Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

The development of gene therapy using genome editing tools recently became relevant. With the invention of programmable nucleases, it became possible to treat hereditary diseases due to introducing targeted double strand break in the genome followed by homology directed repair (HDR) or non-homologous end-joining (NHEJ) reparation. CRISPR-Cas9 is more efficient and easier to use in comparison with other programmable nucleases. To improve the efficiency and safety of this gene editing tool, various modifications CRISPR-Cas9 basis were created in recent years, such as prime editing – in this system, Cas9 nickase is fused with reverse transcriptase and guide RNA, which contains a desired correction. Prime editing demonstrates equal or higher correction efficiency as HDR-mediated editing and much less off-target effect due to inducing nick. There are several studies in which prime editing is used to correct mutations in which researchers reported little or no evidence of off-target effects. The system can also be used to functionally characterize disease variants. However, prime editing still has several limitations that could be further improved. The effectiveness of the method is not yet high enough to apply it in clinical trials. Delivery of prime editors is also a big challenge due to their size. In the present article, we observe the development of the platform, and discuss the candidate proteins for efficiency enhancing, main delivery methods and current applications of prime editing.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232295117240405070809
2025-02-01
2025-01-19
Loading full text...

Full text loading...

References

  1. CermakT. DoyleE.L. ChristianM. WangL. ZhangY. SchmidtC. BallerJ.A. SomiaN.V. BogdanoveA.J. VoytasD.F. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting.Nucleic Acids Res.20113912e8210.1093/nar/gkr21821493687
    [Google Scholar]
  2. DuraiS. ManiM. KandavelouK. WuJ. PorteusM.H. ChandrasegaranS. Zinc finger nucleases: Custom-designed molecular scissors for genome engineering of plant and mammalian cells.Nucleic Acids Res.200533185978599010.1093/nar/gki91216251401
    [Google Scholar]
  3. JinekM. ChylinskiK. FonfaraI. HauerM. DoudnaJ.A. CharpentierE. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.Science2012337609681682110.1126/science.122582922745249
    [Google Scholar]
  4. SilvaG. PoirotL. GalettoR. SmithJ. MontoyaG. DuchateauP. PâquesF. Meganucleases and other tools for targeted genome engineering: Perspectives and challenges for gene therapy.Curr. Gene Ther.2011111112710.2174/15665231179452011121182466
    [Google Scholar]
  5. KimY.G. ChaJ. ChandrasegaranS. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain.Proc. Natl. Acad. Sci. USA19969331156116010.1073/pnas.93.3.11568577732
    [Google Scholar]
  6. PâquesF. DuchateauP. Meganucleases and DNA double-strand break-induced recombination: Perspectives for gene therapy.Curr. Gene Ther.200771496610.2174/15665230777994021617305528
    [Google Scholar]
  7. AnguelaX.M. SharmaR. DoyonY. MillerJ.C. LiH. HaurigotV. RohdeM.E. WongS.Y. DavidsonR.J. ZhouS. GregoryP.D. HolmesM.C. HighK.A. Robust ZFN-mediated genome editing in adult hemophilic mice.Blood2013122193283328710.1182/blood‑2013‑04‑49735424085764
    [Google Scholar]
