Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Neurodegenerative disorders pose significant challenges in the realm of healthcare, as these conditions manifest in complex, multifaceted ways, often attributed to genetic anomalies. With the emergence of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technology, a new frontier has been unveiled in the quest for targeted, precise genetic manipulation. This abstract explores the recent advancements and potential applications of CRISPR-based therapies in addressing genetic components contributing to various neurodegenerative disorders. The review delves into the foundational principles of CRISPR technology, highlighting its unparalleled ability to edit genetic sequences with unprecedented precision. In addition, it talks about the latest progress in using CRISPR to target specific genetic mutations linked to neurodegenerative diseases like Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis (ALS), and Parkinson's disease. It talks about the most important studies and trials that show how well and safely CRISPR-based therapies work. This shows how this technology can change genetic variants that cause diseases. Notably, the discussion emphasizes the challenges and ethical considerations associated with the implementation of CRISPR in clinical settings, including off-target effects, delivery methods, and long-term implications. Furthermore, the article explores the prospects and potential hurdles in the widespread application of CRISPR technology for treating neurodegenerative disorders. It touches upon the need for continued research, improved delivery mechanisms, and ethical frameworks to ensure responsible and equitable access to these groundbreaking therapies.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232292246240426125504
2025-02-01
2024-11-22
Loading full text...

Full text loading...

References

  1. VishwakarmaS.K. BardiaA. TiwariS.K. PaspalaS.A.B. KhanA.A. Current concept in neural regeneration research: NSCs isolation, characterization and transplantation in various neurodegenerative diseases and stroke: A review.J. Adv. Res.20145327729410.1016/j.jare.2013.04.00525685495
    [Google Scholar]
  2. AkramF. SahreenS. AamirF. HaqI. MalikK. ImtiazM. NaseemW. NasirN. WaheedH.M. An insight into modern targeted genome-editing technologies with a special focus on CRISPR/Cas9 and its applications.Mol. Biotechnol.202365222724210.1007/s12033‑022‑00501‑435474409
    [Google Scholar]
  3. GuptaD. BhattacharjeeO. MandalD. SenM.K. DeyD. DasguptaA. KaziT.A. GuptaR. SinharoyS. AcharyaK. ChattopadhyayD. RavichandiranV. RoyS. GhoshD. CRISPR-Cas9 system: A new-fangled dawn in gene editing.Life Sci.201923211663610.1016/j.lfs.2019.11663631295471
    [Google Scholar]
  4. LiuC. ZhangL. LiuH. ChengK. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications.J. Control. Release2017266172610.1016/j.jconrel.2017.09.01228911805
    [Google Scholar]
  5. CharpentierE. ElsholzA. MarchfelderA. CRISPR-Cas: more than ten years and still full of mysteries.RNA Biol.201916437737910.1080/15476286.2019.159165931009325
    [Google Scholar]
  6. PennisiE. The CRISPR Craze.Science2013341614883383610.1126/science.341.6148.83323970676
    [Google Scholar]
