GoesF.S. MaherB. PulverA.E. ShugartY.Y. ValleD. LangeC. NestadtG. Genome-wide association study in obsessive-compulsive disorder: results from the OCGAS.Mol. Psychiatry201520333734410.1038/mp.2014.4324821223
    [Google Scholar]
  214. WuH. WangX. XiaoZ. YuS. ZhuL. WangD. JiangK. WangZ. ZhangT. FralickD. Association between SLC1A1 gene and early-onset OCD in the Han Chinese population: a case-control study.J. Mol. Neurosci.201350235335910.1007/s12031‑013‑9995‑623564280
    [Google Scholar]
  215. GoodmanW.K. StorchE.A. ShethS.A. Harmonizing the neurobiology and treatment of obsessive-compulsive disorder.Am. J. Psychiatry20211781172910.1176/appi.ajp.2020.2011160133384007
    [Google Scholar]
  216. RădulescuA. HerronJ. KennedyC. ScimemiA. Global and local excitation and inhibition shape the dynamics of the cortico-striatal-thalamo-cortical pathway.Sci. Rep.201771760810.1038/s41598‑017‑07527‑828790376
    [Google Scholar]
  217. BonelliR.M. CummingsJ.L. Frontal-subcortical circuitry and behavior.Dialogues Clin. Neurosci.20079214115110.31887/DCNS.2007.9.2/rbonelli17726913
    [Google Scholar]
  218. TingJ.T. FengG. Neurobiology of obsessive–compulsive disorder: insights into neural circuitry dysfunction through mouse genetics.Curr. Opin. Neurobiol.201121684284810.1016/j.conb.2011.04.01021605970
    [Google Scholar]
  219. AouciR. El SoudanyM. MaakoulZ. FontaineA. KuriharaH. LeviG. Narboux-NêmeN. Dlx5/6 expression levels in mouse GABAergic neurons regulate adult parvalbumin neuronal density and anxiety/compulsive behaviours.Cells20221111173910.3390/cells1111173935681437
    [Google Scholar]
  220. GreerJ.M. CapecchiM.R. Hoxb8 is required for normal grooming behavior in mice.Neuron2002331233410.1016/S0896‑6273(01)00564‑511779477
    [Google Scholar]
  221. CathD.C. van GrootheestD.S. WillemsenG. van OppenP. BoomsmaD.I. Environmental factors in obsessive-compulsive behavior: evidence from discordant and concordant monozygotic twins.Behav. Genet.200838210812010.1007/s10519‑007‑9185‑918188688
    [Google Scholar]
  222. BranderG. RydellM. Kuja-HalkolaR. Fernández de la CruzL. LichtensteinP. SerlachiusE. RückC. AlmqvistC. D’OnofrioB.M. LarssonH. Mataix-ColsD. Association of perinatal risk factors with obsessive-compulsive disorder: a population-based birth cohort, sibling control study.JAMA Psychiatry201673111135114410.1001/jamapsychiatry.2016.209527706475
    [Google Scholar]
  223. RiffkinJ. YücelM. MaruffP. WoodS.J. SoulsbyB. OlverJ. KyriosM. VelakoulisD. PantelisC. A manual and automated MRI study of anterior cingulate and orbito-frontal cortices, and caudate nucleus in obsessive-compulsive disorder: comparison with healthy controls and patients with schizophrenia.Psychiatry Res. Neuroimaging200513829911310.1016/j.pscychresns.2004.11.00715766634
    [Google Scholar]
  224. BiriaM. CantonasL.-M. BancaP. Magnetic resonance spectroscopy (MRS) and positron emission tomography (PET) imaging in obsessive-compulsive disorder.Curr Top Behav Neurosci.202149231268
    [Google Scholar]
  225. EngG.K. SimK. ChenS.H.A. Meta-analytic investigations of structural grey matter, executive domain-related functional activations, and white matter diffusivity in obsessive compulsive disorder: An integrative review.Neurosci. Biobehav. Rev.20155223325710.1016/j.neubiorev.2015.03.00225766413
    [Google Scholar]
  226. BowenZ. ChanglianT. QianL. WanrongP. HuihuiY. ZhaoxiaL. FengL. JinyuL. XiongzhaoZ. MingtianZ. Gray matter abnormalities of orbitofrontal cortex and striatum in drug-naive adult patients with obsessive-compulsive disorder.Front. Psychiatry20211267456810.3389/fpsyt.2021.67456834168582
    [Google Scholar]