  8. HarmatzP. PradaC.E. BurtonB.K. LauH. KesslerC.M. CaoL. FalaleevaM. VillegasA.G. ZeitlerJ. MeyerK. MillerW. Wong Po FooC. VaidyaS. SwensonW. ShiueL.H. RouyD. MuenzerJ. First-in-human in vivo genome editing via AAV-zinc-finger nucleases for mucopolysaccharidosis I/II and hemophilia B.Mol. Ther.202230123587360010.1016/j.ymthe.2022.10.01036299240
    [Google Scholar]
  9. HoltN. WangJ. KimK. Zinc finger nuclease-mediated CCR5 knockout hematopoietic stem cell transplantation controls HIV-1 in vivo.Nat. Biotechnol.201028883984710.1038/nbt.166320601939
    [Google Scholar]
  10. DupuyA. ValtonJ. LeducS. ArmierJ. GalettoR. GoubleA. LebuhotelC. StaryA. PâquesF. DuchateauP. SarasinA. DaboussiF. Targeted gene therapy of xeroderma pigmentosum cells using meganuclease and TALEN™.PLoS One2013811e7867810.1371/journal.pone.007867824236034
    [Google Scholar]
  11. GautronA.S. JuilleratA. GuyotV. FilholJ.M. DessezE. DuclertA. DuchateauP. PoirotL. Fine and predictable tuning of talen gene editing targeting for improved T cell adoptive immunotherapy.Mol. Ther. Nucleic Acids2017931232110.1016/j.omtn.2017.10.00529246309
    [Google Scholar]
  12. OsbornM.J. StarkerC.G. McElroyA.N. WebberB.R. RiddleM.J. XiaL. DeFeoA.P. GabrielR. SchmidtM. Von KalleC. CarlsonD.F. MaederM.L. JoungJ.K. WagnerJ.E. VoytasD.F. BlazarB.R. TolarJ. TALEN-based gene correction for epidermolysis bullosa.Mol. Ther.20132161151115910.1038/mt.2013.5623546300
    [Google Scholar]
  13. XiaE. ZhangY. CaoH. LiJ. DuanR. HuJ. TALEN-mediated gene targeting for cystic fibrosis-gene therapy.Genes20191013910.3390/genes1001003930641980
    [Google Scholar]
  14. HryhorowiczM. LipińskiD. ZeylandJ. SłomskiR. CRISPR/Cas9 immune system as a tool for genome engineering.Arch. Immunol. Ther. Exp.201765323324010.1007/s00005‑016‑0427‑527699445
    [Google Scholar]
  15. HillaryV.E. CeasarS.A. A review on the mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14 proteins utilized for genome engineering.Mol. Biotechnol.202365331132510.1007/s12033‑022‑00567‑036163606
    [Google Scholar]
  16. DevkotaS. The road less traveled: Strategies to enhance the frequency of homology-directed repair (HDR) for increased efficiency of CRISPR/Cas-mediated transgenesis.BMB Rep.201851943744310.5483/BMBRep.2018.51.9.18730103848
    [Google Scholar]
  17. CongL. RanF.A. CoxD. LinS. BarrettoR. HabibN. HsuP.D. WuX. JiangW. MarraffiniL.A. ZhangF. Multiplex genome engineering using CRISPR/Cas systems.Science2013339612181982310.1126/science.123114323287718
    [Google Scholar]
  18. MaederM.L. LinderS.J. CascioV.M. FuY. HoQ.H. JoungJ.K. CRISPR RNA–guided activation of endogenous human genes.Nat. Methods2013101097797910.1038/nmeth.259823892898
    [Google Scholar]
  19. BhargavaR. OnyangoD.O. StarkJ.M. Regulation of single-strand annealing and its role in genome maintenance.Trends Genet.201632956657510.1016/j.tig.2016.06.00727450436
    [Google Scholar]
  20. SfeirA. SymingtonL.S. Microhomology-mediated end joining: A back-up survival mechanism or dedicated pathway?Trends Biochem. Sci.2015401170171410.1016/j.tibs.2015.08.00626439531
    [Google Scholar]
  21. SymingtonL.S. GautierJ. Double-strand break end resection and repair pathway choice.Annu. Rev. Genet.201145124727110.1146/annurev‑genet‑110410‑13243521910633
    [Google Scholar]
