Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Background

Hepatocellular carcinoma (HCC) is one of the most intractable tumors in the world due to its high rate of recurrence and heterogeneity.

Aims

The objective of this study was to investigate the role of circular RNA 0102231 (hsa_circ_0102231) in the progression of liver cancer.

Methods

In this study, quantitative polymerase chain reaction experiments were performed to quantify the hsa_circ_0102231 level in different liver cancer cell lines. Bioinformatics analysis, as well as a dual-luciferase reporter and RNA pull-down assay, were used to identify putative hsa_circ_0102231 downstream targets. Colony formation and CCK8 assays were utilized to examine cell proliferation, whereas Transwell assays were employed to monitor cell migration. Lastly, the role of hsa_circ_0102231 in liver cancer was assessed in a subcutaneous xenograft model.

Results

The expression of hsa_circ_0102231 increased significantly in HepG2 and Huh-7 cells compared with controls, and hsa_circ_0102231 knockdown inhibited cell proliferation and migration and . Bioinformatics analysis, as well as a dual-luciferase reporter and RNA pulldown assay, revealed that miR-873 and SOX4 were hsa_circ_0102231 downstream targets. miR-873 inhibition or SOX4 overexpression rescued the proliferation and migration of HepG2 and Huh-7 cells after hsa_circ_0102231 knockdown. Furthermore, SOX4 overexpression reversed the miR-873-induced inhibition of cell migration and proliferation .

Conclusion

These results show that hsa_circ_0102231 knockdown impedes the progression of liver cancer by regulating the miR-873/SOX4 axis. However, further studies are needed to determine whether hsa_circ_0102231 may be a therapeutic target in liver cancer.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232301878240627051455
2024-07-03
2025-07-12
Loading full text...

Full text loading...