  7. Singh V, Dhar PK, Eds. Genome engineering via CRISPR-Cas9 system. Academic Press 2020; pp. 1-13.
  8. DiCarloJ.E. NorvilleJ.E. MaliP. RiosX. AachJ. ChurchG.M. Genome engineering in Saccharomyces cerevisiae using CRISPR- Cas systems.Nucleic Acids Res.20134174336434310.1093/nar/gkt13523460208
    [Google Scholar]
  9. Perez-PineraP. KocakD.D. VockleyC.M. AdlerA.F. KabadiA.M. PolsteinL.R. ThakoreP.I. GlassK.A. OusteroutD.G. LeongK.W. GuilakF. CrawfordG.E. ReddyT.E. GersbachC.A. RNA-guided gene activation by CRISPR-Cas9–based transcription factors.Nat. Methods2013101097397610.1038/nmeth.260023892895
    [Google Scholar]
  10. SampsonT.R. WeissD.S. Exploiting CRISPR / C as systems for biotechnology.BioEssays2014361343810.1002/bies.20130013524323919
    [Google Scholar]
  11. MarraffiniL.A. CRISPR-Cas immunity in prokaryotes.Nature20155267571556110.1038/nature1538626432244
    [Google Scholar]
  12. HelerR. MarraffiniL.A. BikardD. Adapting to new threats: the generation of memory by CRISPR-Cas immune systems.Mol. Microbiol.20149311910.1111/mmi.1264024806524
    [Google Scholar]
  13. AmitaiG. SorekR. CRISPR–Cas adaptation: insights into the mechanism of action.Nat. Rev. Microbiol.2016142677610.1038/nrmicro.2015.1426751509
    [Google Scholar]
  14. MakarovaK.S. GrishinN.V. ShabalinaS.A. WolfY.I. KooninE.V. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action.Biol. Direct200611710.1186/1745‑6150‑1‑716545108
    [Google Scholar]
  15. BrounsS.J.J. JoreM.M. LundgrenM. WestraE.R. SlijkhuisR.J.H. SnijdersA.P.L. DickmanM.J. MakarovaK.S. KooninE.V. van der OostJ. Small CRISPR RNAs guide antiviral defense in prokaryotes.Science2008321589196096410.1126/science.115968918703739
    [Google Scholar]
  16. HaleC.R. ZhaoP. OlsonS. DuffM.O. GraveleyB.R. WellsL. TernsR.M. TernsM.P. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex.Cell2009139594595610.1016/j.cell.2009.07.04019945378
    [Google Scholar]
  17. GarneauJ.E. DupuisM.È. VillionM. RomeroD.A. BarrangouR. BoyavalP. FremauxC. HorvathP. MagadánA.H. MoineauS. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA.Nature20104687320677110.1038/nature0952321048762
    [Google Scholar]
  18. WiedenheftB. SternbergS.H. DoudnaJ.A. RNA-guided genetic silencing systems in bacteria and archaea.Nature2012482738533133810.1038/nature1088622337052
    [Google Scholar]
  19. van der OostJ. WestraE.R. JacksonR.N. WiedenheftB. Unravelling the structural and mechanistic basis of CRISPR–Cas systems.Nat. Rev. Microbiol.201412747949210.1038/nrmicro327924909109
    [Google Scholar]
  20. HorvathP. RomeroD.A. Coûté-MonvoisinA.C. RichardsM. DeveauH. MoineauS. BoyavalP. FremauxC. BarrangouR. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus.J. Bacteriol.200819041401141210.1128/JB.01415‑0718065539
    [Google Scholar]
  21. DeveauH. BarrangouR. GarneauJ.E. LabontéJ. FremauxC. BoyavalP. RomeroD.A. HorvathP. MoineauS. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus.J. Bacteriol.200819041390140010.1128/JB.01412‑0718065545
    [Google Scholar]
  22. ShmakovS. AbudayyehO.O. MakarovaK.S. WolfY.I. GootenbergJ.S. SemenovaE. MinakhinL. JoungJ. KonermannS. SeverinovK. ZhangF. KooninE.V. Discovery and functional characterization of diverse Class 2 CRISPR-Cas systems.Mol. Cell201560338539710.1016/j.molcel.2015.10.00826593719
    [Google Scholar]
  23. WrightA.V. NuñezJ.K. DoudnaJ.A. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering.Cell20161641-2294410.1016/j.cell.2015.12.03526771484
    [Google Scholar]