  227. PintoB.S. CavendishB.A. da SilvaP.H.R. SuenP.J.C. MarinhoK.A.P. ValiengoL.C.L. VanderhasseltM.A. BrunoniA.R. RazzaL.B. The effects of transcranial direct current stimulation in obsessive–compulsive disorder symptoms: a meta-analysis and integrated electric fields modeling analysis.Biomedicines20221118010.3390/biomedicines1101008036672588
    [Google Scholar]
  228. PosnerJ. MarshR. MaiaT.V. PetersonB.S. GruberA. SimpsonH.B. Reduced functional connectivity within the limbic cortico‐striato‐thalamo‐cortical loop in unmedicated adults with obsessive‐compulsive disorder.Hum. Brain Mapp.20143562852286010.1002/hbm.2237124123377
    [Google Scholar]
  229. JangwanN.S. AshrafG.M. RamV. SinghV. AlghamdiB.S. AbuzenadahA.M. SinghM.F. Brain augmentation and neuroscience technologies: current applications, challenges, ethics and future prospects.Front. Syst. Neurosci.202216100049510.3389/fnsys.2022.100049536211589
    [Google Scholar]
  230. BendrissG. MacDonaldR. McVeighC. Microbial reprogramming in obsessive–compulsive disorders: A review of gut–brain communication and emerging evidence.Int. J. Mol. Sci.202324151197810.3390/ijms24151197837569349
    [Google Scholar]
  231. NazziC. AvenantiA. BattagliaS. The involvement of antioxidants in cognitive decline and neurodegeneration: Mens Sana in Corpore Sano. Antioxidants202413670110.3390/antiox1306070138929140
    [Google Scholar]
  232. WangL. ChenY. WangM. ZhaoC. QiaoD. Relationship between gene-environment interaction and obsessive-compulsive disorder: A systematic review.J. Psychiatr. Res.202316428129010.1016/j.jpsychires.2023.06.00437390623
    [Google Scholar]
  233. BranderG. Pérez-VigilA. LarssonH. Mataix-ColsD. Systematic review of environmental risk factors for Obsessive-Compulsive Disorder: A proposed roadmap from association to causation.Neurosci. Biobehav. Rev.201665366210.1016/j.neubiorev.2016.03.01127013116
    [Google Scholar]
  234. CarpenterL. ChungM.C. Childhood trauma in obsessive compulsive disorder: The roles of alexithymia and attachment.Psychol. Psychother.201184436738810.1111/j.2044‑8341.2010.02003.x22903881
    [Google Scholar]
  235. KartA. TürkçaparH. The effects of childhood emotional abuse on aggressive obsessions among patients with obsessive compulsive disorder may be mediated by symptoms of depression and anxiety.Psychiatry Clin. Psychopharmacol.201929441141710.1080/24750573.2019.1636483
    [Google Scholar]
  236. ChangK. FrankovichJ. CooperstockM. CunninghamM.W. LatimerM.E. MurphyT.K. PasternackM. ThienemannM. WilliamsK. WalterJ. SwedoS.E. Clinical evaluation of youth with pediatric acute-onset neuropsychiatric syndrome (PANS): recommendations from the 2013 PANS Consensus Conference.J. Child Adolesc. Psychopharmacol.201525131310.1089/cap.2014.008425325534
    [Google Scholar]
  237. den BraberA. ZilhãoN.R. FedkoI.O. HottengaJ-J. PoolR. SmitD.J.A. CathD.C. BoomsmaD.I. Obsessive–compulsive symptoms in a large population-based twin-family sample are predicted by clinically based polygenic scores and by genome-wide SNPs.Transl. Psychiatry201662e731e73110.1038/tp.2015.22326859814
    [Google Scholar]
  238. GuglielmiV. VulinkN.C.C. DenysD. WangY. SamuelsJ.F. NestadtG. Obsessive-compulsive disorder and female reproductive cycle events: results from the OCD and reproduction collaborative study.Depress. Anxiety2014311297998710.1002/da.2223424421066
    [Google Scholar]
  239. HannaG.L. Veenstra-VanderWeeleJ. CoxN.J. BoehnkeM. HimleJ.A. CurtisG.C. LeventhalB.L. CookE.H.Jr Genome‐wide linkage analysis of families with obsessive‐compulsive disorder ascertained through pediatric probands.Am. J. Med. Genet.2002114554155210.1002/ajmg.1051912116192
    [Google Scholar]
