Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Background

Ovarian cancer is associated with a high mortality rate. Oxidative Phosphorylation (OXPHOS) is an active metabolic pathway in cancer; nevertheless, its role in ovarian cancer continues to be ambiguous. Therefore, the objective of this study was to identify the prognostic value of OXPHOS-related genes and the immune landscape in ovarian cancer.

Methods

We obtained public ovarian cancer-related datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and recognized OXPHOS-related genes from the GeneCards database and literature. Cox regression analyses were conducted to identify prognostic OXPHOS-related genes and develop a prognostic nomogram based on the OXPHOS score and clinicopathological features of patients. Functional enrichment analyses were employed to identify related processes.

Results

A 12-gene signature was identified to classify the ovarian cancer patients into high- and low-risk groups. The Immunophenoscore (IPS) was higher in the OXPHOS score-high group than in the OXPHOS score-low group, suggesting a better response to immune checkpoint inhibitors. Functional enrichment analyses unveiled that OXPHOS-related genes were considerably abundant in a series of immune processes. The calibration curves of the constructed prognostic nomograms at 1, 2, and 3 years exhibited strong concordance between the anticipated and observed survival probabilities of ovarian cancer patients.

Conclusion

We have constructed a prognostic model containing 12 OXPHOS-related genes and demonstrated its strong predictive value in ovarian cancer patients. OXPHOS has been found to be closely linked to immune infiltration and the reaction to immunotherapy, which may contribute to improving individualized treatment and prognostic evaluation in ovarian cancer.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232323373240905104033
2024-09-16
2025-06-17
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  2. TorreL.A. TrabertB. DeSantisC.E. Ovarian cancer statistics, 2018.CA Cancer J. Clin.201868428429610.3322/caac.21456 29809280
    [Google Scholar]
  3. BorleyJ. Wilhelm-BenartziC. BrownR. Ghaem-MaghamiS. Does tumour biology determine surgical success in the treatment of epithelial ovarian cancer? A systematic literature review.Br. J. Cancer201210771069107410.1038/bjc.2012.376 22935582
    [Google Scholar]
  4. AhmedN. EscalonaR. LeungD. ChanE. KannourakisG. Tumour microenvironment and metabolic plasticity in cancer and cancer stem cells: Perspectives on metabolic and immune regulatory signatures in chemoresistant ovarian cancer stem cells.Semin. Cancer Biol.20185326528110.1016/j.semcancer.2018.10.002 30317036
    [Google Scholar]
  5. LiS.S. MaJ. WongA.S.T. Chemoresistance in ovarian cancer: exploiting cancer stem cell metabolism.J. Gynecol. Oncol.2018292e3210.3802/jgo.2018.29.e32 29468856
    [Google Scholar]
  6. AshtonT.M. McKennaW.G. Kunz-SchughartL.A. HigginsG.S. Oxidative phosphorylation as an emerging target in cancer therapy.Clin. Cancer Res.201824112482249010.1158/1078‑0432.CCR‑17‑3070 29420223
    [Google Scholar]
  7. NayakA.P. KapurA. BarroilhetL. PatankarM.S. Oxidative phosphorylation: A target for novel therapeutic strategies against ovarian cancer.Cancers (Basel)201810933710.3390/cancers10090337 30231564
    [Google Scholar]
  8. LarmanT.C. DePalmaS.R. HadjipanayisA.G. Spectrum of somatic mitochondrial mutations in five cancers.Proc. Natl. Acad. Sci. USA201210935140871409110.1073/pnas.1211502109 22891333
    [Google Scholar]