  24. GasiunasG. BarrangouR. HorvathP. SiksnysV. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria.Proc. Natl. Acad. Sci. USA201210939E2579E258610.1073/pnas.120850710922949671
    [Google Scholar]
  25. JinekM. ChylinskiK. FonfaraI. HauerM. DoudnaJ.A. CharpentierE. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.Science2012337609681682110.1126/science.122582922745249
    [Google Scholar]
  26. DeltchevaE. ChylinskiK. SharmaC.M. GonzalesK. ChaoY. PirzadaZ.A. EckertM.R. VogelJ. CharpentierE. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III.Nature2011471734060260710.1038/nature0988621455174
    [Google Scholar]
  27. LieberM.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway.Annu. Rev. Biochem.201079118121110.1146/annurev.biochem.052308.09313120192759
    [Google Scholar]
  28. NojadehJ. EryilmazN.S. ErgüderB.İ. CRISPR/Cas9 genome editing for neurodegenerative diseases.EXCLI J.20232256758237636024
    [Google Scholar]
  29. HsuP.D. LanderE.S. ZhangF. Development and applications of CRISPR-Cas9 for genome engineering.Cell201415761262127810.1016/j.cell.2014.05.01024906146
    [Google Scholar]
  30. HuJ.H. DavisK.M. LiuD.R. Chemical Biology approaches to genome editing: understanding, controlling, and delivering programmable nucleases.Cell Chem. Biol.2016231577310.1016/j.chembiol.2015.12.00926933736
    [Google Scholar]
  31. BraakH. BraakE. Neuropathological stageing of Alzheimer-related changes.Acta Neuropathol.199182423925910.1007/BF003088091759558
    [Google Scholar]
  32. KosakaK. YoshimuraM. IkedaK. BudkaH. Diffuse type of Lewy body disease: progressive dementia with abundant cortical Lewy bodies and senile changes of varying degree--a new disease?Clin. Neuropathol.1984351851926094067
    [Google Scholar]
  33. BrettschneiderJ. Del TrediciK. IrwinD.J. GrossmanM. RobinsonJ.L. ToledoJ.B. FangL. Van DeerlinV.M. LudolphA.C. LeeV.M.Y. BraakH. TrojanowskiJ.Q. Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD).Acta Neuropathol.2014127342343910.1007/s00401‑013‑1238‑y24407427
    [Google Scholar]
  34. McKeeA.C. SteinT.D. NowinskiC.J. SternR.A. DaneshvarD.H. AlvarezV.E. LeeH.S. HallG. WojtowiczS.M. BaughC.M. RileyD.O. KubilusC.A. CormierK.A. JacobsM.A. MartinB.R. AbrahamC.R. IkezuT. ReichardR.R. WolozinB.L. BudsonA.E. GoldsteinL.E. KowallN.W. CantuR.C. The spectrum of disease in chronic traumatic encephalopathy.Brain20131361436410.1093/brain/aws30723208308
    [Google Scholar]
  35. MisraA. GaneshS. ShahiwalaA. ShahS.P. Drug delivery to the central nervous system: a review.J. Pharm. Pharm. Sci.20036225227312935438
    [Google Scholar]
  36. SweeneyM.D. SagareA.P. ZlokovicB.V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders.Nat. Rev. Neurol.201814313315010.1038/nrneurol.2017.18829377008
    [Google Scholar]
  37. WenW.S. YuanZ.M. MaS.J. XuJ. YuanD.T. CRISPR-Cas9 systems: versatile cancer modelling platforms and promising therapeutic strategies.Int. J. Cancer201613861328133610.1002/ijc.2962626044706
    [Google Scholar]
  38. MaoY. YangX. ZhouY. ZhangZ. BotellaJ.R. ZhuJ.K. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of CRISPR/Cas9 systems.Genome Biol.201819114910.1186/s13059‑018‑1529‑730266091
    [Google Scholar]
  39. ShmakovS.A. BarthZ.K. MakarovaK.S. WolfY.I. BroverV. PetersJ.E. KooninE.V. Widespread CRISPR-derived RNA regulatory elements in CRISPR-Cas systems.Nucleic Acids Res.202351158150816810.1093/nar/gkad49537283088
    [Google Scholar]
  40. WangP. ZhangJ. SunL. MaY. XuJ. LiangS. DengJ. TanJ. ZhangQ. TuL. DaniellH. JinS. ZhangX. High efficient multisites genome editing in allotetraploid cotton ( Gossypium hirsutum ) using CRISPR/Cas9 system.Plant Biotechnol. J.201816113715010.1111/pbi.1275528499063