  240. RealE. GratacòsM. LabadJ. AlonsoP. EscaramísG. SegalàsC. SubiràM. López-SolàC. EstivillX. MenchónJ.M. Interaction of SLC1A1 gene variants and life stress on pharmacological resistance in obsessive–compulsive disorder.Pharmacogenomics J.201313547047510.1038/tpj.2012.3022776887
    [Google Scholar]
  241. MahjaniB. KleiL. MattheisenM. HalvorsenM.W. ReichenbergA. RoederK. PedersenN.L. BobergJ. de SchipperE. BulikC.M. LandénM. FundínB. Mataix-ColsD. SandinS. HultmanC.M. CrowleyJ.J. BuxbaumJ.D. RückC. DevlinB. GriceD.E. The genetic architecture of obsessive-compulsive disorder: contribution of liability to OCD from alleles across the frequency spectrum.Am. J. Psychiatry2022179321622510.1176/appi.ajp.2021.2101010134789012
    [Google Scholar]
  242. ChingT.H.W. GraziopleneR. BohnerC. KichukS.A. DePalmerG. D’AmicoE. EilbottJ. JankovskyA. BurkeM. HokansonJ. MartinsB. WitherowC. PatelP. AmorosoL. SchaerH. PittengerC. KelmendiB. Safety, tolerability, and clinical and neural effects of single-dose psilocybin in obsessive–compulsive disorder: protocol for a randomized, double-blind, placebo-controlled, non-crossover trial.Front. Psychiatry202314117852910.3389/fpsyt.2023.117852937181888
    [Google Scholar]
  243. GuptaP. Pharmacogenetics, pharmacogenomics and ayurgenomics for personalized medicine: A paradigm shift.Indian J. Pharm. Sci.201577213514110.4103/0250‑474X.15654326009644
    [Google Scholar]
  244. NarayanaswamyJ.C. HazariN. VenkatasubramanianG. Neuroimaging findings in obsessive–compulsive disorder: A narrative review to elucidate neurobiological underpinnings.Indian J. Psychiatry2019617Suppl. 1910.4103/psychiatry.IndianJPsychiatry_525_1830745673
    [Google Scholar]
  245. ZaiG. Pharmacogenetics of obsessive-compulsive disorder: An evidence-update.Curr Top Behav Neurosci.20214938539810.1007/7854_2020_205
    [Google Scholar]
  246. RadosavljevicM. Svob StracD. JancicJ. SamardzicJ. The role of pharmacogenetics in personalizing the antidepressant and anxiolytic therapy.Genes (Basel)2023145109510.3390/genes1405109537239455
    [Google Scholar]
  247. BrunoniA.R. CarracedoA. AmigoO.M. PellicerA.L. TalibL. CarvalhoA.F. LotufoP.A. BenseñorI.M. GattazW. CappiC. Association of BDNF, HTR2A, TPH1, SLC6A4, and COMT polymorphisms with tDCS and escitalopram efficacy: ancillary analysis of a double-blind, placebo-controlled trial.Br. J. Psychiatry202042212813510.1590/1516‑4446‑2019‑062031721892
    [Google Scholar]
  248. NassanM. Pharmacokinetic pharmacogenetic prescribing guidelines for antidepressants: a template for psychiatric precision medicine.Mayo Clinic Proceedings.201610.1016/j.mayocp.2016.02.023
    [Google Scholar]
  249. PittengerC. Pharmacotherapeutic strategies and new targets in OCD.Curr Top Behav Neurosci.20214933138410.1007/7854_2020_204
    [Google Scholar]
  250. KuoH.W. LiuS.C. TsouH.H. LiuS.W. LinK.M. LuS.C. HsiaoM.C. HsiaoC.F. LiuC.Y. ChenC.H. LuM.L. ShenW.W. TangH.S. LiuS.I. ChangL.H. WuH.Y. ChangY.S. YehT.K. ChenA.C.H. LiuY.L. CYP1A2 genetic polymorphisms are associated with early antidepressant escitalopram metabolism and adverse reactions.Pharmacogenomics201314101191120110.2217/pgs.13.10523859573
    [Google Scholar]
  251. ChappellK. ColleR. BouligandJ. TrabadoS. FèveB. BecquemontL. CorrubleE. VerstuyftC. The MAOA rs979605 genetic polymorphism is differentially associated with clinical improvement following antidepressant treatment between male and female depressed patients.Int. J. Mol. Sci.202224149710.3390/ijms2401049736613935
    [Google Scholar]
  252. BenedettiF. DallaspeziaS. ColomboC. LorenziC. PirovanoA. SmeraldiE. Effect of catechol-O-methyltransferase Val(108/158)Met polymorphism on antidepressant efficacy of fluvoxamine.Eur. Psychiatry201025847647810.1016/j.eurpsy.2009.12.00720619611
    [Google Scholar]
