Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Developing delivery vectors capable of transducing genetic material across the lung epithelia and mucus barrier is a major challenge and of great interest to enable gene therapies to treat pulmonary diseases. Recombinant Adeno-associated Viruses (rAAVs) have emerged as attractive candidates among viral and non-viral vectors due to their broad tissue tropism, ability to transduce dividing and quiescent cells, and their safety profile in current human applications. While rAAVs have demonstrated safety in earlier clinical trials for lung disease applications, there are still some limitations regarding rAAV-transgene delivery in pulmonary cells. Thus, further improvements in rAAV engineering are needed to enhance the effectiveness of rAAV-based therapies for lung diseases. Such therapies could benefit patients with chronic lung diseases, such as asthma, chronic obstructive pulmonary disease, pulmonary hypertension, and cystic fibrosis, among others, by regulating hereditary gene mutations or acquired gene deregulations causing these conditions. Alongside therapeutic development, advances in the rAAV production process are essential to meet increasing production demands, while reducing manufacturing costs. This review discusses current challenges and recent advances in the field of rAAV engineering and manufacturing to encourage the clinical development of new pulmonary gene therapy treatments.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232294935240826061311
2024-09-02
2025-06-15
Loading full text...

Full text loading...

References

  1. BaligaU.K. DeanD.A. Pulmonary gene delivery—Realities and possibilities.Exp. Biol. Med. (Maywood)2021246326027410.1177/153537022096598533183069
    [Google Scholar]
  2. DuncanG.A. JungJ. HanesJ. SukJ.S. The mucus barrier to inhaled gene therapy.Mol. Ther.201624122043205310.1038/mt.2016.18227646604
    [Google Scholar]
  3. WangD. TaiP.W.L. GaoG. Adeno-associated virus vector as a platform for gene therapy delivery.Nat. Rev. Drug Discov.201918535837810.1038/s41573‑019‑0012‑930710128
    [Google Scholar]
  4. NasoM.F. TomkowiczB. PerryW.L.III StrohlW.R. Adeno-Associated Virus (AAV) as a Vector for Gene Therapy.BioDrugs201731431733410.1007/s40259‑017‑0234‑528669112
    [Google Scholar]
  5. WuZ. AsokanA. SamulskiR.J. Adeno-associated virus serotypes: vector toolkit for human gene therapy.Mol. Ther.200614331632710.1016/j.ymthe.2006.05.00916824801
    [Google Scholar]
  6. WagnerJ.A. ReynoldsT. MoranM.L. MossR.B. WineJ.J. FlotteT.R. GardnerP. Efficient and persistent gene transfer of AAV-CFTR in maxillary sinus.Lancet199835191171702170310.1016/S0140‑6736(05)77740‑09734891
    [Google Scholar]
  7. MossR.B. RodmanD. SpencerL.T. AitkenM.L. ZeitlinP.L. WaltzD. MillaC. BrodyA.S. ClancyJ.P. RamseyB. HamblettN. HealdA.E. Repeated adeno-associated virus serotype 2 aerosol-mediated cystic fibrosis transmembrane regulator gene transfer to the lungs of patients with cystic fibrosis: a multicenter, double-blind, placebo-controlled trial.Chest2004125250952110.1378/chest.125.2.50914769732
    [Google Scholar]
  8. WagnerJ.A. NepomucenoI.B. MessnerA.H. MoranM.L. BatsonE.P. DimiceliS. BrownB.W. DeschJ.K. NorbashA.M. ConradC.K. GugginoW.B. FlotteT.R. WineJ.J. CarterB.J. ReynoldsT.C. MossR.B. GardnerP. A phase II, double-blind, randomized, placebo-controlled clinical trial of tgAAVCF using maxillary sinus delivery in patients with cystic fibrosis with antrostomies.Hum. Gene Ther.200213111349135910.1089/10430340276012857712162817
    [Google Scholar]
  9. MossR.B. MillaC. ColomboJ. AccursoF. ZeitlinP.L. ClancyJ.P. SpencerL.T. PilewskiJ. WaltzD.A. DorkinH.L. FerkolT. PianM. RamseyB. CarterB.J. MartinD.B. HealdA.E. Repeated aerosolized AAV-CFTR for treatment of cystic fibrosis: a randomized placebo-controlled phase 2B trial.Hum. Gene Ther.200718872673210.1089/hum.2007.02217685853
    [Google Scholar]
  10. HidaK. LaiS.K. SukJ.S. WonS.Y. BoyleM.P. HanesJ. Common gene therapy viral vectors do not efficiently penetrate sputum from cystic fibrosis patients.PLoS One201165e1991910.1371/journal.pone.001991921637751
    [Google Scholar]
  11. FlotteT.R. ZeitlinP.L. ReynoldsT.C. HealdA.E. PedersenP. BeckS. ConradC.K. Brass-ErnstL. HumphriesM. SullivanK. WetzelR. TaylorG. CarterB.J. GugginoW.B. Phase I trial of intranasal and endobronchial administration of a recombinant adeno-associated virus serotype 2 (rAAV2)-CFTR vector in adult cystic fibrosis patients: a two-part clinical study.Hum. Gene Ther.200314111079108810.1089/10430340332212479212885347
    [Google Scholar]
  12. DuanD. YueY. YanZ. McCrayP.B.Jr EngelhardtJ.F. Polarity influences the efficiency of recombinant adenoassociated virus infection in differentiated airway epithelia.Hum. Gene Ther.19989182761277610.1089/hum.1998.9.18‑27619874274
    [Google Scholar]
  13. ChowdhuryE.A. Meno-TetangG. ChangH.Y. WuS. HuangH.W. JamierT. ChandranJ. ShahD.K. Current progress and limitations of AAV mediated delivery of protein therapeutic genes and the importance of developing quantitative pharmacokinetic/pharmacodynamic (PK/PD) models.Adv. Drug Deliv. Rev.202117021423710.1016/j.addr.2021.01.01733486008
    [Google Scholar]