References

  1. TorreL.A. BrayF. SiegelR.L. FerlayJ. Lortet-TieulentJ. JemalA. Global cancer statistics, 2012.CA Cancer J. Clin.20156528710810.3322/caac.2126225651787
    [Google Scholar]
  2. RamisettyS. KulkarniP. BhattacharyaS. NamA. SinghalS.S. GuoL. MirzapoiazovaT. MambetsarievB. MittanS. MalhotraJ. PisickE. SubbiahS. RajurkarS. MassarelliE. SalgiaR. MohantyA. A systems biology approach for addressing cisplatin resistance in non-small cell lung cancer.J. Clin. Med.202312259910.3390/jcm1202059936675528
    [Google Scholar]
  3. JemalA. BrayF. CenterM.M. FerlayJ. WardE. FormanD. Global cancer statistics.CA Cancer J. Clin.2011612699010.3322/caac.2010721296855
    [Google Scholar]
  4. El-SeragH.B. Hepatocellular carcinoma.N. Engl. J. Med.2011365121118112710.1056/NEJMra100168321992124
    [Google Scholar]
  5. ScuoppoC. WangJ. PersaudM. MittanS.K. BassoK. PasqualucciL. RabadanR. InghiramiG. GrandoriC. BoschF. Dalla-FaveraR. Repurposing dasatinib for diffuse large B cell lymphoma.Proc. Natl. Acad. Sci. USA201911634169811698610.1073/pnas.190523911631383760
    [Google Scholar]
  6. AnastasiadouE. JacobL.S. SlackF.J. Non-coding RNA networks in cancer.Nat. Rev. Cancer201818151810.1038/nrc.2017.9929170536
    [Google Scholar]
  7. YanH. BuP. Non-coding RNA in cancer.Essays Biochem.202165462563910.1042/EBC2020003233860799
    [Google Scholar]
  8. DuW.W. YangW. LiuE. YangZ. DhaliwalP. YangB.B. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2.Nucleic Acids Res.20164462846285810.1093/nar/gkw02726861625
    [Google Scholar]
  9. XuY. LengK. YaoY. KangP. LiaoG. HanY. ShiG. JiD. HuangP. ZhengW. LiZ. LiJ. HuangL. YuL. ZhouY. JiangX. WangH. LiC. SuZ. TaiS. ZhongX. WangZ. CuiY. A circular RNA, Cholangiocarcinoma‐associated circular RNA 1, Contributes to cholangiocarcinoma progression, induces angiogenesis, and disrupts vascular endothelial barriers.Hepatology20217341419143510.1002/hep.3149332750152
    [Google Scholar]
  10. SangerH.L. KlotzG. RiesnerD. GrossH.J. KleinschmidtA.K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures.Proc. Natl. Acad. Sci.197673113852385610.1073/pnas.73.11.38521069269
    [Google Scholar]
  11. WangP.L. BaoY. YeeM.C. BarrettS.P. HoganG.J. OlsenM.N. DinnenyJ.R. BrownP.O. SalzmanJ. Circular RNA is expressed across the eukaryotic tree of life.PLoS One201493e9085910.1371/journal.pone.009085924609083
    [Google Scholar]
  12. SalzmanJ. ChenR.E. OlsenM.N. WangP.L. BrownP.O. Cell-type specific features of circular RNA expression.PLoS Genet.201399e100377710.1371/journal.pgen.100377724039610
    [Google Scholar]
  13. VidalA.F. SandovalG.T.V. MagalhãesL. SantosS.E.B. Ribeiro-dos-SantosÂ. Circular RNAs as a new field in gene regulation and their implications in translational research.Epigenomics20168455156210.2217/epi.16.327035397
    [Google Scholar]
  14. WangY. MoY. GongZ. YangX. YangM. ZhangS. XiongF. XiangB. ZhouM. LiaoQ. ZhangW. LiX. LiX. LiY. LiG. ZengZ. XiongW. Circular RNAs in human cancer.Mol. Cancer20171612510.1186/s12943‑017‑0598‑728143578
    [Google Scholar]
  15. KristensenL.S. HansenT.B. VenøM.T. KjemsJ. Circular RNAs in cancer: opportunities and challenges in the field.Oncogene201837555556510.1038/onc.2017.36128991235
    [Google Scholar]
  16. WangL. LongH. ZhengQ. BoX. XiaoX. LiB. Circular RNA circRHOT1 promotes hepatocellular carcinoma progression by initiation of NR2F6 expression.Mol. Cancer201918111910.1186/s12943‑019‑1046‑731324186
    [Google Scholar]
  17. HanD. LiJ. WangH. SuX. HouJ. GuY. QianC. LinY. LiuX. HuangM. LiN. ZhouW. YuY. CaoX. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression.Hepatology20176641151116410.1002/hep.2927028520103
    [Google Scholar]
  18. ZhangX. XuY. QianZ. ZhengW. WuQ. ChenY. ZhuG. LiuY. BianZ. XuW. ZhangY. SunF. PanQ. WangJ. DuL. YuY. circRNA_104075 stimulates YAP-dependent tumorigenesis through the regulation of HNF4a and may serve as a diagnostic marker in hepatocellular carcinoma.Cell Death Dis.2018911109110.1038/s41419‑018‑1132‑630361504