  253. PreskornS.H. RodeR. Personalized medicine in the treatment of a patient with obsessive-compulsive disorder with clomipramine.J. Psychiatr. Pract.202329646947510.1097/PRA.000000000000075037948171
    [Google Scholar]
  254. MiniE. NobiliS. Pharmacogenetics: implementing personalized medicine.Clin. Cases Miner. Bone Metab.200961172422461093
    [Google Scholar]
  255. NakaoM. ShirotsukiK. SugayaN. Cognitive–behavioural therapy for management of mental health and stress-related disorders: Recent advances in techniques and technologies.Biopsychosoc. Med.20211511610.1186/s13030‑021‑00219‑w34602086
    [Google Scholar]
  256. FranklinM. KozakM.J. CashmanL.A. ColesM. RheingoldA.A. FoaE.B. Cognitive-behavioural treatment of pediatric obsessive-compulsive disorder: an open clinical trial.J. Am. Acad. Child Adolesc. Psychiatry199837441241910.1097/00004583‑199804000‑000199549962
    [Google Scholar]
  257. FreemanJ.B. GarciaA.M. CoyneL. AleC. PrzeworskiA. HimleM. ComptonS. LeonardH.L. Early childhood OCD: preliminary findings from a family-based cognitive-behavioural approach.J. Am. Acad. Child Adolesc. Psychiatry200847559360210.1097/CHI.0b013e31816765f918356758
    [Google Scholar]
  258. PiacentiniJ. BergmanR.L. ChangS. LangleyA. PerisT. WoodJ.J. McCrackenJ. Controlled comparison of family cognitive behavioural therapy and psychoeducation/relaxation training for child obsessive-compulsive disorder.J. Am. Acad. Child Adolesc. Psychiatry201150111149116110.1016/j.jaac.2011.08.00322024003
    [Google Scholar]
  259. AnderssonE. EnanderJ. AndrénP. HedmanE. LjótssonB. HurstiT. BergströmJ. KaldoV. LindeforsN. AnderssonG. RückC. Internet-based cognitive behaviour therapy for obsessive–compulsive disorder: a randomized controlled trial.Psychol. Med.201242102193220310.1017/S003329171200024422348650
    [Google Scholar]
  260. FarrisS.G. McLeanC.P. Van MeterP.E. SimpsonH.B. FoaE.B. Treatment response, symptom remission, and wellness in obsessive-compulsive disorder.J. Clin. Psychiatry201374768569010.4088/JCP.12m0778923945445
    [Google Scholar]
  261. BaisM. FigeeM. DenysD. Neuromodulation in obsessive-compulsive disorder.Psychiatr. Clin. North Am.201437339341310.1016/j.psc.2014.06.00325150569
    [Google Scholar]
  262. NuttinB. CosynsP. DemeulemeesterH. GybelsJ. MeyersonB. Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder.Lancet19993549189152610.1016/S0140‑6736(99)02376‑410551504
    [Google Scholar]
  263. TastevinM. SpatolaG. RégisJ. LançonC. RichieriR. Deep brain stimulation in the treatment of obsessive-compulsive disorder: current perspectives.Neuropsychiatr. Dis. Treat.2019151259127210.2147/NDT.S17820731190832
    [Google Scholar]
  264. CoenenV.A. SchlaepferT.E. GollP. ReinacherP.C. VoderholzerU. Tebartz van ElstL. UrbachH. FreyerT. The medial forebrain bundle as a target for deep brain stimulation for obsessive-compulsive disorder.CNS Spectr.201722328228910.1017/S109285291600028627268576
    [Google Scholar]
  265. FranziniA. MessinaG. GambiniO. MuffattiR. ScaroneS. CordellaR. BroggiG. Deep-brain stimulation of the nucleus accumbens in obsessive compulsive disorder: clinical, surgical and electrophysiological considerations in two consecutive patients.Neurol. Sci.201031335335910.1007/s10072‑009‑0214‑820127500
    [Google Scholar]
  266. RauchS.L. DoughertyD.D. MaloneD. RezaiA. FriehsG. FischmanA.J. AlpertN.M. HaberS.N. StypulkowskiP.H. RiseM.T. RasmussenS.A. GreenbergB.D. A functional neuroimaging investigation of deep brain stimulation in patients with obsessive–compulsive disorder.J. Neurosurg.2006104455856510.3171/jns.2006.104.4.55816619660
    [Google Scholar]