  14. SorianoJ.B. KendrickP.J. PaulsonK.R. GuptaV. AbramsE.M. AdedoyinR.A. AdhikariT.B. AdvaniS.M. AgrawalA. AhmadianE. AlahdabF. AljunidS.M. AltirkawiK.A. Alvis-GuzmanN. AnberN.H. AndreiC.L. AnjomshoaM. AnsariF. AntóJ.M. ArablooJ. AthariS.M. AthariS.S. AwokeN. BadawiA. BanoubJ.A.M. BennettD.A. BensenorI.M. BerfieldK.S.S. BernsteinR.S. BhattacharyyaK. BijaniA. BrauerM. BukhmanG. ButtZ.A. CámeraL.A. CarJ. CarreroJ.J. CarvalhoF. Castañeda-OrjuelaC.A. ChoiJ-Y.J. ChristopherD.J. CohenA.J. DandonaL. DandonaR. DangA.K. DaryaniA. de CourtenB. DemekeF.M. DemozG.T. De NeveJ-W. DesaiR. DharmaratneS.D. DiazD. DouiriA. DriscollT.R. DukenE.E. EftekhariA. ElkoutH. EndriesA.Y. FadhilI. FaroA. FarzadfarF. FernandesE. FilipI. FischerF. ForoutanM. Garcia-GordilloM.A. GebreA.K. GebremedhinK.B. GebremeskelG.G. GezaeK.E. GhoshalA.G. GillP.S. GillumR.F. GoudarziH. GuoY. GuptaR. HailuG.B. HasanzadehA. HassenH.Y. HayS.I. HoangC.L. HoleM.K. HoritaN. HosgoodH.D. HostiucM. HousehM. IlesanmiO.S. IlicM.D. IrvaniS.S.N. IslamS.M.S. JakovljevicM. JamalA.A. JhaR.P. JonasJ.B. KabirZ. KasaeianA. KasahunG.G. KassaG.M. KefaleA.T. KengneA.P. KhaderY.S. KhafaieM.A. KhanE.A. KhanJ. KhubchandaniJ. KimY-E. KimY.J. KisaS. KisaA. KnibbsL.D. KomakiH. KoulP.A. KoyanagiA. KumarG.A. LanQ. LasradoS. LauriolaP. La VecchiaC. LeT.T. LeighJ. LeviM. LiS. LopezA.D. LotufoP.A. MadottoF. MahotraN.B. MajdanM. MajeedA. MalekzadehR. MamunA.A. ManafiN. ManafiF. MantovaniL.G. MeharieB.G. MelesH.G. MelesG.G. MenezesR.G. MestrovicT. MillerT.R. MiniG.K. MirrakhimovE.M. MoazenB. MohammadK.A. MohammedS. MohebiF. MokdadA.H. MolokhiaM. MonastaL. MoradiM. MoradiG. MorawskaL. MousaviS.M. MusaK.I. MustafaG. NaderiM. NaghaviM. NaikG. NairS. NangiaV. NansseuJ.R. NazariJ. NdwandweD.E. NegoiR.I. NguyenT.H. NguyenC.T. NguyenH.L.T. NixonM.R. Ofori-AsensoR. OgboF.A. OlagunjuA.T. OlagunjuT.O. OrenE. OrtizJ.R. OwolabiM.O. P AM. PakhaleS. PanaA. Panda-JonasS. ParkE-K. PhamH.Q. PostmaM.J. PourjafarH. PoustchiH. RadfarA. RafieiA. RahimF. RahmanM.H.U. RahmanM.A. RawafS. RawafD.L. RawalL. ReinerR.C.Jr ReitsmaM.B. RoeverL. RonfaniL. RoroE.M. RoshandelG. RuddK.E. SabdeY.D. SabourS. SaddikB. SafariS. SaleemK. SamyA.M. Santric-MilicevicM.M. Sao JoseB.P. SartoriusB. SatpathyM. SavicM. SawhneyM. SepanlouS.G. ShaikhM.A. SheikhA. ShigematsuM. ShirkoohiR. SiS. SiabaniS. SinghV. SinghJ.A. SoljakM. SomayajiR. SoofiM. SoyiriI.N. TeferaY.M. TemsahM-H. TesfayB.E. ThakurJ.S. TomaA.T. Tortajada-GirbésM. TranK.B. TranB.X. Tudor CarL. UllahI. VacanteM. ValdezP.R. van BovenJ.F.M. VasankariT.J. VeisaniY. ViolanteF.S. WagnerG.R. WestermanR. WolfeC.D.A. WondafrashD.Z. WondmienehA.B. YonemotoN. YoonS-J. ZaidiZ. ZamaniM. ZarH.J. ZhangY. VosT. GBD Chronic Respiratory Disease Collaborators Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017.Lancet Respir. Med.20208658559610.1016/S2213‑2600(20)30105‑332526187
    [Google Scholar]
  15. CrinerG.J. MartinezF.J. AaronS. AgustiA. AnzuetoA. BafadhelM. BarnesP.J. BourbeauJ. ChenR. EwigJ. FabbriL.M. FrithP. HalpinD.M.G. HanM. Montes de OcaM. NishimuraM. O’DonnellD. PapiA. PavordI. RocheN. Rodriguez-RoisinR. SalviS. SinghD. SinD.D. StockleyR. López VarelaM.V. VestboJ. VogelmeierC.F. WashkoG. WedzichaJ.A. CelliB.R. Current controversies in chronic obstructive pulmonary disease. A report from the global initiative for chronic obstructive lung disease scientific committee.Ann. Am. Thorac. Soc.2019161293910.1513/AnnalsATS.201808‑557PS30427736
    [Google Scholar]
  16. MehtaM. Deeksha TewariD. GuptaG. AwasthiR. SinghH. PandeyP. ChellappanD.K. WadhwaR. ColletT. HansbroP.M. KumarS.R. ThangaveluL. NegiP. DuaK. SatijaS. Oligonucleotide therapy: An emerging focus area for drug delivery in chronic inflammatory respiratory diseases.Chem. Biol. Interact.201930820621510.1016/j.cbi.2019.05.02831136735
    [Google Scholar]
  17. AitkenM.L. MossR.B. WaltzD.A. DoveyM.E. TonelliM.R. McNamaraS.C. GibsonR.L. RamseyB.W. CarterB.J. ReynoldsT.C. A phase I study of aerosolized administration of tgAAVCF to cystic fibrosis subjects with mild lung disease.Hum. Gene Ther.200112151907191610.1089/10430340175315395611589832
    [Google Scholar]
  18. CollinsL.T. PonnazhaganS. CurielD.T. Synthetic biology design as a paradigm shift toward manufacturing affordable adeno-associated virus gene therapies.ACS Synth. Biol.2023121172610.1021/acssynbio.2c0058936627108
    [Google Scholar]
  19. SalzmanR. CookF. HuntT. MalechH.L. ReillyP. Foss-CampbellB. BarrettD. Addressing the value of gene therapy and enhancing patient access to transformative treatments.Mol. Ther.201826122717272610.1016/j.ymthe.2018.10.01730414722
    [Google Scholar]
  20. DobrowskyT. GianniD. PieracciJ. SuhJ. AAV manufacturing for clinical use: Insights on current challenges from the upstream process perspective.Curr. Opin. Biomed. Eng.20212010035310.1016/j.cobme.2021.100353
    [Google Scholar]
  21. McLachlanG. AltonE.W.F.W. BoydA.C. ClarkeN.K. DaviesJ.C. GillD.R. GriesenbachU. HickmottJ.W. HydeS.C. MiahK.M. MolinaC.J. Progress in respiratory gene therapy.Hum. Gene Ther.20223317-1889391210.1089/hum.2022.17236074947
    [Google Scholar]
  22. RobertM.A. ChahalP.S. AudyA. KamenA. GilbertR. GailletB. Manufacturing of recombinant adeno-associated viruses using mammalian expression platforms.Biotechnol. J.2017123160019310.1002/biot.20160019328177193
    [Google Scholar]
  23. AtchisonR.W. CastoB.C. HammonW.M. Adenovirus-associated defective virus particles.Science1965149368575475610.1126/science.149.3685.75414325163
    [Google Scholar]
  24. HastieE. SamulskiR.J. Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success--a personal perspective.Hum. Gene Ther.201526525726510.1089/hum.2015.02525807962
    [Google Scholar]
  25. BalakrishnanB. JayandharanG. Basic biology of adeno-associated virus (AAV) vectors used in gene therapy.Curr. Gene Ther.20141428610010.2174/156652321466614030219370924588706
    [Google Scholar]
  26. SrivastavaA. LusbyE.W. BernsK.I. Nucleotide sequence and organization of the adeno-associated virus 2 genome.J. Virol.198345255556410.1128/jvi.45.2.555‑564.19836300419
    [Google Scholar]
  27. HauswirthW.W. BernsK.I. Origin and termination of adeno-associated virus DNA replication.Virology197778248849910.1016/0042‑6822(77)90125‑8867815
    [Google Scholar]