    [Google Scholar]
  41. KooninE.V. MakarovaK.S. CRISPR-Cas: an adaptive immunity system in prokaryotes.F1000 Biol. Rep.200919510.3410/B1‑9520556198
    [Google Scholar]
  42. DoudnaJ.A. CharpentierE. The new frontier of genome engineering with CRISPR-Cas9.Science20143466213125809610.1126/science.125809625430774
    [Google Scholar]
  43. CongL. RanF.A. CoxD. LinS. BarrettoR. HabibN. HsuP.D. WuX. JiangW. MarraffiniL.A. ZhangF. Multiplex genome engineering using CRISPR/Cas systems.Science2013339612181982310.1126/science.123114323287718
    [Google Scholar]
  44. ScottT. UrakR. SoemardyC. MorrisK.V. Improved Cas9 activity by specific modifications of the tracrRNA.Sci. Rep.2019911610410.1038/s41598‑019‑52616‑531695072
    [Google Scholar]
  45. HsuP.D. ScottD.A. WeinsteinJ.A. RanF.A. KonermannS. AgarwalaV. LiY. FineE.J. WuX. ShalemO. CradickT.J. MarraffiniL.A. BaoG. ZhangF. DNA targeting specificity of RNA-guided Cas9 nucleases.Nat. Biotechnol.201331982783210.1038/nbt.264723873081
    [Google Scholar]
  46. Fishman-LobellJ. RudinN. HaberJ.E. Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated.Mol. Cell. Biol.19921231292130310.1128/mcb.12.3.1292‑1303.19921545810
    [Google Scholar]
  47. BétermierM. BertrandP. LopezB.S. Is non-homologous end-joining really an inherently error-prone process?PLoS Genet.2014101e100408610.1371/journal.pgen.100408624453986
    [Google Scholar]
  48. OrrH.T. ZoghbiH.Y. Trinucleotide repeat disorders.Annu. Rev. Neurosci.200730157562110.1146/annurev.neuro.29.051605.11304217417937
    [Google Scholar]
  49. MacDonaldM. The Huntington’s Disease Collaborative Research Group A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes.Cell199372697198310.1016/0092‑8674(93)90585‑E8458085
    [Google Scholar]
  50. LeeJ.M. RamosE.M. LeeJ.H. GillisT. MysoreJ.S. HaydenM.R. WarbyS.C. MorrisonP. NanceM. RossC.A. MargolisR.L. SquitieriF. OrobelloS. Di DonatoS. Gomez-TortosaE. AyusoC. SuchowerskyO. TrentR.J. McCuskerE. NovellettoA. FrontaliM. JonesR. AshizawaT. FrankS. Saint-HilaireM.H. HerschS.M. RosasH.D. LucenteD. HarrisonM.B. ZankoA. AbramsonR.K. MarderK. SequeirosJ. PaulsenJ.S. LandwehrmeyerG.B. MyersR.H. MacDonaldM.E. GusellaJ.F. PREDICT-HD study of the Huntington Study Group (HSG)REGISTRY study of the European Huntington’s Disease NetworkHD-MAPS Study Group COHORT study of the HSG CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion.Neurology2012781069069510.1212/WNL.0b013e318249f68322323755
    [Google Scholar]
  51. BatesG.P. DorseyR. GusellaJ.F. HaydenM.R. KayC. LeavittB.R. NanceM. RossC.A. ScahillR.I. WetzelR. WildE.J. TabriziS.J. Huntington disease.Nat. Rev. Dis. Primers2015111500510.1038/nrdp.2015.527188817
    [Google Scholar]
  52. AnM.C. ZhangN. ScottG. MontoroD. WittkopT. MooneyS. MelovS. EllerbyL.M. Genetic correction of Huntington’s disease phenotypes in induced pluripotent stem cells.Cell Stem Cell201211225326310.1016/j.stem.2012.04.02622748967
    [Google Scholar]
  53. AlkanliS.S. AlkanliN. AyA. AlbenizI. CRISPR/Cas9 mediated therapeutic approach in Huntington’s disease.Mol. Neurobiol.20236031486149810.1007/s12035‑022‑03150‑536482283
    [Google Scholar]
  54. OusteroutD.G. KabadiA.M. ThakoreP.I. MajorosW.H. ReddyT.E. GersbachC.A. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy.Nat. Commun.201561624410.1038/ncomms724425692716
    [Google Scholar]