  267. Belotto-SilvaC. DinizJ.B. MalavazziD.M. ValérioC. FossaluzaV. BorcatoS. SeixasA.A. MorelliD. MiguelE.C. ShavittR.G. Group cognitive-behavioural therapy versus selective serotonin reuptake inhibitors for obsessive-compulsive disorder: A practical clinical trial.J. Anxiety Disord.2012261253110.1016/j.janxdis.2011.08.00821907540
    [Google Scholar]
  268. AnderssonE. StenebyS. KarlssonK. LjótssonB. HedmanE. EnanderJ. KaldoV. AnderssonG. LindeforsN. RückC. Long-term efficacy of Internet-based cognitive behavior therapy for obsessive–compulsive disorder with or without booster: a randomized controlled trial.Psychol. Med.201444132877288710.1017/S003329171400054325066102
    [Google Scholar]
  269. VauseT. JaksicH. NeilN. FrijtersJ.C. JackiewiczG. FeldmanM. Functional behavior-based cognitive-behavioural therapy for obsessive compulsive behavior in children with autism spectrum disorder: A randomized controlled trial.J. Autism Dev. Disord.20205072375238810.1007/s10803‑018‑3772‑x30293128
    [Google Scholar]
  270. WangP. GuW. GaoJ. WangC. FangJ. HuM. XiangH. LiB. LiuN. TangW. WangX. JiaY. LiY. ChengY. TangZ. SimpsonH.B. SteinD.J. WangZ. Protocol for a pragmatic trial of pharmacotherapy options following unsatisfactory initial treatment in OCD (PROCEED).Front. Psychiatry20221382297610.3389/fpsyt.2022.82297635651818
    [Google Scholar]
  271. SmitsJ.A.J. MonfilsM.H. OttoM.W. TelchM.J. ShumakeJ. FeinsteinJ.S. KhalsaS.S. CobbA.R. ParsonsE.M. LongL.J. McSpaddenB. JohnsonD. GreenbergA. CO2 reactivity as a biomarker of exposure-based therapy non-response: study protocol.BMC Psychiatry202222183110.1186/s12888‑022‑04478‑x36575425
    [Google Scholar]
  272. WelterM.L. Alves Dos SantosJ.F. ClairA.H. LauB. DialloH.M. Fernandez-VidalS. BelaidH. PelissoloA. DomenechP. KarachiC. MalletL. Deep brain stimulation of the subthalamic, accumbens, or caudate nuclei for patients with severe obsessive-compulsive disorder: a randomized crossover controlled study.Biol. Psychiatry20219010e45e4710.1016/j.biopsych.2020.07.01333012521
    [Google Scholar]
  273. MalletL. PolosanM. JaafariN. BaupN. WelterM.L. FontaineD. MontcelS.T. YelnikJ. ChéreauI. ArbusC. RaoulS. AouizerateB. DamierP. ChabardèsS. CzerneckiV. ArdouinC. KrebsM.O. BardinetE. ChaynesP. BurbaudP. CornuP. DerostP. BougerolT. BatailleB. MatteiV. DormontD. DevauxB. VérinM. HouetoJ.L. PollakP. BenabidA.L. AgidY. KrackP. MilletB. PelissoloA. Subthalamic nucleus stimulation in severe obsessive-compulsive disorder.N. Engl. J. Med.2008359202121213410.1056/NEJMoa070851419005196
    [Google Scholar]
  274. KellnerM. Drug treatment of obsessive-compulsive disorder.Dialogues Clin. Neurosci.201012218719710.31887/DCNS.2010.12.2/mkellner20623923
    [Google Scholar]
  275. KayserR.R. RaskinM. SnorrasonI. HezelD.M. HaneyM. SimpsonH.B. Cannabinoid augmentation of exposure-based psychotherapy for obsessive-compulsive disorder.J. Clin. Psychopharmacol.202040220721010.1097/JCP.000000000000117932068563
    [Google Scholar]
  276. ZhengH. Efficacy of fluvoxamine combined with extended-release methylphenidate on treatment-refractory obsessive-compulsive disorder. Zhong nan da xue xue bao. Yi xue ban= Journal of Central South University.Med. Sci.2018431112301235
    [Google Scholar]
  277. PallantiS. BernardiS. AntoniniS. SinghN. HollanderE. Ondansetron augmentation in treatment-resistant obsessive-compulsive disorder: a preliminary, single-blind, prospective study.CNS Drugs200923121047105510.2165/11530240‑000000000‑0000019958042
    [Google Scholar]
  278. CostaD.L.C. DinizJ.B. RequenaG. JoaquimM.A. PittengerC. BlochM.H. MiguelE.C. ShavittR.G. Randomized, double-blind, placebo-controlled trial of N-acetylcysteine augmentation for treatment-resistant obsessive-compulsive disorder.J. Clin. Psychiatry2017787e766e77310.4088/JCP.16m1110128617566