  28. DayaS. BernsK.I. Gene therapy using adeno-associated virus vectors.Clin. Microbiol. Rev.200821458359310.1128/CMR.00008‑0818854481
    [Google Scholar]
  29. KotinR.M. SnyderR.O. Manufacturing clinical grade recombinant adeno-associated virus using invertebrate cell lines.Hum. Gene Ther.201728435036010.1089/hum.2017.04228351174
    [Google Scholar]
  30. LiC. SamulskiR.J. Engineering adeno-associated virus vectors for gene therapy.Nat. Rev. Genet.202021425527210.1038/s41576‑019‑0205‑432042148
    [Google Scholar]
  31. PodsakoffG. WongK.K.Jr ChatterjeeS. Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors.J. Virol.19946895656566610.1128/jvi.68.9.5656‑5666.19948057446
    [Google Scholar]
  32. von KalleC. DeichmannA. SchmidtM. Vector integration and tumorigenesis.Hum. Gene Ther.201425647548110.1089/hum.2014.252524950086
    [Google Scholar]
  33. KatzM.G. FargnoliA.S. GubaraS.M. FishK. WeberT. BridgesC.R. HajjarR.J. IshikawaK. Targeted gene delivery through the respiratory system: Rationale for intratracheal gene transfer.J. Cardiovasc. Dev. Dis.201961810.3390/jcdd601000830781363
    [Google Scholar]
  34. CarneiroA. LeeH. LinL. van HaasterenJ. SchafferD.V. Novel lung tropic adeno-associated virus capsids for therapeutic gene delivery.Hum. Gene Ther.20203117-18996100910.1089/hum.2020.16932799685
    [Google Scholar]
  35. GugginoW.B. CebotaruL. Gene therapy for cystic fibrosis paved the way for the use of adeno-associated virus in gene therapy.Hum. Gene Ther.2020319-1053854110.1089/hum.2020.04632283956
    [Google Scholar]
  36. FullerC.M. BenosD.J. CFTR!Am. J. Physiol. Cell Physiol.19922632C267C28610.1152/ajpcell.1992.263.2.C2671381146
    [Google Scholar]
  37. LiuY. SiriwonN. RohrsJ. WangP. Generation of targeted adeno-associated virus (AAV) vectors for human gene therapy.Curr. Pharm. Des.201521223248325610.2174/138161282166615053117165326027561
    [Google Scholar]
  38. FlotteT.R. AfioneS.A. ConradC. McGrathS.A. SolowR. OkaH. ZeitlinP.L. GugginoW.B. CarterB.J. Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated virus vector.Proc. Natl. Acad. Sci. USA19939022106131061710.1073/pnas.90.22.106137504271
    [Google Scholar]
  39. WagnerJ.A. MessnerA.H. MoranM.L. DaifukuR. KouyamaK. DeschJ.K. ManleyS. NorbashA.M. ConradC.K. FriborgS. ReynoldsT. GugginoW.B. MossR.B. CarterB.J. WineJ.J. FlotteT.R. GardnerP. Safety and biological efficacy of an adeno-associated virus vector-cystic fibrosis transmembrane regulator (AAV-CFTR) in the cystic fibrosis maxillary sinus.Laryngoscope1999109226627410.1097/00005537‑199902000‑0001710890777
    [Google Scholar]
  40. SchusterB.S. KimA.J. KaysJ.C. KanzawaM.M. GugginoW.B. BoyleM.P. RoweS.M. MuzyczkaN. SukJ.S. HanesJ. Overcoming the cystic fibrosis sputum barrier to leading adeno-associated virus gene therapy vectors.Mol. Ther.20142281484149310.1038/mt.2014.8924869933
    [Google Scholar]
  41. ColellaP. RonzittiG. MingozziF. Emerging issues in AAV-mediated in vivo gene therapy.Mol. Ther. Methods Clin. Dev.201888710410.1016/j.omtm.2017.11.00729326962
    [Google Scholar]
  42. BisserierM. SunX.Q. FazalS. TurnbullI.C. BonnetS. HadriL. Novel insights into the therapeutic potential of lung-targeted gene transfer in the most common respiratory diseases.Cells202211698410.3390/cells1106098435326434
    [Google Scholar]
  43. SamulskiR.J. BernsK.I. TanM. MuzyczkaN. Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells.Proc. Natl. Acad. Sci. USA19827962077208110.1073/pnas.79.6.20776281795
    [Google Scholar]
  44. FlotteT.R. Birth of a new therapeutic platform: 47 years of adeno-associated virus biology from virus discovery to licensed gene therapy.Mol. Ther.201321111976198110.1038/mt.2013.22624201212
    [Google Scholar]
  45. LoringH.S. ElMallahM.K. FlotteT.R. Development of rAAV2-CFTR: History of the first rAAV vector product to be used in humans.Hum. Gene Ther. Methods2016272495810.1089/hgtb.2015.15026895204
    [Google Scholar]
  46. SirningerJ. MullerC. BraagS. TangQ. YueH. DetrisacC. FerkolT. GugginoW.B. FlotteT.R. Functional characterization of a recombinant adeno-associated virus 5-pseudotyped cystic fibrosis transmembrane conductance regulator vector.Hum. Gene Ther.200415983284115353038
    [Google Scholar]
  47. Virella-LowellI. ZusmanB. FoustK. LoilerS. ConlonT. SongS. ChesnutK.A. FerkolT. FlotteT.R. Enhancing rAAV vector expression in the lung.J. Gene Med.20057784285010.1002/jgm.75915838934
    [Google Scholar]
  48. ZabnerJ. SeilerM. WaltersR. KotinR.M. FulgerasW. DavidsonB.L. ChioriniJ.A. Adeno-associated virus type 5 (AAV5) but not AAV2 binds to the apical surfaces of airway epithelia and facilitates gene transfer.J. Virol.20007483852385810.1128/JVI.74.8.3852‑3858.200010729159
    [Google Scholar]
  49. FischerA.C. SmithC.I. CebotaruL. ZhangX. AskinF.B. WrightJ. GugginoS.E. AdamsR.J. FlotteT. GugginoW.B. Expression of a truncated cystic fibrosis transmembrane conductance regulator with an AAV5-pseudotyped vector in primates.Mol. Ther.200715475676310.1038/sj.mt.630005917299412
    [Google Scholar]
  50. HalbertC.L. RutledgeE.A. AllenJ.M. RussellD.W. MillerA.D. Repeat transduction in the mouse lung by using adeno-associated virus vectors with different serotypes.J. Virol.20007431524153210.1128/JVI.74.3.1524‑1532.200010627564
    [Google Scholar]
  51. KohlbrennerE. AslanidiG. NashK. ShklyaevS. Campbell-ThompsonM. ByrneB.J. SnyderR.O. MuzyczkaN. WarringtonK.H.Jr ZolotukhinS. Successful production of pseudotyped rAAV vectors using a modified baculovirus expression system.Mol. Ther.20051261217122510.1016/j.ymthe.2005.08.01816213797
    [Google Scholar]
  52. LiangS.Q. WalkeyC.J. MartinezA.E. SuQ. DickinsonM.E. WangD. LagorW.R. HeaneyJ.D. GaoG. XueW. AAV5 delivery of CRISPR-Cas9 supports effective genome editing in mouse lung airway.Mol. Ther.202230123824310.1016/j.ymthe.2021.10.02334695545