  22. HockemeyerD. SoldnerF. BeardC. GaoQ. MitalipovaM. DeKelverR.C. KatibahG.E. AmoraR. BoydstonE.A. ZeitlerB. MengX. MillerJ.C. ZhangL. RebarE.J. GregoryP.D. UrnovF.D. JaenischR. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases.Nat. Biotechnol.200927985185710.1038/nbt.156219680244
    [Google Scholar]
  23. HockemeyerD. WangH. KianiS. LaiC.S. GaoQ. CassadyJ.P. CostG.J. ZhangL. SantiagoY. MillerJ.C. ZeitlerB. CheroneJ.M. MengX. HinkleyS.J. RebarE.J. GregoryP.D. UrnovF.D. JaenischR. Genetic engineering of human pluripotent cells using TALE nucleases.Nat. Biotechnol.201129873173410.1038/nbt.192721738127
    [Google Scholar]
  24. SommerD. PetersA.E. WirtzT. MaiM. AckermannJ. ThabetY. SchmidtJ. WeighardtH. WunderlichF.T. DegenJ. SchultzeJ.L. BeyerM. Efficient genome engineering by targeted homologous recombination in mouse embryos using transcription activator-like effector nucleases.Nat. Commun.201451304510.1038/ncomms404524413636
    [Google Scholar]
  25. KimH.S. JeongY.K. HurJ.K. KimJ.S. BaeS. Adenine base editors catalyze cytosine conversions in human cells.Nat. Biotechnol.201937101145114810.1038/s41587‑019‑0254‑431548727
    [Google Scholar]
  26. GaudelliN.M. KomorA.C. ReesH.A. PackerM.S. BadranA.H. BrysonD.I. LiuD.R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage.Nature2017551768146447110.1038/nature2464429160308
    [Google Scholar]
  27. AnzaloneA.V. RandolphP.B. DavisJ.R. SousaA.A. KoblanL.W. LevyJ.M. ChenP.J. WilsonC. NewbyG.A. RaguramA. LiuD.R. Search-and-replace genome editing without double-strand breaks or donor DNA.Nature2019576778514915710.1038/s41586‑019‑1711‑431634902
    [Google Scholar]
  28. KantorA. McClementsM. MacLarenR. CRISPR-Cas9 DNA base-editing and prime-editing.Int. J. Mol. Sci.20202117624010.3390/ijms2117624032872311
    [Google Scholar]
  29. FishelR. Mismatch repair.J. Biol. Chem.201529044263952640310.1074/jbc.R115.66014226354434
    [Google Scholar]
  30. PitsikasP. LeeD. RainbowA.J. Reduced host cell reactivation of oxidative DNA damage in human cells deficient in the mismatch repair gene hMSH2.Mutagenesis200722323524310.1093/mutage/gem00817351251
    [Google Scholar]
  31. HsiehP. YamaneK. DNA mismatch repair: Molecular mechanism, cancer, and ageing.Mech. Ageing Dev.20081297-839140710.1016/j.mad.2008.02.01218406444
    [Google Scholar]
  32. KunkelT.A. ErieD.A. DNA mismatch repair.Annu. Rev. Biochem.200574168171010.1146/annurev.biochem.74.082803.13324315952900
    [Google Scholar]
  33. OscorbinI.P. FilipenkoM.L. M-MuLV reverse transcriptase: Selected properties and improved mutants.Comput. Struct. Biotechnol. J.2021196315632710.1016/j.csbj.2021.11.03034900141
    [Google Scholar]
  34. KomorA.C. ZhaoK.T. PackerM.S. GaudelliN.M. WaterburyA.L. KoblanL.W. KimY.B. BadranA.H. LiuD.R. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T: A base editors with higher efficiency and product purity.Sci. Adv.201738eaao477410.1126/sciadv.aao477428875174
    [Google Scholar]
  35. ChenP.J. HussmannJ.A. YanJ. KnippingF. RavisankarP. ChenP.F. ChenC. NelsonJ.W. NewbyG.A. SahinM. OsbornM.J. WeissmanJ.S. AdamsonB. LiuD.R. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes.Cell20211842256355652.e2910.1016/j.cell.2021.09.01834653350
    [Google Scholar]
  36. DomanJ.L. PandeyS. NeugebauerM.E. AnM. DavisJ.R. RandolphP.B. McElroyA. GaoX.D. RaguramA. RichterM.F. EveretteK.A. BanskotaS. TianK. TaoY.A. TolarJ. OsbornM.J. LiuD.R. Phage-assisted evolution and protein engineering yield compact, efficient prime editors.Cell20231861839834002.e2610.1016/j.cell.2023.07.03937657419