  9. YuM. Generation, function and diagnostic value of mitochondrial DNA copy number alterations in human cancers.Life Sci.2011893-4657110.1016/j.lfs.2011.05.010 21683715
    [Google Scholar]
  10. DarS. ChhinaJ. MertI. Bioenergetic adaptations in chemoresistant ovarian cancer cells.Sci. Rep.201771876010.1038/s41598‑017‑09206‑0 28821788
    [Google Scholar]
  11. SriramkumarS. SoodR. HuntingtonT.D. Platinum-induced mitochondrial OXPHOS contributes to cancer stem cell enrichment in ovarian cancer.J. Transl. Med.202220124610.1186/s12967‑022‑03447‑y 35641987
    [Google Scholar]
  12. GuoY. HuB. FuB. ZhuH. Atovaquone at clinically relevant concentration overcomes chemoresistance in ovarian cancer via inhibiting mitochondrial respiration.Pathol. Res. Pract.202122415352910.1016/j.prp.2021.153529 34174549
    [Google Scholar]
  13. GhilardiC. Moreira-BarbosaC. BrunelliL. PGC1α/β expression predicts therapeutic response to oxidative phosphorylation inhibition in ovarian cancer.Cancer Res.20228271423143410.1158/0008‑5472.CAN‑21‑1223 35131872
    [Google Scholar]
  14. XiS. JingL. LiliW. Magnetic controlled capsule endoscope (MCCE)‘s diagnostic performance for H. pylori infection status based on the Kyoto classification of gastritis.BMC Gastroenterol.202222150210.1186/s12876‑022‑02589‑z 36474169
    [Google Scholar]
  15. ColapricoA. SilvaT.C. OlsenC. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data.Nucleic Acids Res.2016448e7110.1093/nar/gkv1507 26704973
    [Google Scholar]
  16. BarrettT TroupDB WilhiteSE NCBI GEO: mining tens of millions of expression profiles--database and tools update.Nucleic Acids Res200735DatabaseD760510.1093/nar/gkl88717099226
    [Google Scholar]
  17. MokS.C. BonomeT. VathipadiekalV. A gene signature predictive for outcome in advanced ovarian cancer identifies a survival factor: microfibril-associated glycoprotein 2.Cancer Cell200916652153210.1016/j.ccr.2009.10.018 19962670
    [Google Scholar]
  18. BrodskyA.S. FischerA. MillerD.H. Expression profiling of primary and metastatic ovarian tumors reveals differences indicative of aggressive disease.PLoS One201494e9447610.1371/journal.pone.0094476 24732363
    [Google Scholar]
  19. BowenN.J. WalkerL.D. MatyuninaL.V. Gene expression profiling supports the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as ovarian cancer initiating cells.BMC Med. Genomics2009217110.1186/1755‑8794‑2‑71 20040092
    [Google Scholar]
  20. DavisS. MeltzerP.S. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor.Bioinformatics200723141846184710.1093/bioinformatics/btm254 17496320
    [Google Scholar]
  21. LeekJ.T. JohnsonW.E. ParkerH.S. JaffeA.E. StoreyJ.D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments.Bioinformatics201228688288310.1093/bioinformatics/bts034 22257669
    [Google Scholar]
  22. StelzerG. RosenN. PlaschkesI. ZimmermanS. TwikM. FishilevichS. The genecards suite: From gene data mining to disease genome sequence analyses.Curr. Protoc. Bioinform20165430
    [Google Scholar]
  23. LiuJ. ChenT. YangM. Development of an oxidative phosphorylation-related and immune microenvironment prognostic signature in uterine corpus endometrial carcinoma.Front. Cell Dev. Biol.2021975300410.3389/fcell.2021.753004 34901000
    [Google Scholar]
  24. RitchieM.E. PhipsonB. WuD. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv007 25605792
    [Google Scholar]
  25. YuG. Gene ontology semantic similarity analysis using GOSemSim.Methods Mol. Biol.2020211720721510.1007/978‑1‑0716‑0301‑7_11 31960380
    [Google Scholar]