    [Google Scholar]
  53. BoucherR.C. Muco-obstructive lung diseases.N. Engl. J. Med.2019380201941195310.1056/NEJMra181379931091375
    [Google Scholar]
  54. PlattR.J. ChenS. ZhouY. YimM.J. SwiechL. KemptonH.R. DahlmanJ.E. ParnasO. EisenhaureT.M. JovanovicM. GrahamD.B. JhunjhunwalaS. HeidenreichM. XavierR.J. LangerR. AndersonD.G. HacohenN. RegevA. FengG. SharpP.A. ZhangF. CRISPR-Cas9 knockin mice for genome editing and cancer modeling.Cell2014159244045510.1016/j.cell.2014.09.01425263330
    [Google Scholar]
  55. PayneJ.G. TakahashiA. HigginsM.I. PorterE.L. SukiB. BalazsA. WilsonA.A. Multilineage transduction of resident lung cells in vivo by AAV2/8 for α1-antitrypsin gene therapy.Mol. Ther. Methods Clin. Dev.201631604210.1038/mtm.2016.4227408904
    [Google Scholar]
  56. ChenH. DurinckS. PatelH. ForemanO. MeshK. EasthamJ. CaothienR. NewmanR.J. Roose-GirmaM. DarmanisS. WarmingS. LattanziA. LiangY. HaleyB. Population-wide gene disruption in the murine lung epithelium via AAV-mediated delivery of CRISPR-Cas9 components.Mol. Ther. Methods Clin. Dev.20222743144910.1016/j.omtm.2022.10.01636419469
    [Google Scholar]
  57. DuncanG.A. KimN. Colon-CortesY. RodriguezJ. MazurM. BirketS.E. RoweS.M. WestN.E. Livraghi-ButricoA. BoucherR.C. HanesJ. AslanidiG. SukJ.S. An adeno-associated viral vector capable of penetrating the mucus barrier to inhaled gene therapy.Mol. Ther. Methods Clin. Dev.2018929630410.1016/j.omtm.2018.03.00630038933
    [Google Scholar]
  58. LimberisM.P. WilsonJ.M. Adeno-associated virus serotype 9 vectors transduce murine alveolar and nasal epithelia and can be readministered.Proc. Natl. Acad. Sci. USA200610335129931299810.1073/pnas.060143310316938846
    [Google Scholar]
  59. WuC.J. ChenL.C. HuangW.C. ChuangC.L. KuoM.L. Alleviation of lung inflammatory responses by adeno-associated virus 2/9 vector carrying CC10 in OVA-sensitized mice.Hum. Gene Ther.2013241485710.1089/hum.2012.03923013277
    [Google Scholar]
  60. ChiangP.C. ChenJ.C. ChenL.C. KuoM.L. Adeno-associated virus-mediated interleukin-12 gene expression alleviates lung inflammation and type 2 T-helper-responses in ovalbumin-sensitized asthmatic mice.Hum. Gene Ther.20223319-201052106110.1089/hum.2022.03435686463
    [Google Scholar]
  61. Rydell-TörmänenK. JohnsonJ.R. The applicability of mouse models to the study of human disease.Methods Mol. Biol.2019194032210.1007/978‑1‑4939‑9086‑3_130788814
    [Google Scholar]
  62. RamamurthyR.M. AtalaA. PoradaC.D. Almeida-PoradaG. Organoids and microphysiological systems: Promising models for accelerating AAV gene therapy studies.Front. Immunol.202213101114310.3389/fimmu.2022.101114336225917
    [Google Scholar]
  63. Meyer-BergH. Zhou YangL. Pilar de LucasM. ZambranoA. HydeS.C. GillD.R. Identification of AAV serotypes for lung gene therapy in human embryonic stem cell-derived lung organoids.Stem Cell Res. Ther.202011144810.1186/s13287‑020‑01950‑x33097094
    [Google Scholar]
  64. AntoineM. MlikaM. Interstitial lung disease.StatPearlsStatPearls Publishing202310.1183/09059180.00009113
    [Google Scholar]
  65. McClainL.E. DaveyM.G. ZoltickP.W. LimberisM.P. FlakeA.W. PeranteauW.H. Vector serotype screening for use in ovine perinatal lung gene therapy.J. Pediatr. Surg.201651687988410.1016/j.jpedsurg.2016.02.04827032612
    [Google Scholar]
  66. LimberisM.P. VandenbergheL.H. ZhangL. PicklesR.J. WilsonJ.M. Transduction efficiencies of novel AAV vectors in mouse airway epithelium in vivo and human ciliated airway epithelium in vitro.Mol. Ther.200917229430110.1038/mt.2008.26119066597
    [Google Scholar]
  67. JudgeE.P. HughesJ.M.L. EganJ.J. MaguireM. MolloyE.L. O’DeaS. Anatomy and bronchoscopy of the porcine lung. A model for translational respiratory medicine.Am. J. Respir. Cell Mol. Biol.201451333434310.1165/rcmb.2013‑0453TR24828366
    [Google Scholar]
  68. ChenO.G. MatherS.E. BrommelC.M. HamiltonB.A. EhlerA. VillacresesR. GirgisR.E. Abou AlaiwaM. StoltzD.A. ZabnerJ. LiX. Transduction of pig small airway epithelial cells and distal lung progenitor cells by AAV4.Cells2021105101410.3390/cells1005101433923029
    [Google Scholar]
  69. DudekA.M. PillayS. PuschnikA.S. NagamineC.M. ChengF. QiuJ. CaretteJ.E. VandenbergheL.H. An alternate route for adeno-associated virus (AAV) entry independent of AAV receptor.J. Virol.2018927e02213-1710.1128/JVI.02213‑1729343568
    [Google Scholar]
  70. HamiltonB.A. LiX. PezzuloA.A. Abou AlaiwaM.H. ZabnerJ. Polarized AAVR expression determines infectivity by AAV gene therapy vectors.Gene Ther.201926624024910.1038/s41434‑019‑0078‑330962536
    [Google Scholar]
  71. StoltzD.A. MeyerholzD.K. PezzuloA.A. RamachandranS. RoganM.P. DavisG.J. HanflandR.A. Wohlford-LenaneC. DohrnC.L. BartlettJ.A. NelsonG.A.IV ChangE.H. TaftP.J. LudwigP.S. EstinM. HornickE.E. LaunspachJ.L. SamuelM. RokhlinaT. KarpP.H. OstedgaardL.S. UcA. StarnerT.D. HorswillA.R. BrogdenK.A. PratherR.S. RichterS.S. ShilyanskyJ. McCrayP.B.Jr ZabnerJ. WelshM.J. Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth.Sci. Transl. Med.201022929ra3110.1126/scitranslmed.300092820427821
    [Google Scholar]
  72. AgueroJ. IshikawaK. HadriL. Santos-GallegoC.G. FishK.M. KohlbrennerE. HammoudiN. KhoC. LeeA. IbáñezB. García-AlvarezA. ZseboK. MaronB.A. PlatakiM. FusterV. LeopoldJ.A. HajjarR.J. Intratracheal gene delivery of SERCA2a ameliorates chronic post-capillary pulmonary hypertension.J. Am. Coll. Cardiol.201667172032204610.1016/j.jacc.2016.02.04927126531
    [Google Scholar]
  73. JindalS. Remodeling in asthma and COPD—recent concepts.Lung India20163311210.4103/0970‑2113.17307426933298
    [Google Scholar]