    [Google Scholar]
  37. JiaoY. ZhouL. TaoR. WangY. HuY. JiangL. LiL. YaoS. Random-PE: An efficient integration of random sequences into mammalian genome by prime editing.Molecular Biomedicine2021213610.1186/s43556‑021‑00057‑w35006470
    [Google Scholar]
  38. SongM. LimJ.M. MinS. OhJ.S. KimD.Y. WooJ.S. NishimasuH. ChoS.R. YoonS. KimH.H. Generation of a more efficient prime editor 2 by addition of the Rad51 DNA-binding domain.Nat. Commun.2021121561710.1038/s41467‑021‑25928‑234556671
    [Google Scholar]
  39. ParkS.J. JeongT.Y. ShinS.K. YoonD.E. LimS.Y. KimS.P. ChoiJ. LeeH. HongJ.I. AhnJ. SeongJ.K. KimK. Targeted mutagenesis in mouse cells and embryos using an enhanced prime editor.Genome Biol.202122117010.1186/s13059‑021‑02389‑w34082781
    [Google Scholar]
  40. VelimirovicM. ZanettiL.C. ShenM.W. FifeJ.D. LinL. ChaM. AkinciE. BarnumD. YuT. SherwoodR.I. Peptide fusion improves prime editing efficiency.Nat. Commun.2022131351210.1038/s41467‑022‑31270‑y35717416
    [Google Scholar]
  41. NelsonJ.W. RandolphP.B. ShenS.P. EveretteK.A. ChenP.J. AnzaloneA.V. AnM. NewbyG.A. ChenJ.C. HsuA. LiuD.R. Engineered pegRNAs improve prime editing efficiency.Nat. Biotechnol.202240340241010.1038/s41587‑021‑01039‑734608327
    [Google Scholar]
  42. ZhangG. LiuY. HuangS. QuS. ChengD. YaoY. JiQ. WangX. HuangX. LiuJ. Enhancement of prime editing via xrRNA motif-joined pegRNA.Nat. Commun.2022131185610.1038/s41467‑022‑29507‑x35387980
    [Google Scholar]
  43. LiX. ZhouL. GaoB.Q. LiG. WangX. WangY. WeiJ. HanW. WangZ. LiJ. GaoR. ZhuJ. XuW. WuJ. YangB. SunX. YangL. ChenJ. Highly efficient prime editing by introducing same-sense mutations in pegRNA or stabilizing its structure.Nat. Commun.2022131166910.1038/s41467‑022‑29339‑935351879
    [Google Scholar]
  44. Ferreira da SilvaJ. OliveiraG.P. Arasa-VergeE.A. KagiouC. MorettonA. TimelthalerG. JiricnyJ. LoizouJ.I. Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair.Nat. Commun.202213176010.1038/s41467‑022‑28442‑135140211
    [Google Scholar]
  45. HarringtonJ.J. LieberM.R. The characterization of a mammalian DNA structure-specific endonuclease.EMBO J.19941351235124610.1002/j.1460‑2075.1994.tb06373.x8131753
    [Google Scholar]
  46. SahariaA. TeasleyD.C. DuxinJ.P. DaoB. ChiappinelliK.B. StewartS.A. FEN1 ensures telomere stability by facilitating replication fork re-initiation.J. Biol. Chem.201028535270572706610.1074/jbc.M110.11227620551483
    [Google Scholar]
  47. RanalliT.A. TomS. BambaraR.A. AP endonuclease 1 coordinates flap endonuclease 1 and DNA ligase I activity in long patch base excision repair.J. Biol. Chem.200227744417154172410.1074/jbc.M20720720012200445
    [Google Scholar]
  48. ZhengL. JiaJ. FingerL.D. GuoZ. ZerC. ShenB. Functional regulation of FEN1 nuclease and its link to cancer.Nucleic Acids Res.201139378179410.1093/nar/gkq88420929870
    [Google Scholar]
  49. WilsonD.M.III ColemanM.A. AdamsonA.W. ChristensenM. LamerdinJ.E. CarneyJ.P. Hex1: A new human Rad2 nuclease family member with homology to yeast exonuclease 1.Nucleic Acids Res.199826163762376810.1093/nar/26.16.37629685493
    [Google Scholar]
  50. SerticS. QuadriR. LazzaroF. Muzi-FalconiM. EXO1: A tightly regulated nuclease.DNA Repair20209310292910.1016/j.dnarep.2020.10292933087266