  55. LongC. McAnallyJ.R. SheltonJ.M. MireaultA.A. Bassel-DubyR. OlsonE.N. Prevention of muscular dystrophy in mice by CRISPR/Cas9–mediated editing of germline DNA.Science201434562011184118810.1126/science.125444525123483
    [Google Scholar]
  56. KolliN. LuM. MaitiP. RossignolJ. DunbarG. CRISPR-Cas9 mediated GeneSilencing of the mutant huntingtin gene in an in vitro model of Huntington’s disease.Int. J. Mol. Sci.201718475410.3390/ijms1804075428368337
    [Google Scholar]
  57. SundalC. FujiokaS. UittiR.J. WszolekZ.K. Autosomal dominant Parkinson’s disease.Parkinsonism Relat. Disord.201218Suppl. 1S7S1010.1016/S1353‑8020(11)70005‑022166459
    [Google Scholar]
  58. RahmanM. BilalM. ShahJ.A. KaushikA. TeissedreP.L. KujawskaM. CRISPR-Cas9-based technology and its relevance to gene editing in Parkinson’s disease.Pharmaceutics2022146125210.3390/pharmaceutics1406125235745824
    [Google Scholar]
  59. ChesseletM.F. In vivo alpha-synuclein overexpression in rodents: A useful model of Parkinson’s disease?Exp. Neurol.20082091222710.1016/j.expneurol.2007.08.00617949715
    [Google Scholar]
  60. ZhouX. XinJ. FanN. ZouQ. HuangJ. OuyangZ. ZhaoY. ZhaoB. LiuZ. LaiS. YiX. GuoL. EstebanM.A. ZengY. YangH. LaiL. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer.Cell. Mol. Life Sci.20157261175118410.1007/s00018‑014‑1744‑725274063
    [Google Scholar]
  61. WangX. CaoC. HuangJ. YaoJ. HaiT. ZhengQ. WangX. ZhangH. QinG. ChengJ. WangY. YuanZ. ZhouQ. WangH. ZhaoJ. One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system.Sci. Rep.2016612062010.1038/srep2062026857844
    [Google Scholar]
  62. GyörgyB. SageC. IndzhykulianA.A. SchefferD.I. BrissonA.R. TanS. WuX. VolakA. MuD. TamvakologosP.I. LiY. FitzpatrickZ. EricssonM. BreakefieldX.O. CoreyD.P. MaguireC.A. Rescue of hearing by gene delivery to inner-ear hair cells using exosome-associated AAV.Mol. Ther.201725237939110.1016/j.ymthe.2016.12.01028082074
    [Google Scholar]
  63. PaquetD. KwartD. ChenA. SproulA. JacobS. TeoS. OlsenK.M. GreggA. NoggleS. Tessier-LavigneM. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.Nature2016533760112512910.1038/nature1766427120160
    [Google Scholar]
  64. RentonA.E. MajounieE. WaiteA. Simón-SánchezJ. RollinsonS. GibbsJ.R. SchymickJ.C. LaaksovirtaH. van SwietenJ.C. MyllykangasL. KalimoH. PaetauA. AbramzonY. RemesA.M. KaganovichA. ScholzS.W. DuckworthJ. DingJ. HarmerD.W. HernandezD.G. JohnsonJ.O. MokK. RytenM. TrabzuniD. GuerreiroR.J. OrrellR.W. NealJ. MurrayA. PearsonJ. JansenI.E. SondervanD. SeelaarH. BlakeD. YoungK. HalliwellN. CallisterJ.B. ToulsonG. RichardsonA. GerhardA. SnowdenJ. MannD. NearyD. NallsM.A. PeuralinnaT. JanssonL. IsoviitaV.M. KaivorinneA.L. Hölttä-VuoriM. IkonenE. SulkavaR. BenatarM. WuuJ. ChiòA. RestagnoG. BorgheroG. SabatelliM. HeckermanD. RogaevaE. ZinmanL. RothsteinJ.D. SendtnerM. DrepperC. EichlerE.E. AlkanC. AbdullaevZ. PackS.D. DutraA. PakE. HardyJ. SingletonA. WilliamsN.M. HeutinkP. Pickering-BrownS. MorrisH.R. TienariP.J. TraynorB.J. ITALSGEN Consortium A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD.Neuron201172225726810.1016/j.neuron.2011.09.01021944779
    [Google Scholar]
  65. DeJesus-HernandezM. MackenzieI.R. BoeveB.F. BoxerA.L. BakerM. RutherfordN.J. NicholsonA.M. FinchN.A. FlynnH. AdamsonJ. KouriN. WojtasA. SengdyP. HsiungG.Y.R. KarydasA. SeeleyW.W. JosephsK.A. CoppolaG. GeschwindD.H. WszolekZ.K. FeldmanH. KnopmanD.S. PetersenR.C. MillerB.L. DicksonD.W. BoylanK.B. Graff-RadfordN.R. RademakersR. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS.Neuron201172224525610.1016/j.neuron.2011.09.01121944778
    [Google Scholar]