  74. TannerL. SingleA.B. Animal models reflecting chronic obstructive pulmonary disease and related respiratory disorders: Translating pre-clinical data into clinical relevance.J. Innate Immun.202012320322510.1159/00050248931527372
    [Google Scholar]
  75. JoyeuxL. DanzerE. LimberisM.P. ZoltickP.W. RaduA. FlakeA.W. DaveyM.G. In utero lung gene transfer using adeno-associated viral and lentiviral vectors in mice.Hum. Gene Ther. Methods201425319720510.1089/hgtb.2013.14324660751
    [Google Scholar]
  76. QinS. WangH. LiuG. MeiH. ChenM. miR-21-5p ameliorates hyperoxic acute lung injury and decreases apoptosis of AEC II cells via PTEN/AKT signaling in rats.Mol. Med. Rep.20192064953496210.3892/mmr.2019.1077931702805
    [Google Scholar]
  77. BüningH. HuberA. ZhangL. MeumannN. HackerU. Engineering the AAV capsid to optimize vector–host-interactions.Curr. Opin. Pharmacol.2015249410410.1016/j.coph.2015.08.00226302254
    [Google Scholar]
  78. BüningH. SrivastavaA. Capsid modifications for targeting and improving the efficacy of AAV vectors.Mol. Ther. Methods Clin. Dev.20191224826510.1016/j.omtm.2019.01.00830815511
    [Google Scholar]
  79. VineyL. BürckstümmerT. EddingtonC. MietzschM. ChoudhryM. HenleyT. Agbandje-McKennaM. Adeno-associated virus (AAV) capsid chimeras with enhanced infectivity reveal a core element in the AAV genome critical for both cell transduction and capsid assembly.J. Virol.2021957e02023-2010.1128/JVI.02023‑2033441336
    [Google Scholar]
  80. ChaiZ. ZhangX. DobbinsA.L. FrostE.A. SamulskiR.J. LiC. Chimeric capsid proteins impact transduction efficiency of haploid adeno-associated virus vectors.Viruses20191112113810.3390/v1112113831835440
    [Google Scholar]
  81. MartiniS.V. da SilvaA.L. FerreiraD. GomesK. OrnellasF.M. Lopes-PachecoM. ZinE. Petrs-SilvaH. RoccoP.R.M. MoralesM.M. Single tyrosine mutation in AAV8 vector capsid enhances gene lung delivery and does not alter lung morphofunction in mice.Cell. Physiol. Biochem.201434368169010.1159/00036303325171090
    [Google Scholar]
  82. ZhongL. LiB. MahC.S. GovindasamyL. Agbandje-McKennaM. CooperM. HerzogR.W. ZolotukhinI. WarringtonK.H.Jr Weigel-Van AkenK.A. HobbsJ.A. ZolotukhinS. MuzyczkaN. SrivastavaA. Next generation of adeno-associated virus 2 vectors: Point mutations in tyrosines lead to high-efficiency transduction at lower doses.Proc. Natl. Acad. Sci. USA2008105227827783210.1073/pnas.080286610518511559
    [Google Scholar]
  83. ChenX. ChenS. PeiN. MaoY. WangS. YanR. BaiN. LiA. ZhangY. DuH. ChenB. SumnersC. LiJ. LiH. AAV-Mediated angiotensin 1-7 overexpression inhibits tumor growth of lung cancer in vitro and in vivo.Oncotarget20178135436310.18632/oncotarget.1339627861149
    [Google Scholar]
  84. GoertsenD. GoedenN. FlytzanisN.C. GradinaruV. Targeting the lung epithelium after intravenous delivery by directed evolution of underexplored sites on the AAV capsid.Mol. Ther. Methods Clin. Dev.20222633134210.1016/j.omtm.2022.07.01035990749
    [Google Scholar]
  85. KörbelinJ. SieberT. MichelfelderS. LundingL. SpiesE. HungerA. AlawiM. RaptiK. IndenbirkenD. MüllerO.J. PasqualiniR. ArapW. KleinschmidtJ.A. TrepelM. Pulmonary targeting of adeno-associated viral vectors by next-generation sequencing-guided screening of random capsid displayed peptide libraries.Mol. Ther.20162461050106110.1038/mt.2016.6227018516
    [Google Scholar]
  86. Colon-CortesY. HasanM.A. AslanidiG. Intra-tracheal delivery of AAV6 vectors results in sustained transduction in murine lungs without genomic integration.Gene X2020510003732904225
    [Google Scholar]
  87. van LieshoutL.P. DommJ.M. RindlerT.N. FrostK.L. SorensenD.L. MedinaS.J. BoothS.A. BridgesJ.P. WoottonS.K. A novel triple-mutant AAV6 capsid induces rapid and potent transgene expression in the muscle and respiratory tract of mice.Mol. Ther. Methods Clin. Dev.2018932332910.1016/j.omtm.2018.04.00530038936
    [Google Scholar]
  88. RindlerT.N. BrownK.M. StockmanC.A. van LieshoutL.P. MartinE.P. WeaverT.E. ZachariasW.J. WoottonS.K. WhitsettJ.A. BridgesJ.P. Efficient transduction of alveolar type 2 cells with adeno-associated virus for the study of lung regeneration.Am. J. Respir. Cell Mol. Biol.202165111812110.1165/rcmb.2021‑0049LE34241584
    [Google Scholar]
  89. KangM.H. van LieshoutL.P. XuL. DommJ.M. VadivelA. RenesmeL. MühlfeldC. HurskainenM. MižíkováI. PeiY. van VlotenJ.P. ThomasS.P. MilazzoC. Cyr-DepauwC. WhitsettJ.A. NogeeL.M. WoottonS.K. ThébaudB. A lung tropic AAV vector improves survival in a mouse model of surfactant B deficiency.Nat. Commun.2020111392910.1038/s41467‑020‑17577‑832764559
    [Google Scholar]
  90. SteinesB. DickeyD.D. BergenJ. ExcoffonK.J.D.A. WeinsteinJ.R. LiX. YanZ. AlaiwaM.H.A. ShahV.S. BouzekD.C. PowersL.S. GansemerN.D. OstedgaardL.S. EngelhardtJ.F. StoltzD.A. WelshM.J. SinnP.L. SchafferD.V. ZabnerJ. CFTR gene transfer with AAV improves early cystic fibrosis pig phenotypes.JCI Insight2016114e8872810.1172/jci.insight.8872827699238
    [Google Scholar]
  91. NassS.A. MattinglyM.A. WoodcockD.A. BurnhamB.L. ArdingerJ.A. OsmondS.E. FrederickA.M. ScariaA. ChengS.H. O’RiordanC.R. Universal method for the purification of recombinant AAV vectors of differing serotypes.Mol. Ther. Methods Clin. Dev.20189334610.1016/j.omtm.2017.12.00429349097
    [Google Scholar]
  92. CooneyA.L. ThornellI.M. SinghB.K. ShahV.S. StoltzD.A. McCrayP.B.Jr ZabnerJ. SinnP.L. A novel AAV-mediated gene delivery system corrects CFTR function in pigs.Am. J. Respir. Cell Mol. Biol.201961674775410.1165/rcmb.2019‑0006OC31184507
    [Google Scholar]
  93. OpieS.R. WarringtonK.H.Jr Agbandje-McKennaM. ZolotukhinS. MuzyczkaN. Identification of amino acid residues in the capsid proteins of adeno-associated virus type 2 that contribute to heparan sulfate proteoglycan binding.J. Virol.200377126995700610.1128/JVI.77.12.6995‑7006.200312768018