    [Google Scholar]
  51. KeijzersG. LiuD. RasmussenL.J. Exonuclease 1 and its versatile roles in DNA repair.Crit. Rev. Biochem. Mol. Biol.201651644045110.1080/10409238.2016.121540727494243
    [Google Scholar]
  52. RasmussenL.J. RasmussenM. LeeB.I. RasmussenA.K. WilsonD.M.III NielsenF.C. BisgaardH.C. Identification of factors interacting with hMSH2 in the fetal liver utilizing the yeast two-hybrid system.Mutat. Res. DNA Repair20004601415210.1016/S0921‑8777(00)00012‑410856833
    [Google Scholar]
  53. KeijzersG. BohrV.A. RasmussenL.J. Human exonuclease 1 (EXO1) activity characterization and its function on flap structures.Biosci. Rep.2015353e0020610.1042/BSR2015005826182368
    [Google Scholar]
  54. TishkoffD.X. AminN.S. ViarsC.S. ArdenK.C. KolodnerR.D. Identification of a human gene encoding a homologue of Saccharomyces cerevisiae EXO1, an exonuclease implicated in mismatch repair and recombination.Cancer Res.19985822502750319823303
    [Google Scholar]
  55. LinoC.A. HarperJ.C. CarneyJ.P. TimlinJ.A. Delivering CRISPR: A review of the challenges and approaches.Drug Deliv.20182511234125710.1080/10717544.2018.147496429801422
    [Google Scholar]
  56. RibeiroS. MairhoferJ. MadeiraC. DiogoM.M. Lobato da SilvaC. MonteiroG. GrabherrR. CabralJ.M. Plasmid DNA size does affect nonviral gene delivery efficiency in stem cells.Cell. Reprogram.201214213013710.1089/cell.2011.009322339198
    [Google Scholar]
  57. FelgnerP.L. GadekT.R. HolmM. RomanR. ChanH.W. WenzM. NorthropJ.P. RingoldG.M. DanielsenM. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure.Proc. Natl. Acad. Sci. USA198784217413741710.1073/pnas.84.21.74132823261
    [Google Scholar]
  58. TorchilinV.P. Recent advances with liposomes as pharmaceutical carriers.Nat. Rev. Drug Discov.20054214516010.1038/nrd163215688077
    [Google Scholar]
  59. RakM. Góra-SochackaA. MadejaZ. Lipofection-based delivery of DNA vaccines.Methods Mol. Biol.2021218339140410.1007/978‑1‑0716‑0795‑4_2032959255
    [Google Scholar]
  60. WangM. ZurisJ.A. MengF. ReesH. SunS. DengP. HanY. GaoX. PouliD. WuQ. GeorgakoudiI. LiuD.R. XuQ. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles.Proc. Natl. Acad. Sci. USA2016113112868287310.1073/pnas.152024411326929348
    [Google Scholar]
  61. YinH. SongC.Q. DorkinJ.R. ZhuL.J. LiY. WuQ. ParkA. YangJ. SureshS. BizhanovaA. GuptaA. BolukbasiM.F. WalshS. BogoradR.L. GaoG. WengZ. DongY. KotelianskyV. WolfeS.A. LangerR. XueW. AndersonD.G. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo.Nat. Biotechnol.201634332833310.1038/nbt.347126829318
    [Google Scholar]
  62. ChemelloF. ChaiA.C. LiH. Rodriguez-CaycedoC. Sanchez-OrtizE. AtmanliA. MireaultA.A. LiuN. Bassel-DubyR. OlsonE.N. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing.Sci. Adv.2021718eabg491010.1126/sciadv.abg491033931459
    [Google Scholar]
  63. DalbyB. CatesS. HarrisA. OhkiE.C. TilkinsM.L. PriceP.J. CiccaroneV.C. Advanced transfection with Lipofectamine 2000 reagent: Primary neurons, siRNA, and high-throughput applications.Methods20043329510310.1016/j.ymeth.2003.11.02315121163
    [Google Scholar]
  64. ScheneI.F. JooreI.P. OkaR. MokryM. van VugtA.H.M. van BoxtelR. van der DoefH.P.J. van der LaanL.J.W. VerstegenM.M.A. van HasseltP.M. NieuwenhuisE.E.S. FuchsS.A. Prime editing for functional repair in patient-derived disease models.Nat. Commun.2020111535210.1038/s41467‑020‑19136‑733097693