  26. KanehisaM. GotoS. KEGG: kyoto encyclopedia of genes and genomes.Nucleic Acids Res.2000281273010.1093/nar/28.1.27 10592173
    [Google Scholar]
  27. YuG. WangL.G. HanY. HeQ.Y. clusterProfiler: an R package for comparing biological themes among gene clusters.OMICS201216528428710.1089/omi.2011.0118 22455463
    [Google Scholar]
  28. SubramanianA. TamayoP. MoothaV.K. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.Proc. Natl. Acad. Sci. USA200510243155451555010.1073/pnas.0506580102 16199517
    [Google Scholar]
  29. LiberzonA. SubramanianA. PinchbackR. ThorvaldsdóttirH. TamayoP. MesirovJ.P. Molecular signatures database (MSigDB) 3.0.Bioinformatics201127121739174010.1093/bioinformatics/btr260 21546393
    [Google Scholar]
  30. WilkersonM.D. HayesD.N. Consensus clusterplus: A class discovery tool with confidence assessments and item tracking.Bioinformatics201026121572157310.1093/bioinformatics/btq170 20427518
    [Google Scholar]
  31. BrièreG. DarboÉ. ThébaultP. UricaruR. Consensus clustering applied to multi-omics disease subtyping.BMC Bioinformatics202122136110.1186/s12859‑021‑04279‑1 34229612
    [Google Scholar]
  32. ShaoN. TangH. MiY. ZhuY. WanF. YeD. A novel gene signature to predict immune infiltration and outcome in patients with prostate cancer.OncoImmunology202091176247310.1080/2162402X.2020.1762473 32923125
    [Google Scholar]
  33. HänzelmannS. CasteloR. GuinneyJ. GSVA: gene set variation analysis for microarray and RNA-Seq data.BMC Bioinformatics2013141710.1186/1471‑2105‑14‑7 23323831
    [Google Scholar]
  34. BarbieD.A. TamayoP. BoehmJ.S. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1.Nature2009462726910811210.1038/nature08460 19847166
    [Google Scholar]
  35. HugoW. ZaretskyJ.M. SunL. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma.Cell2017168354210.1016/j.cell.2017.01.010 28129544
    [Google Scholar]
  36. Van AllenE.M. MiaoD. SchillingB. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma.Science2015350625720721110.1126/science.aad0095 26359337
    [Google Scholar]
  37. MayakondaA. LinD.C. AssenovY. PlassC. KoefflerH.P. Maftools: efficient and comprehensive analysis of somatic variants in cancer.Genome Res.201828111747175610.1101/gr.239244.118 30341162
    [Google Scholar]
  38. MermelC.H. SchumacherS.E. HillB. MeyersonM.L. BeroukhimR. GetzG. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers.Genome Biol.2011124R4110.1186/gb‑2011‑12‑4‑r41 21527027
    [Google Scholar]
  39. XiangJ. SuR. WuS. ZhouL. Construction of a prognostic signature for serous ovarian cancer based on lactate metabolism-related genes.Front. Oncol.20221296734210.3389/fonc.2022.967342 36185201
    [Google Scholar]
  40. DingB. YanW. ShenS. Immune-related genes’ prognostic, therapeutic and diagnostic value in ovarian cancer immune-related gene biomarker in ovarian cancer.Cancer Contr.20233010.1177/10732748231168756 37078136
    [Google Scholar]
  41. ChengZ. ChenY. HuangH. Identification and validation of a novel prognostic signature based on ferroptosis-related genes in ovarian cancer.Vaccines (Basel)202311220510.3390/vaccines11020205 36851083
    [Google Scholar]
  42. LiuQ. YangX. YinY. Identifying the role of oxidative stress-related genes as prognostic biomarkers and predicting the response of immunotherapy and chemotherapy in ovarian cancer.Oxid. Med. Cell. Longev.2022202215010.1155/2022/6575534 36561981
    [Google Scholar]
  43. WangY. XieH. ChangX. Single-cell dissection of the multiomic landscape of high-grade serous ovarian cancer.Cancer Res.202282213903391610.1158/0008‑5472.CAN‑21‑3819 35969151