  66. MutihacR. AbabnehN. ScaberJ. Wade-MartinsR. CowleyS. TalbotK. Modelling amyotrophic lateral sclerosis (ALS) using mutant and CAS9/CRISPR-corrected motor neurons from patients with C9ORF72 mutations reveals disease-specific cellular phenotypes.J. Neurol. Sci.2015357Suppl. 1e4810.1016/j.jns.2015.08.198
    [Google Scholar]
  67. DrepperC. HerrmannT. WessigC. BeckM. SendtnerM. C-terminal FUS/TLS mutations in familial and sporadic ALS in Germany.Neurobiol. Aging2011323548.e1548.e410.1016/j.neurobiolaging.2009.11.01720018407
    [Google Scholar]
  68. WangL. YiF. FuL. YangJ. WangS. WangZ. SuzukiK. SunL. XuX. YuY. QiaoJ. BelmonteJ.C.I. YangZ. YuanY. QuJ. LiuG.H. CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs.Protein Cell20178536537810.1007/s13238‑017‑0397‑328401346
    [Google Scholar]
  69. YiuE.M. KornbergA.J. Duchenne muscular dystrophy.J. Paediatr. Child Health201551875976410.1111/jpc.1286825752877
    [Google Scholar]
  70. LimK. YoonC. YokotaT. Applications of CRISPR/Cas9 for the treatment of Duchenne muscular dystrophy.J. Pers. Med.2018843810.3390/jpm804003830477208
    [Google Scholar]
  71. NelsonC.E. HakimC.H. OusteroutD.G. ThakoreP.I. MorebE.A. RiveraR.M.C. MadhavanS. PanX. RanF.A. YanW.X. AsokanA. ZhangF. DuanD. GersbachC.A. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy.Science2016351627140340710.1126/science.aad514326721684
    [Google Scholar]
  72. AmoasiiL LongC LiH Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy.Sci Transl Med20179418eaan808110.1126/scitranslmed.aan808129187645
    [Google Scholar]
  73. ZhangY. LongC. LiH. McAnallyJ.R. BaskinK.K. SheltonJ.M. Bassel-DubyR. OlsonE.N. CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice.Sci. Adv.201734e160281410.1126/sciadv.160281428439558
    [Google Scholar]
  74. WongE. LiaoG.P. ChangJ.C. XuP. LiY.M. GreengardP. GSAP modulates γ-secretase specificity by inducing conformational change in PS1.Proc. Natl. Acad. Sci. USA2019116136385639010.1073/pnas.182016011630850537
    [Google Scholar]
  75. ParkH. OhJ. ShimG. ChoB. ChangY. KimS. BaekS. KimH. ShinJ. ChoiH. YooJ. KimJ. JunW. LeeM. LengnerC.J. OhY.K. KimJ. In vivo neuronal gene editing via CRISPR–Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease.Nat. Neurosci.201922452452810.1038/s41593‑019‑0352‑030858603
    [Google Scholar]
  76. GyörgyB. LöövC. ZaborowskiM.P. TakedaS. KleinstiverB.P. ComminsC. KastanenkaK. MuD. VolakA. GiedraitisV. LannfeltL. MaguireC.A. JoungJ.K. HymanB.T. BreakefieldX.O. IngelssonM. CRISPR/Cas9 mediated disruption of the swedish APP allele as a therapeutic approach for early-onset alzheimer’s disease.Mol. Ther. Nucleic Acids20181142944010.1016/j.omtn.2018.03.00729858078
    [Google Scholar]
  77. QingX. WalterJ. JarazoJ. Arias-FuenzalidaJ. HilljeA.L. SchwambornJ.C. CRISPR/Cas9 and piggyBac-mediated footprint-free LRRK2-G2019S knock-in reveals neuronal complexity phenotypes and α-Synuclein modulation in dopaminergic neurons.Stem Cell Res.201724445010.1016/j.scr.2017.08.01328826027
    [Google Scholar]
  78. KantorB. TagliafierroL. GuJ. ZamoraM.E. IlichE. GrenierC. HuangZ.Y. MurphyS. Chiba-FalekO. Downregulation of SNCA expression by targeted editing of DNA methylation: A potential strategy for precision therapy in PD.Mol. Ther.201826112638264910.1016/j.ymthe.2018.08.01930266652
    [Google Scholar]
  79. SafariF. HatamG. BehbahaniA.B. RezaeiV. Barekati-MowahedM. PetramfarP. KhademiF. CRISPR system: a high-throughput toolbox for research and treatment of Parkinson’s disease.Cell. Mol. Neurobiol.202040447749310.1007/s10571‑019‑00761‑w31773362