    [Google Scholar]
  65. LiuC. ZhangL. LiuH. ChengK. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications.J. Control. Release2017266172610.1016/j.jconrel.2017.09.01228911805
    [Google Scholar]
  66. DuanL. OuyangK. XuX. XuL. WenC. ZhouX. QinZ. XuZ. SunW. LiangY. Nanoparticle delivery of CRISPR/Cas9 for genome editing.Front. Genet.20211267328610.3389/fgene.2021.67328634054927
    [Google Scholar]
  67. AnM. RaguramA. DuS.W. BanskotaS. DavisJ.R. NewbyG.A. ChenP.Z. PalczewskiK. LiuD.R. Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo.Nat. Biotechnol.202410.1038/s41587‑023‑02078‑y38191664
    [Google Scholar]
  68. DingQ. StrongA. PatelK.M. NgS.L. GosisB.S. ReganS.N. CowanC.A. RaderD.J. MusunuruK. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing.Circ. Res.2014115548849210.1161/CIRCRESAHA.115.30435124916110
    [Google Scholar]
  69. HecklD. KowalczykM.S. YudovichD. BelizaireR. PuramR.V. McConkeyM.E. ThielkeA. AsterJ.C. RegevA. EbertB.L. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing.Nat. Biotechnol.201432994194610.1038/nbt.295124952903
    [Google Scholar]
  70. DongW. KantorB. Lentiviral vectors for delivery of gene-editing systems based on CRISPR/Cas: Current state and perspectives.Viruses2021137128810.3390/v1307128834372494
    [Google Scholar]
  71. WangQ. LiuJ. JanssenJ.M. TascaF. MeiH. GonçalvesM.A.F.V. Broadening the reach and investigating the potential of prime editors through fully viral gene-deleted adenoviral vector delivery.Nucleic Acids Res.20214920119861200110.1093/nar/gkab93834669958
    [Google Scholar]
  72. NaldiniL. BlömerU. GallayP. OryD. MulliganR. GageF.H. VermaI.M. TronoD. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector.Science1996272525926326710.1126/science.272.5259.2638602510
    [Google Scholar]
  73. LoewenN. PoeschlaE.M. Lentiviral vectors.Adv. Biochem. Eng. Biotechnol.20059916919110.1007/10_00716568892
    [Google Scholar]
  74. AhiY.S. BangariD.S. MittalS.K. Adenoviral vector immunity: Its implications and circumvention strategies.Curr. Gene Ther.201111430732010.2174/15665231179615037221453277
    [Google Scholar]
  75. DaiY. SchwarzE.M. GuD. ZhangW.W. SarvetnickN. VermaI.M. Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: Tolerization of factor IX and vector antigens allows for long-term expression.Proc. Natl. Acad. Sci. USA19959251401140510.1073/pnas.92.5.14017877990
    [Google Scholar]
  76. DayaS. BernsK.I. Gene therapy using adeno-associated virus vectors.Clin. Microbiol. Rev.200821458359310.1128/CMR.00008‑0818854481
    [Google Scholar]
  77. WuZ. YangH. ColosiP. Effect of genome size on AAV vector packaging.Mol. Ther.2010181808610.1038/mt.2009.25519904234
    [Google Scholar]
  78. ZhiS. ChenY. WuG. WenJ. WuJ. LiuQ. LiY. KangR. HuS. WangJ. LiangP. HuangJ. Dual-AAV delivering split prime editor system for in vivo genome editing.Mol. Ther.202230128329410.1016/j.ymthe.2021.07.01134298129
    [Google Scholar]
  79. ChenY. ZhiS. LiuW. WenJ. HuS. CaoT. SunH. LiY. HuangL. LiuY. LiangP. HuangJ. Development of highly efficient dual-aav split adenosine base editor for in vivo gene therapy.Small Methods202049200030910.1002/smtd.202000309
    [Google Scholar]
  80. MaD. PengS. XieZ. Integration and exchange of split dCas9 domains for transcriptional controls in mammalian cells.Nat. Commun.2016711305610.1038/ncomms1305627694915