    [Google Scholar]
  279. GrassiG. CecchelliC. VignozziL. PaciniS. Investigational and experimental drugs to treat obsessive-compulsive disorder.J. Exp. Pharmacol.20211269570610.2147/JEP.S25537533447096
    [Google Scholar]
  280. BejerotS. Sigra SteinS. WelinE. EklundD. HylénU. HumbleM.B. Rituximab as an adjunctive treatment for schizophrenia spectrum disorder or obsessive-compulsive disorder: Two open-label pilot studies on treatment-resistant patients.J. Psychiatr. Res.202315831932910.1016/j.jpsychires.2022.12.00336638622
    [Google Scholar]
  281. Westwell-RoperC. BestJ.R. ElbeD. MacFaddenM. BaerS. TuckerL. AuA. NaqqashZ. LinB. LuC. StewartS.E. Celecoxib versus placebo as an adjunct to treatment-as-usual in children and youth with obsessive–compulsive disorder: protocol for a single-site randomised quadruple-blind phase II study.BMJ Open2022121e05429610.1136/bmjopen‑2021‑05429635105633
    [Google Scholar]
  282. ViswanathB. NarayanaswamyJ.C. CherianA.V. ReddyY.C.J. MathS.B. Is familial obsessive-compulsive disorder different from sporadic obsessive-compulsive disorder? A comparison of clinical characteristics, comorbidity and treatment response.Psychopathology2011442838910.1159/00031777621196809
    [Google Scholar]
  283. BrowneH.A. GairS.L. ScharfJ.M. GriceD.E. Genetics of obsessive-compulsive disorder and related disorders.Psychiatr. Clin. North Am.201437331933510.1016/j.psc.2014.06.00225150565
    [Google Scholar]
  284. SteinK. MarufA.A. MüllerD.J. BishopJ.R. BousmanC.A. Serotonin transporter genetic variation and antidepressant response and tolerability: a systematic review and meta-analysis.J. Pers. Med.20211112133410.3390/jpm1112133434945806
    [Google Scholar]
  285. ZhouD.D. ZhouX.X. LvZ. ChenX.R. WangW. WangG.M. LiuC. LiD.Q. KuangL. Comparative efficacy and tolerability of antipsychotics as augmentations in adults with treatment-resistant obsessive-compulsive disorder: A network meta-analysis.J. Psychiatr. Res.2019111515810.1016/j.jpsychires.2019.01.01430677645
    [Google Scholar]
  286. VermaM. KulshresthaS. PuriA. Genome sequencing.Meth Mol Biol.2017152533310.1007/978‑1‑4939‑6622‑6_1
    [Google Scholar]
  287. MellisR. ChandlerN. ChittyL.S. Next-generation sequencing and the impact on prenatal diagnosis.Expert Rev. Mol. Diagn.201818868969910.1080/14737159.2018.149392429962246
    [Google Scholar]
  288. CollinsF.S. DoudnaJ.A. LanderE.S. RotimiC.N. Human molecular genetics and genomics—important advances and exciting possibilities.N. Engl. J. Med.202138411410.1056/NEJMp203069433393745
    [Google Scholar]
  289. FerraioliF. CulicettoL. CecchettiL. FalzoneA. TomaiuoloF. QuartaroneA. VicarioC.M. Virtual reality exposure therapy for treating fear of contamination disorders: A systematic review of healthy and clinical populations.Brain Sci.202414551010.3390/brainsci1405051038790488
    [Google Scholar]
  290. Torres-CastañoA. Rivero-SantanaA. Perestelo-PérezL. Duarte-DíazA. Toledo-ChávarriA. Ramos-GarcíaV. Álvarez-PérezY. Cudeiro-MazairaJ. Padrón-GonzálezI. Serrano-PérezP. Transcranial magnetic stimulation for the treatment of cocaine addiction: A systematic review.J. Clin. Med.20211023559510.3390/jcm1023559534884297
    [Google Scholar]
  291. MaoL. HuM. LuoL. WuY. LuZ. ZouJ. The effectiveness of exposure and response prevention combined with pharmacotherapy for obsessive-compulsive disorder: A systematic review and meta-analysis.Front. Psychiatry20221397383810.3389/fpsyt.2022.97383836186855
    [Google Scholar]
  292. GrantJ.E. HookR. ValleS. ChesivoirE. ChamberlainS.R. Tolcapone in obsessive-compulsive disorder: a randomized double-blind placebo-controlled crossover trial.Int. Clin. Psychopharmacol.202136522522910.1097/YIC.000000000000036834310432