    [Google Scholar]
  80. Arias-FuenzalidaJ. JarazoJ. QingX. WalterJ. Gomez-GiroG. NickelsS.L. ZaehresH. SchölerH.R. SchwambornJ.C. FACS-assisted CRISPR-Cas9 genome editing facilitates Parkinson’s disease modeling.Stem Cell Reports2017951423143110.1016/j.stemcr.2017.08.02628988985
    [Google Scholar]
  81. LiH. WuS. MaX. LiX. ChengT. ChenZ. WuJ. LvL. LiL. XuL. WangW. HuY. JiangH. YinY. QiuZ. HuX. Co-editing PINK1 and DJ-1 genes via adeno-associated virus-delivered CRISPR/Cas9 system in adult monkey brain elicits classical parkinsonian phenotype.Neurosci. Bull.20213791271128810.1007/s12264‑021‑00732‑634165772
    [Google Scholar]
  82. YangS. ChangR. YangH. ZhaoT. HongY. KongH.E. SunX. QinZ. JinP. LiS. LiX.J. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease.J. Clin. Invest.201712772719272410.1172/JCI9208728628038
    [Google Scholar]
  83. WuJ. RyskampD. BirnbaumerL. BezprozvannyI. Inhibition of TRPC1-dependent store-operated calcium entry improves synaptic stability and motor performance in a mouse model of Huntington’s disease.J. Huntingtons Dis.201871355010.3233/JHD‑17026629480205
    [Google Scholar]
  84. DuanW. GuoM. YiL. LiuY. LiZ. MaY. ZhangG. LiuY. BuH. SongX. LiC. The deletion of mutant SOD1 via CRISPR/Cas9/sgRNA prolongs survival in an amyotrophic lateral sclerosis mouse model.Gene Ther.2020273-415716910.1038/s41434‑019‑0116‑131819203
    [Google Scholar]
  85. XuL. ParkK.H. ZhaoL. XuJ. El RefaeyM. GaoY. ZhuH. MaJ. HanR. CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice.Mol. Ther.201624356456910.1038/mt.2015.19226449883
    [Google Scholar]
  86. SternbergS.H. DoudnaJ.A. Expanding the biologist’s toolkit with CRISPR-Cas9.Mol. Cell201558456857410.1016/j.molcel.2015.02.03226000842
    [Google Scholar]
  87. Xiao-JieL. Hui-YingX. Zun-PingK. Jin-LianC. Li-JuanJ. CRISPR-Cas9: a new and promising player in gene therapy.J. Med. Genet.201552528929610.1136/jmedgenet‑2014‑10296825713109
    [Google Scholar]
  88. GuptaR.M. MusunuruK. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9.J. Clin. Invest.2014124104154416110.1172/JCI7299225271723
    [Google Scholar]
  89. AlbertiF. CorreC. Editing streptomycete genomes in the CRISPR/Cas9 age.Nat. Prod. Rep.20193691237124810.1039/C8NP00081F30680376
    [Google Scholar]
  90. DrostJ. ArtegianiB. CleversH. The generation of organoids for studying Wnt signaling.Methods Mol. Biol.2016148114115910.1007/978‑1‑4939‑6393‑5_1527590160
    [Google Scholar]
  91. FreedmanB.S. BrooksC.R. LamA.Q. FuH. MorizaneR. AgrawalV. SaadA.F. LiM.K. HughesM.R. WerffR.V. PetersD.T. LuJ. BacceiA. SiedleckiA.M. ValeriusM.T. MusunuruK. McNagnyK.M. SteinmanT.I. ZhouJ. LerouP.H. BonventreJ.V. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids.Nat. Commun.201561871510.1038/ncomms971526493500
    [Google Scholar]
  92. AnzaloneA.V. RandolphP.B. DavisJ.R. SousaA.A. KoblanL.W. LevyJ.M. ChenP.J. WilsonC. NewbyG.A. RaguramA. LiuD.R. Search-and-replace genome editing without double-strand breaks or donor DNA.Nature2019576778514915710.1038/s41586‑019‑1711‑431634902
    [Google Scholar]
  93. LiuJ.J. OrlovaN. OakesB.L. MaE. SpinnerH.B. BaneyK.L.M. ChuckJ. TanD. KnottG.J. HarringtonL.B. Al-ShayebB. WagnerA. BrötzmannJ. StaahlB.T. TaylorK.L. DesmaraisJ. NogalesE. DoudnaJ.A. CasX enzymes comprise a distinct family of RNA-guided genome editors.Nature2019566774321822310.1038/s41586‑019‑0908‑x30718774
    [Google Scholar]