    [Google Scholar]
  94. GugginoW.B. CebotaruL. Adeno-Associated Virus (AAV) gene therapy for cystic fibrosis: current barriers and recent developments.Expert Opin. Biol. Ther.201717101265127310.1080/14712598.2017.134763028657358
    [Google Scholar]
  95. YanZ. SunX. FengZ. LiG. FisherJ.T. StewartZ.A. EngelhardtJ.F. Optimization of recombinant adeno-associated virus-mediated expression for large transgenes, using a synthetic promoter and tandem array enhancers.Hum. Gene Ther.201526633434610.1089/hum.2015.00125763813
    [Google Scholar]
  96. YanZ. KeiserN.W. SongY. DengX. ChengF. QiuJ. EngelhardtJ.F. A novel chimeric adenoassociated virus 2/human bocavirus 1 parvovirus vector efficiently transduces human airway epithelia.Mol. Ther.201321122181219410.1038/mt.2013.9223896725
    [Google Scholar]
  97. YanZ. FengZ. SunX. ZhangY. ZouW. WangZ. Jensen-CodyC. LiangB. ParkS.Y. QiuJ. EngelhardtJ.F. Human bocavirus type-1 capsid facilitates the transduction of ferret airways by adeno-associated virus genomes.Hum. Gene Ther.201728861262510.1089/hum.2017.06028490200
    [Google Scholar]
  98. FakhiriJ. SchneiderM.A. PuschhofJ. StaniferM. SchildgenV. HolderbachS. VossY. El AndariJ. SchildgenO. BoulantS. MeisterM. CleversH. YanZ. QiuJ. GrimmD. Novel chimeric gene therapy vectors based on adeno-associated virus and four different mammalian bocaviruses.Mol. Ther. Methods Clin. Dev.20191220222210.1016/j.omtm.2019.01.00330766894
    [Google Scholar]
  99. RuysseveldtE. MartensK. SteelantB. Airway basal cells, protectors of epithelial walls in health and respiratory diseases.Frontiers in Allergy2021278712810.3389/falgy.2021.78712835387001
    [Google Scholar]
  100. WeberT. Anti-AAV antibodies in AAV gene therapy: Current challenges and possible solutions.Front. Immunol.20211265839910.3389/fimmu.2021.65839933815421
    [Google Scholar]
  101. LiuB. LiZ. HuangS. YanB. HeS. ChenF. LiangY. AAV-containing exosomes as a novel vector for improved gene delivery to lung cancer cells.Front. Cell Dev. Biol.2021970760710.3389/fcell.2021.70760734485293
    [Google Scholar]
  102. CooneyA.L. SinghB.K. SinnP.L. Hybrid nonviral/viral vector systems for improved piggyBac DNA transposon in vivo delivery.Mol. Ther.201523466767410.1038/mt.2014.25425557623
    [Google Scholar]
  103. SrivastavaA. MallelaK.M.G. DeorkarN. BrophyG. Manufacturing challenges and rational formulation development for AAV viral vectors.J. Pharm. Sci.202111072609262410.1016/j.xphs.2021.03.02433812887
    [Google Scholar]
  104. KotinR.M. Large-scale recombinant adeno-associated virus production.Hum. Mol. Genet.201120R1R2R610.1093/hmg/ddr14121531790
    [Google Scholar]
  105. MasriF. CheesemanE. AnsorgeS. Viral vector manufacturing: how to address current and future demands?Cell Gene Ther. Insights20195S594997010.18609/cgti.2019.104
    [Google Scholar]
  106. ZhaoH. LeeK.J. DarisM. LinY. WolfeT. ShengJ. PlewaC. WangS. MeisenW.H. Creation of a high-yield AAV vector production platform in suspension cells using a design-of-experiment approach.Mol. Ther. Methods Clin. Dev.20201831232010.1016/j.omtm.2020.06.00432671134
    [Google Scholar]
  107. WrightJ.F. AAV vector production: Troublesome host innate responses in another setting.Mol. Ther. Methods Clin. Dev.20232841241310.1016/j.omtm.2023.02.00836910587
    [Google Scholar]
  108. EscandellJ.M. PaisD.A.M. CarvalhoS.B. VincentK. Gomes-AlvesP. AlvesP.M. Leveraging rAAV bioprocess understanding and next generation bioanalytics development.Curr. Opin. Biotechnol.20227427127710.1016/j.copbio.2021.12.00935007989
    [Google Scholar]
  109. CarrD.R. BradshawS.E. Gene therapies: the challenge of super-high-cost treatments and how to pay for them.Regen. Med.201611438139310.2217/rme‑2016‑001027185544
    [Google Scholar]
  110. StillmanB.W. GluzmanY. Replication and supercoiling of simian virus 40 DNA in cell extracts from human cells.Mol. Cell. Biol.198558205120603018548
    [Google Scholar]
  111. RobertM.A. NassouryN. ChahalP.S. VenneM.H. RacineT. QiuX. KobingerG. KamenA. GilbertR. GailletB. Gene transfer of ZMapp antibodies mediated by recombinant adeno-associated virus protects against ebola infections.Hum. Gene Ther.201829445246610.1089/hum.2017.10129179602
    [Google Scholar]
  112. MalmM. SaghaleyniR. LundqvistM. GiudiciM. ChotteauV. FieldR. VarleyP.G. HattonD. GrassiL. SvenssonT. NielsenJ. RockbergJ. Evolution from adherent to suspension: systems biology of HEK293 cell line development.Sci. Rep.20201011899610.1038/s41598‑020‑76137‑833149219
    [Google Scholar]
  113. HuangX. HartleyA.V. YinY. HerskowitzJ.H. LahJ.J. ResslerK.J. AAV2 production with optimized N/P ratio and PEI-mediated transfection results in low toxicity and high titer for in vitro and in vivo applications.J. Virol. Methods2013193227027710.1016/j.jviromet.2013.06.00823791963
    [Google Scholar]
  114. ChahalP.S. SchulzeE. TranR. MontesJ. KamenA.A. Production of adeno-associated virus (AAV) serotypes by transient transfection of HEK293 cell suspension cultures for gene delivery.J. Virol. Methods201419616317310.1016/j.jviromet.2013.10.03824239634
    [Google Scholar]
  115. NguyenT.N.T. ShaS. HongM.S. MaloneyA.J. BaroneP.W. NeufeldC. WolfrumJ. SpringsS.L. SinskeyA.J. BraatzR.D. Mechanistic model for production of recombinant adeno-associated virus via triple transfection of HEK293 cells.Mol. Ther. Methods Clin. Dev.20212164265510.1016/j.omtm.2021.04.00634095346
    [Google Scholar]
  116. CameauE. PedregalA. GloverC. Cost modelling comparison of adherent multi-trays with suspension and fixed-bed bioreactors for the manufacturing of gene therapy products.Cell Gene Ther. Insights20195111663167410.18609/cgti.2019.175
    [Google Scholar]