    [Google Scholar]
  44. GentricG. KiefferY. MieuletV. PML-regulated mitochondrial metabolism enhances chemosensitivity in human ovarian cancers.Cell Metab.2019291156173.e1010.1016/j.cmet.2018.09.002 30244973
    [Google Scholar]
  45. SunQ. LiJ. DongH. UQCRFS1 serves as a prognostic biomarker and promotes the progression of ovarian cancer.Sci. Rep.2023131833510.1038/s41598‑023‑35572‑z 37221238
    [Google Scholar]
  46. ZhangH.Y. SunH. Up-regulation of Foxp3 inhibits cell proliferation, migration and invasion in epithelial ovarian cancer.Cancer Lett.20102871919710.1016/j.canlet.2009.06.001 19628330
    [Google Scholar]
  47. WangJ. QianY. GaoM. Overexpression of PDK4 is associated with cell proliferation, drug resistance and poor prognosis in ovarian cancer.Cancer Manag. Res.20181125126210.2147/CMAR.S185015 30636897
    [Google Scholar]
  48. QuanQ. XiongX. WuS. YuM. Identification of immune-related key genes in ovarian cancer based on WGCNA.Front. Genet.20211276022510.3389/fgene.2021.760225 34868239
    [Google Scholar]
  49. SunF. WeiY. LiuZ. Acylglycerol kinase promotes ovarian cancer progression and regulates mitochondria function by interacting with ribosomal protein L39.J. Exp. Clin. Cancer Res.202241123810.1186/s13046‑022‑02448‑5 35934718
    [Google Scholar]
  50. Torres-RomanJ.S. PradoA. SaraviaC.H. UsquianoL. ZavaletaJ. BravoL. Evaluation of RNA Polymerase I Subunit C gene (POLR1C) as prognostic biomarker in cancer.J. Clin. Oncol.20183615e24325
    [Google Scholar]
  51. HanF. CaoD. ZhuX. Construction and validation of a prognostic model for hepatocellular carcinoma: Inflammatory ferroptosis and mitochondrial metabolism indicate a poor prognosis.Front. Oncol.20231297243410.3389/fonc.2022.972434 36686830
    [Google Scholar]
  52. ZhouX. GaoW. HuaH. JiZ. LncRNA-BLACAT1 facilitates proliferation, migration and aerobic glycolysis of pancreatic cancer cells by repressing CDKN1C via EZH2-induced H3K27me3.Front. Oncol.20201053980510.3389/fonc.2020.539805 33072570
    [Google Scholar]
  53. WangZ. GuanD. HuoJ. IL-10 enhances human natural killer cell effector functions via metabolic reprogramming regulated by mTORC1 signaling.Front. Immunol.20211261919510.3389/fimmu.2021.619195 33708210
    [Google Scholar]
  54. VacafloresA. ChapmanN.M. HartyJ.T. RicherM.J. HoutmanJ.C.D. Exposure of human CD4 T cells to IL-12 results in enhanced TCR-induced cytokine production, altered TCR signaling, and increased oxidative metabolism.PLoS One2016116e015717510.1371/journal.pone.0157175 27280403
    [Google Scholar]
  55. WangY. WangY. LiuW. TIM-4 orchestrates mitochondrial homeostasis to promote lung cancer progression via ANXA2/PI3K/AKT/OPA1 axis.Cell Death Dis.202314214110.1038/s41419‑023‑05678‑3 36806050
    [Google Scholar]
  56. ZhuQ.W. YuY. ZhangY. WangX.H. VLCAD inhibits the proliferation and invasion of hepatocellular cancer cells through regulating PI3K/AKT axis.Clin. Transl. Oncol.202224586487410.1007/s12094‑021‑02733‑3 35001339
    [Google Scholar]
  57. JonesC.L. StevensB.M. D’AlessandroA. Inhibition of amino acid metabolism selectively targets human leukemia stem cells.Cancer Cell2018345724740.e410.1016/j.ccell.2018.10.005 30423294
    [Google Scholar]
  58. CharoentongP. FinotelloF. AngelovaM. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade.Cell Rep.201718124826210.1016/j.celrep.2016.12.019 28052254
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232323373240905104033
Loading
/content/journals/cgt/10.2174/0115665232323373240905104033
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test