    [Google Scholar]
  293. RodriguezC.I. BenderJ.Jr MarcusS.M. SnapeM. RynnM. SimpsonH.B. Minocycline augmentation of pharmacotherapy in obsessive-compulsive disorder: an open-label trial.J. Clin. Psychiatry20107191247124910.4088/JCP.09l05805blu20923629
    [Google Scholar]
  294. MowlaA. GhaedsharafM. Pregabalin augmentation for resistant obsessive–compulsive disorder: a double-blind placebo-controlled clinical trial.CNS Spectr.202025455255610.1017/S109285291900150031648655
    [Google Scholar]
  295. BernsteinG.A. CullenK.R. HarrisE.C. ConeleaC.A. ZagoloffA.D. CarstedtP.A. LeeS.S. MuellerB.A. Sertraline effects on striatal resting-state functional connectivity in youth with obsessive-compulsive disorder: a pilot study.J. Am. Acad. Child Adolesc. Psychiatry201958548649510.1016/j.jaac.2018.07.89730768407
    [Google Scholar]
  296. RodriguezC.I. BenderJ.Jr MorrisonS. MehendruR. TolinD. SimpsonH.B. Does extended release methylphenidate help adults with hoarding disorder?: a case series.J. Clin. Psychopharmacol.201333344444710.1097/JCP.0b013e318290115e23609401
    [Google Scholar]
  297. PitsikasN. The role of nitric oxide (NO) modulators in obsessive-compulsive disorder (OCD).Nitric Oxide2023134-135384310.1016/j.niox.2023.04.00137028750
    [Google Scholar]
  298. GarakaniA. MurroughJ.W. FreireR.C. ThomR.P. LarkinK. BuonoF.D. IosifescuD.V. Pharmacotherapy of anxiety disorders: current and emerging treatment options.Front. Psychiatry20201159558410.3389/fpsyt.2020.59558433424664
    [Google Scholar]
  299. PittengerC. BlochM.H. WasylinkS. BillingsleaE. SimpsonR. JakubovskiE. KelmendiB. SanacoraG. CoricV. Riluzole augmentation in treatment-refractory obsessive-compulsive disorder: a pilot randomized placebo-controlled trial.J. Clin. Psychiatry20157681075108410.4088/JCP.14m0912326214725
    [Google Scholar]
  300. BhattS. AnithaK. ChellappanD.K. MukherjeeD. ShilpiS. SutteeA. GuptaG. SinghT.G. DuaK. Targeting inflammatory signaling in obsessive compulsive disorder: a promising approach.Metab. Brain Dis.202339233534610.1007/s11011‑023‑01314‑337950815
    [Google Scholar]
  301. RodriguezC.I. KegelesL.S. LevinsonA. FengT. MarcusS.M. VermesD. FloodP. SimpsonH.B. Randomized controlled crossover trial of ketamine in obsessive-compulsive disorder: proof-of-concept.Neuropsychopharmacology201338122475248310.1038/npp.2013.15023783065
    [Google Scholar]
  302. WilkowskaA. WigluszM.S. Gałuszko-WegielnikM. WłodarczykA. CubałaW.J. Antianhedonic effect of repeated ketamine infusions in patients with treatment resistant depression.Front. Psychiatry20211270433010.3389/fpsyt.2021.70433034733182
    [Google Scholar]
  303. SinghD.D. VermaR. ParimooP. SahuA. KumarV. UpadhyayE. YadavD.K. Potential therapeutic relevance of CRISPR/Cas9 guided epigenetic regulations for neuropsychiatric disorders.Curr. Top. Med. Chem.2021211087889410.2174/156802662166621031715450233739246
    [Google Scholar]
  304. RaisonC.L. MillerA.H. Malaise, melancholia and madness: The evolutionary legacy of an inflammatory bias.Brain Behav. Immun.2013311810.1016/j.bbi.2013.04.00923639523
    [Google Scholar]
  305. ShahcheraghiS.H. Gene therapy for neuropsychiatric disorders: Potential targets and tools.CNS Neurol Disord Drug Targets.20232215165
    [Google Scholar]
  306. ShalbafanM. Celecoxib as an adjuvant to fluvoxamine in moderate to severe obsessive-compulsive disorder: A double-blind, placebo-controlled, randomized trial.Pharmacopsychiatry2015484-51364010.1055/s‑0035‑1549929
    [Google Scholar]
  307. SpartzE.J. FreemanG.M.Jr BrownK. FarhadianB. ThienemannM. FrankovichJ. Course of neuropsychiatric symptoms after introduction and removal of nonsteroidal anti-inflammatory drugs: a pediatric observational study.J. Child Adolesc. Psychopharmacol.201727765265910.1089/cap.2016.017928696783