  117. WhiteleyZ. MassaroG. GkogkosG. GavriilidisA. WaddingtonS.N. RahimA.A. CraigD.Q.M. Microfluidic production of nanogels as alternative triple transfection reagents for the manufacture of adeno-associated virus vectors.Nanoscale202315125865587610.1039/D2NR06401D36866741
    [Google Scholar]
  118. TangQ. KeelerA.M. ZhangS. SuQ. LyuZ. ChengY. GaoG. FlotteT.R. Two-plasmid packaging system for recombinant adeno-associated virus.Biores. Open Access20209121922810.1089/biores.2020.003133117614
    [Google Scholar]
  119. ClémentN. GriegerJ.C. Manufacturing of recombinant adeno-associated viral vectors for clinical trials.Mol. Ther. Methods Clin. Dev.201631600210.1038/mtm.2016.227014711
    [Google Scholar]
  120. SuW. PatrícioM.I. DuffyM.R. KrakowiakJ.M. SeymourL.W. CawoodR. Self-attenuating adenovirus enables production of recombinant adeno-associated virus for high manufacturing yield without contamination.Nat. Commun.2022131118210.1038/s41467‑022‑28738‑235256603
    [Google Scholar]
  121. ChavdaV. BezbaruahR. ValuD. PatelB. KumarA. PrasadS. KakotiB. KaushikA. JesawadawalaM. Adenoviral vector-based vaccine platform for COVID-19: Current status.Vaccines (Basel)202311243210.3390/vaccines1102043236851309
    [Google Scholar]
  122. JalšićL. LytvynV. ElahiS.M. HrapovicS. NassouryN. ChahalP.S. GailletB. GilbertR. Inducible HEK293 AAV packaging cell lines expressing Rep proteins.Mol. Ther. Methods Clin. Dev.20233025927510.1016/j.omtm.2023.07.00237560197
    [Google Scholar]
  123. SelvarajN. WangC.K. BowserB. BroadtT. ShabanS. BurnsJ. SaptharishiN. PechanP. GolebiowskiD. AlimardanovA. YangN. MitraG. VepacheduR. Detailed protocol for the novel and scalable viral vector upstream process for AAV gene therapy manufacturing.Hum. Gene Ther.20213215-1685086110.1089/hum.2020.05433397196
    [Google Scholar]
  124. Cell line development products and services.2023Available from: https://cevec.com/applications/aav/(accessed on 8-8-2024)
  125. MendesJ.P. FernandesB. PinedaE. KuduguntiS. BransbyM. GantierR. PeixotoC. AlvesP.M. RoldãoA. SilvaR.J.S. AAV process intensification by perfusion bioreaction and integrated clarification.Front. Bioeng. Biotechnol.202210102017410.3389/fbioe.2022.102017436420444
    [Google Scholar]
  126. GriegerJ.C. SoltysS.M. SamulskiR.J. Production of recombinant adeno-associated virus vectors using suspension HEK293 cells and continuous harvest of vector from the culture media for GMP FIX and FLT1 clinical vector.Mol. Ther.201624228729710.1038/mt.2015.18726437810
    [Google Scholar]
  127. GuanJ.S. ChenK. SiY. KimT. ZhouZ. KimS. Process improvement of adeno-associated virus (AAV) production.Front Chem Eng.20224
    [Google Scholar]
  128. ZhaoH. MeisenW.H. WangS. LeeK.J. Process development of recombinant adeno-associated virus production platform results in high production yield and purity.Hum. Gene Ther.2023341-2566710.1089/hum.2022.15336401498
    [Google Scholar]
  129. Adamson-SmallL. PotterM. ByrneB.J. ClémentN. Sodium chloride enhances recombinant adeno-associated virus production in a serum-free suspension manufacturing platform using the herpes simplex virus system.Hum. Gene Ther. Methods201728111410.1089/hgtb.2016.15128117600
    [Google Scholar]
  130. ScarrottJ.M. JohariY.B. PohleT.H. LiuP. MayerA. JamesD.C. Increased recombinant adeno-associated virus production by HEK293 cells using small molecule chemical additives.Biotechnol. J.2023183220045010.1002/biot.20220045036495042
    [Google Scholar]
  131. UrabeM. DingC. KotinR.M. Insect cells as a factory to produce adeno-associated virus type 2 vectors.Hum. Gene Ther.200213161935194310.1089/1043034026035534712427305
    [Google Scholar]
  132. Aponte-UbillusJ.J. BarajasD. PeltierJ. BardlivingC. ShamlouP. GoldD. Molecular design for recombinant adeno-associated virus (rAAV) vector production.Appl. Microbiol. Biotechnol.201810231045105410.1007/s00253‑017‑8670‑129204900
    [Google Scholar]
  133. SmithR.H. LevyJ.R. KotinR.M. A simplified baculovirus-AAV expression vector system coupled with one-step affinity purification yields high-titer rAAV stocks from insect cells.Mol. Ther.200917111888189610.1038/mt.2009.12819532142
    [Google Scholar]
  134. MietzschM. GrasseS. ZurawskiC. WegerS. BennettA. Agbandje-McKennaM. MuzyczkaN. ZolotukhinS. HeilbronnR. OneBac: platform for scalable and high-titer production of adeno-associated virus serotype 1-12 vectors for gene therapy.Hum. Gene Ther.201425321222210.1089/hum.2013.18424299301
    [Google Scholar]
  135. JoshiP.R.H. Venereo-SanchezA. ChahalP.S. KamenA.A. Advancements in molecular design and bioprocessing of recombinant adeno‐associated virus gene delivery vectors using the insect‐cell baculovirus expression platform.Biotechnol. J.2021164200002110.1002/biot.20200002133277815
    [Google Scholar]
  136. MorenoF. LipF. RojasH. Anggakusuma. Development of an insect cell-based adeno-associated virus packaging cell line employing advanced.Mol. Ther. Methods Clin. Dev.20222739140310.1016/j.omtm.2022.10.01536381303
    [Google Scholar]
  137. ChenH. Intron splicing-mediated expression of AAV Rep and Cap genes and production of AAV vectors in insect cells.Mol. Ther.200816592493010.1038/mt.2008.3518388928
    [Google Scholar]
  138. WuY. MeiT. JiangL. HanZ. DongR. YangT. XuF. Development of versatile and flexible Sf9 packaging cell line-dependent OneBac system for large-scale recombinant adeno-associated virus production.Hum. Gene Ther. Methods201930517218310.1089/hgtb.2019.12331566024
    [Google Scholar]
  139. AslanidiG. LambK. ZolotukhinS. An inducible system for highly efficient production of recombinant adeno-associated virus (rAAV) vectors in insect Sf9 cells.Proc. Natl. Acad. Sci. USA2009106135059506410.1073/pnas.081061410619279219
    [Google Scholar]