    [Google Scholar]
  19. GuoX.Y. ChenJ.N. SunF. WangY.Q. PanQ. FanJ.G. circRNA_0046367 prevents hepatoxicity of lipid peroxidation: An inhibitory role against hepatic steatosis.Oxid. Med. Cell. Longev.2017201711610.1155/2017/396019729018509
    [Google Scholar]
  20. SunY. SunX. HuangQ. Circ_0000105 promotes liver cancer by regulating miR-498/PIK3R1.J. Gene Med.20202211e325610.1002/jgm.325632729955
    [Google Scholar]
  21. LuH. GaoL. LvJ. Circ_0078710 promotes the development of liver cancer by upregulating TXNDC5 via miR-431-5p.Ann. Hepatol.202227110055110.1016/j.aohep.2021.10055134606982
    [Google Scholar]
  22. KhanT.H. SrivastavaN. SrivastavaA. SareenA. MathurR.K. ChandeA.G. MustiK.V. RoyS. MukhopadhyayaR. SahaB. SHP-1 plays a crucial role in CD40 signaling reciprocity.J. Immunol.201419373644365310.4049/jimmunol.140062025187664
    [Google Scholar]
  23. ZongL. SunQ. ZhangH. ChenZ. DengY. LiD. ZhangL. Increased expression of circRNA_102231 in lung cancer and its clinical significance.Biomed. Pharmacother.201810263964410.1016/j.biopha.2018.03.08429602132
    [Google Scholar]
  24. GuoJ.U. AgarwalV. GuoH. BartelD.P. Expanded identification and characterization of mammalian circular RNAs.Genome Biol.201415740910.1186/s13059‑014‑0409‑z25070500
    [Google Scholar]
  25. ChenL. ZhangS. WuJ. CuiJ. ZhongL. ZengL. GeS. circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family.Oncogene201736324551456110.1038/onc.2017.8928368401
    [Google Scholar]
  26. ZhuY. ZhangX. QiM. ZhangY. DingF. miR-873-5p inhibits the progression of colon cancer via repression of tumor suppressor candidate 3/AKT signaling.J. Gastroenterol. Hepatol.201934122126213410.1111/jgh.1469731039290
    [Google Scholar]
  27. GaoL. GuoQ. LiX. YangX. NiH. WangT. ZhaoQ. LiuH. XingY. XiT. ZhengL. MiR-873/PD-L1 axis regulates the stemness of breast cancer cells.EBioMedicine20194139540710.1016/j.ebiom.2019.02.03430803931
    [Google Scholar]
  28. WangG. DongY. LiuH. JiN. CaoJ. LiuA. TangX. RenY. Loss of miR-873 contributes to gemcitabine resistance in triple-negative breast cancer via targeting ZEB1.Oncol. Lett.20191843837384410.3892/ol.2019.1069731579087
    [Google Scholar]
  29. LuoJ. ZhuH. JiangH. CuiY. WangM. NiX. MaC. The effects of aberrant expression of LncRNA DGCR5/miR-873-5p/TUSC3 in lung cancer cell progression.Cancer Med.2018773331334110.1002/cam4.156629790668
    [Google Scholar]
  30. TiwariN. TiwariV.K. WaldmeierL. BalwierzP.J. ArnoldP. PachkovM. Meyer-SchallerN. SchübelerD. van NimwegenE. ChristoforiG. Sox4 is a master regulator of epithelial-mesenchymal transition by controlling Ezh2 expression and epigenetic reprogramming.Cancer Cell201323676878310.1016/j.ccr.2013.04.02023764001
    [Google Scholar]
  31. BellmuntJ. Stem-like signature predicting disease progression in early stage bladder cancer. the role of E2F3 and SOX4.Biomedicines2018638510.3390/biomedicines603008530072631
    [Google Scholar]
  32. WangN. LiuW. ZhengY. WangS. YangB. LiM. SongJ. ZhangF. ZhangX. WangQ. WangZ. CXCL1 derived from tumor-associated macrophages promotes breast cancer metastasis via activating NF-κB/SOX4 signaling.Cell Death Dis.20189988010.1038/s41419‑018‑0876‑330158589
    [Google Scholar]
  33. LeeH. GoodarziH. TavazoieS.F. AlarcónC.R. TMEM2 is a SOX4-regulated gene that mediates metastatic migration and invasion in breast cancer.Cancer Res.201676174994500510.1158/0008‑5472.CAN‑15‑232227328729
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232301878240627051455
Loading
/content/journals/cgt/10.2174/0115665232301878240627051455
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): cancer progression; cell migration; hsa_circ_0102231; Liver cancer; miR-873; SOX4
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test