    [Google Scholar]
  308. HirschtrittM.E. BlochM.H. MathewsC.A. Obsessive-compulsive disorder.JAMA2017317131358136710.1001/jama.2017.220028384832
    [Google Scholar]
  309. MorishitaT. FayadS.M. GoodmanW.K. FooteK.D. ChenD. PeaceD.A. RhotonA.L.Jr OkunM.S. Surgical neuroanatomy and programming in deep brain stimulation for obsessive compulsive disorder.Neuromodulation201417431231910.1111/ner.1214124345303
    [Google Scholar]
  310. LuytenL. HendrickxS. RaymaekersS. GabriëlsL. NuttinB. Electrical stimulation in the bed nucleus of the stria terminalis alleviates severe obsessive-compulsive disorder.Mol. Psychiatry20162191272128010.1038/mp.2015.12426303665
    [Google Scholar]
  311. KarasP.J. LeeS. Jimenez-ShahedJ. GoodmanW.K. ViswanathanA. ShethS.A. Deep brain stimulation for obsessive compulsive disorder: evolution of surgical stimulation target parallels changing model of dysfunctional brain circuits.Front. Neurosci.20191299810.3389/fnins.2018.0099830670945
    [Google Scholar]
  312. GunterR.W. WhittalM.L. Dissemination of cognitive-behavioural treatments for anxiety disorders: Overcoming barriers and improving patient access.Clin. Psychol. Rev.201030219420210.1016/j.cpr.2009.11.00119942331
    [Google Scholar]
  313. NorbergM.M. KrystalJ.H. TolinD.F. A meta-analysis of D-cycloserine and the facilitation of fear extinction and exposure therapy.Biol. Psychiatry200863121118112610.1016/j.biopsych.2008.01.01218313643
    [Google Scholar]
  314. StorchE.A. MurphyT.K. GoodmanW.K. GeffkenG.R. LewinA.B. HeninA. MiccoJ.A. SprichS. WilhelmS. BengtsonM. GellerD.A. A preliminary study of D-cycloserine augmentation of cognitive-behavioural therapy in pediatric obsessive-compulsive disorder.Biol. Psychiatry201068111073107610.1016/j.biopsych.2010.07.01520817153
    [Google Scholar]
  315. LackC.W. Obsessive-compulsive disorder: Evidence-based treatments and future directions for research.World J. Psychiatry201226869010.5498/wjp.v2.i6.8624175173
    [Google Scholar]
  316. SanikhaniN.S. ModarressiM.H. JafariP. VousooghiN. ShafeiS. AkbariqomiM. HeidariR. LavasaniP.S. YazarlouF. MotevaseliE. Ghafouri-FardS. The effect of Lactobacillus casei consumption in improvement of obsessive–compulsive disorder: an animal study.Probiotics Antimicrob. Proteins20201241409141910.1007/s12602‑020‑09642‑x32124236
    [Google Scholar]
  317. ShmelkovS.V. HormigoA. JingD. ProencaC.C. BathK.G. MildeT. ShmelkovE. KushnerJ.S. BaljevicM. DinchevaI. MurphyA.J. ValenzuelaD.M. GaleN.W. YancopoulosG.D. NinanI. LeeF.S. RafiiS. Slitrk5 deficiency impairs corticostriatal circuitry and leads to obsessive-compulsive–like behaviors in mice.Nat. Med.2010165598602, 1p, 60210.1038/nm.212520418887
    [Google Scholar]
  318. KreitzerA.C. Physiology and pharmacology of striatal neurons.Annu. Rev. Neurosci.200932112714710.1146/annurev.neuro.051508.13542219400717
    [Google Scholar]
  319. Chou-GreenJ.M. HolscherT.D. DallmanM.F. AkanaS.F. Compulsive behavior in the 5-HT2C receptor knockout mouse.Physiol. Behav.2003784-564164910.1016/S0031‑9384(03)00047‑712782219
    [Google Scholar]
  320. ZikeI.D. ChohanM.O. KopelmanJ.M. KrasnowE.N. FlickerD. NautiyalK.M. BubserM. KellendonkC. JonesC.K. StanwoodG. TanakaK.F. MooreH. AhmariS.E. Veenstra-VanderWeeleJ. OCD candidate gene SLC1A1 /EAAT3 impacts basal ganglia-mediated activity and stereotypic behavior.Proc. Natl. Acad. Sci. USA2017114225719572410.1073/pnas.170173611428507136
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232316708240828063527
Loading
/content/journals/cgt/10.2174/0115665232316708240828063527
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test