  140. van der LooJ.C.M. WrightJ.F. Progress and challenges in viral vector manufacturing.Hum. Mol. Genet.201625R1R42R5210.1093/hmg/ddv45126519140
    [Google Scholar]
  141. NegreteA. KotinR.M. Strategies for manufacturing recombinant adeno-associated virus vectors for gene therapy applications exploiting baculovirus technology.Brief. Funct. Genomics Proteomics20087430331110.1093/bfgp/eln03418632744
    [Google Scholar]
  142. CarinhasN. BernalV. YokomizoA.Y. CarrondoM.J.T. OliveiraR. AlvesP.M. Baculovirus production for gene therapy: the role of cell density, multiplicity of infection and medium exchange.Appl. Microbiol. Biotechnol.20098161041104910.1007/s00253‑008‑1727‑418923829
    [Google Scholar]
  143. BernalV. CarinhasN. YokomizoA.Y. CarrondoM.J.T. AlvesP.M. Cell density effect in the baculovirus-insect cells system: A quantitative analysis of energetic metabolism.Biotechnol. Bioeng.2009104116218010.1002/bit.2236419459142
    [Google Scholar]
  144. JoshiP.R.H. CerveraL. AhmedI. KondratovO. ZolotukhinS. SchragJ. ChahalP.S. KamenA.A. Achieving High-Yield Production of Functional AAV5 Gene Delivery Vectors via Fedbatch in an insect cell-one baculovirus system.Mol. Ther. Methods Clin. Dev.20191327928910.1016/j.omtm.2019.02.00330886878
    [Google Scholar]
  145. MeghrousJ. AucoinM.G. JacobD. ChahalP.S. ArcandN. KamenA.A. Production of recombinant adeno-associated viral vectors using a baculovirus/insect cell suspension culture system: from shake flasks to a 20-L bioreactor.Biotechnol. Prog.200521115416010.1021/bp049802e15903253
    [Google Scholar]
  146. KurasawaJ.H. ParkA. SowersC.R. HalpinR.A. TovchigrechkoA. DobsonC.L. SchmelzerA.E. GaoC. WilsonS.D. IkedaY. Chemically defined, high-density insect cell-based expression system for scalable AAV vector production.Mol. Ther. Methods Clin. Dev.20201933034010.1016/j.omtm.2020.09.01833145369
    [Google Scholar]
  147. AucoinM.G. PerrierM. KamenA.A. Improving AAV vector yield in insect cells by modulating the temperature after infection.Biotechnol. Bioeng.20079761501150910.1002/bit.2136417274066
    [Google Scholar]
  148. NegreteA. KotinR.M. Production of recombinant adeno-associated vectors using two bioreactor configurations at different scales.J. Virol. Methods2007145215516110.1016/j.jviromet.2007.05.02017606302
    [Google Scholar]
  149. GhasemiA. BozorgA. RahmatiF. MirhassaniR. HosseininasabS. Comprehensive study on Wave bioreactor system to scale up the cultivation of and recombinant protein expression in baculovirus-infected insect cells.Biochem. Eng. J.201914312113010.1016/j.bej.2018.12.011
    [Google Scholar]
  150. PaisD.A.M. GalrãoP.R.S. KryzhanskaA. BarbauJ. IsidroI.A. AlvesP.M. Holographic imaging of insect cell cultures: Online non-invasive monitoring of adeno-associated virus production and cell concentration.Processes (Basel)20208448710.3390/pr8040487
    [Google Scholar]
  151. PaisD.A.M. BrownC. NeumanA. MathurK. IsidroI.A. AlvesP.M. SladeP.G. Dielectric spectroscopy to improve the production of rAAV used in gene therapy.Processes (Basel)2020811145610.3390/pr8111456
    [Google Scholar]
  152. WuH.C. HuY.C. BentleyW.E. Tubular bioreactor for probing baculovirus infection and protein production.Methods Mol. Biol.2016135046146710.1007/978‑1‑4939‑3043‑2_2326820873
    [Google Scholar]
  153. BuclezP.O. Dias FlorencioG. RelizaniK. BeleyC. GarciaL. BenchaouirR. Rapid, scalable, and low-cost purification of recombinant adeno-associated virus produced by baculovirus expression vector system.Mol. Ther. Methods Clin. Dev.201631603510.1038/mtm.2016.3527226971
    [Google Scholar]
  154. FuX. ChenW.C. ArgentoC. ClarnerP. BhattV. DickersonR. Bou-AssafG. BakhshayeshiM. LuX. BergelsonS. PieracciJ. Analytical strategies for quantification of adeno-associated virus empty capsids to support process development.Hum. Gene Ther. Methods201930414415210.1089/hgtb.2019.08831368356
    [Google Scholar]
  155. QuW. WangM. WuY. XuR. Scalable downstream strategies for purification of recombinant adeno- associated virus vectors in light of the properties.Curr. Pharm. Biotechnol.201516868469510.2174/138920101666615050512222825941887
    [Google Scholar]
  156. NasimuzzamanM. LynnD. van der LooJ.C.M. MalikP. Purification of baculovirus vectors using heparin affinity chromatography.Mol. Ther. Methods Clin. Dev.201631607110.1038/mtm.2016.7127933303
    [Google Scholar]
  157. McNallyD.J. PirasB.A. WillisC.M. LockeyT.D. MeagherM.M. Development and optimization of a hydrophobic interaction chromatography-based method of AAV harvest, capture, and recovery.Mol. Ther. Methods Clin. Dev.20201927528410.1016/j.omtm.2020.09.01533102619
    [Google Scholar]
  158. JoshiP.R.H. BernierA. MoçoP.D. SchragJ. ChahalP.S. KamenA. Development of a scalable and robust AEX method for enriched rAAV preparations in genome-containing VCs of serotypes 5, 6, 8, and 9.Mol. Ther. Methods Clin. Dev.20212134135610.1016/j.omtm.2021.03.01633898632
    [Google Scholar]
  159. FloreaM. NicolaouF. PacouretS. ZinnE.M. SanmiguelJ. Andres-MateosE. UnzuC. WagersA.J. VandenbergheL.H. High-efficiency purification of divergent AAV serotypes using AAVX affinity chromatography.Mol. Ther. Methods Clin. Dev.20232814615910.1016/j.omtm.2022.12.00936654797
    [Google Scholar]
  160. GalliA. IaiaI. MilellaM.S. CiprianiF. Della LattaV. GiaccaM. ZentilinL. CervelliT. Characterization of viral genome encapsidated in adeno-associated recombinant vectors produced in yeast saccharomyces cerevisiae.Mol. Biotechnol.202163215616510.1007/s12033‑020‑00294‑433392920
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232294935240826061311
Loading
/content/journals/cgt/10.2174/0115665232294935240826061311
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test