    [Google Scholar]
  81. MichnickS.W. EarP.H. MandersonE.N. RemyI. StefanE. Universal strategies in research and drug discovery based on protein-fragment complementation assays.Nat. Rev. Drug Discov.20076756958210.1038/nrd231117599086
    [Google Scholar]
  82. ArankoA.S. WlodawerA. IwaïH. Nature’s recipe for splitting inteins.Protein Eng. Des. Sel.201427826327110.1093/protein/gzu02825096198
    [Google Scholar]
  83. GeurtsM.H. de PoelE. Pleguezuelos-ManzanoC. OkaR. CarrilloL. Andersson-RolfA. BorettoM. BrunsveldJ.E. van BoxtelR. BeekmanJ.M. CleversH. Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids.Life Sci. Alliance2021410e20200094010.26508/lsa.20200094034373320
    [Google Scholar]
  84. KimD BaeS ParkJ Digenome-seq: Genome-wide profiling of CRISPR-Cas9 off-target effects in human cells.Nat Methods2015123237243
    [Google Scholar]
  85. SchwankG. KooB.K. SasselliV. DekkersJ.F. HeoI. DemircanT. SasakiN. BoymansS. CuppenE. van der EntC.K. NieuwenhuisE.E.S. BeekmanJ.M. CleversH. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients.Cell Stem Cell201313665365810.1016/j.stem.2013.11.00224315439
    [Google Scholar]
  86. Happi MbakamC. RousseauJ. LuY. BigotA. MamchaouiK. MoulyV. TremblayJ.P. Prime editing optimized RTT permits the correction of the c.8713C>T mutation in DMD gene.Mol. Ther. Nucleic Acids20223027228510.1016/j.omtn.2022.09.02236320324
    [Google Scholar]
  87. LinJ LiuX LuZ Modeling a cataract disorder in mice with prime editing.Mol Ther - Nucleic Acids Elsevier20212549450110.1016/j.omtn.2021.06.020
    [Google Scholar]
  88. JangH. JoD.H. ChoC.S. ShinJ.H. SeoJ.H. YuG. GopalappaR. KimD. ChoS.R. KimJ.H. KimH.H. Application of prime editing to the correction of mutations and phenotypes in adult mice with liver and eye diseases.Nat. Biomed. Eng.20216218119410.1038/s41551‑021‑00788‑934446856
    [Google Scholar]
  89. BöckD. RothganglT. VilligerL. SchmidheiniL. MatsushitaM. MathisN. IoannidiE. RimannN. Grisch-ChanH.M. KreutzerS. KontarakisZ. KopfM. ThönyB. SchwankG. In vivo prime editing of a metabolic liver disease in mice.Sci. Transl. Med.202214636eabl923810.1126/scitranslmed.abl923835294257
    [Google Scholar]
  90. LiC. GeorgakopoulouA. NewbyG.A. ChenP.J. EveretteK.A. PaschoudiK. VlachakiE. GilS. AndersonA.K. KoobT. HuangL. WangH. KiemH.P. LiuD.R. YannakiE. LieberA. In vivo HSC prime editing rescues Sickle Cell Disease in a mouse model.Blood202314117blood.202201825210.1182/blood.202201825236800642
    [Google Scholar]
  91. ErwoodS. BilyT.M.I. LequyerJ. YanJ. GulatiN. BrewerR.A. ZhouL. PelletierL. IvakineE.A. CohnR.D. Saturation variant interpretation using CRISPR prime editing.Nat. Biotechnol.202240688589510.1038/s41587‑021‑01201‑135190686
    [Google Scholar]
  92. RenX. YangH. NierenbergJ.L. SunY. ChenJ. BeamanC. PhamT. NobuharaM. TakagiM.A. NarayanV. LiY. ZivE. ShenY. High-throughput PRIME-editing screens identify functional DNA variants in the human genome.Mol. Cell2023832446334645.e910.1016/j.molcel.2023.11.02138134886
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232295117240405070809
Loading
/content/journals/cgt/10.2174/0115665232295117240405070809
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): CRISPR-Cas; EXO1; FEN1; genome editing; mismatch repair; Prime editing
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test