  94. MaliP. YangL. EsveltK.M. AachJ. GuellM. DiCarloJ.E. NorvilleJ.E. ChurchG.M. RNA-guided human genome engineering via Cas9.Science2013339612182382610.1126/science.123203323287722
    [Google Scholar]
  95. JayavaradhanR. PillisD.M. GoodmanM. ZhangF. ZhangY. AndreassenP.R. MalikP. CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites.Nat. Commun.2019101286610.1038/s41467‑019‑10735‑731253785
    [Google Scholar]
  96. HruschaA. KrawitzP. RechenbergA. HeinrichV. HechtJ. HaassC. SchmidB. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish.Development2013140244982498710.1242/dev.09908524257628
    [Google Scholar]
  97. ShenB. BrownK.M. LeeT.D. SibleyL.D. Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9.MBio201453e011141410.1128/mBio.01114‑1424825012
    [Google Scholar]
  98. DaleyJ.M. SungP. 53BP1, BRCA1, and the choice between recombination and end joining at DNA double-strand breaks.Mol. Cell. Biol.20143481380138810.1128/MCB.01639‑1324469398
    [Google Scholar]
  99. GuoX. ZhangT. HuZ. ZhangY. ShiZ. WangQ. CuiY. WangF. ZhaoH. ChenY. Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis.Development2014141370771410.1242/dev.09985324401372
    [Google Scholar]
  100. TaymansJ.M. VandenbergheL.H. HauteC.V.D. ThiryI. DerooseC.M. MortelmansL. WilsonJ.M. DebyserZ. BaekelandtV. Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain.Hum. Gene Ther.200718319520610.1089/hum.2006.17817343566
    [Google Scholar]
  101. KleinstiverB.P. TsaiS.Q. PrewM.S. NguyenN.T. WelchM.M. LopezJ.M. McCawZ.R. AryeeM.J. JoungJ.K. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells.Nat. Biotechnol.201634886987410.1038/nbt.362027347757
    [Google Scholar]
  102. MonteysA.M. EbanksS.A. KeiserM.S. DavidsonB.L. CRISPR/Cas9 editing of the mutant huntingtin allele in vitro and in vivo.Mol. Ther.2017251122310.1016/j.ymthe.2016.11.01028129107
    [Google Scholar]
  103. ZurisJ.A. ThompsonD.B. ShuY. GuilingerJ.P. BessenJ.L. HuJ.H. MaederM.L. JoungJ.K. ChenZ.Y. LiuD.R. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo.Nat. Biotechnol.2015331738010.1038/nbt.308125357182
    [Google Scholar]
  104. WangM. ZurisJ.A. MengF. ReesH. SunS. DengP. HanY. GaoX. PouliD. WuQ. GeorgakoudiI. LiuD.R. XuQ. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles.Proc. Natl. Acad. Sci. USA2016113112868287310.1073/pnas.152024411326929348
    [Google Scholar]
  105. PoonC. McMahonD. HynynenK. Noninvasive and targeted delivery of therapeutics to the brain using focused ultrasound.Neuropharmacology2017120203710.1016/j.neuropharm.2016.02.01426907805
    [Google Scholar]
  106. ChanK.Y. JangM.J. YooB.B. GreenbaumA. RaviN. WuW.L. Sánchez-GuardadoL. LoisC. MazmanianS.K. DevermanB.E. GradinaruV. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems.Nat. Neurosci.20172081172117910.1038/nn.459328671695
    [Google Scholar]
  107. HordeauxJ. WangQ. KatzN. BuzaE.L. BellP. WilsonJ.M. The Neurotropic Properties of AAV-PHP.B Are Limited to C57BL/6J Mice.Mol. Ther.201826366466810.1016/j.ymthe.2018.01.01829428298
    [Google Scholar]
  108. BhardwajS. KesariK.K. RachamallaM. ManiS. AshrafG.M. JhaS.K. KumarP. AmbastaR.K. DurejaH. DevkotaH.P. GuptaG. ChellappanD.K. SinghS.K. DuaK. RuokolainenJ. KamalM.A. OjhaS. JhaN.K. CRISPR/Cas9 gene editing: New hope for Alzheimer’s disease therapeutics.J. Adv. Res.20224020722110.1016/j.jare.2021.07.00136100328
    [Google Scholar]
  109. YanM. LiJ. Combined application of CRISPR-Cas and stem cells for clinical and basic research.Cell Regen.2020911910.1186/s13619‑020‑00062‑433033974
    [Google Scholar]
  110. BiehlJ.K. RussellB. Introduction to stem cell therapy.J. Cardiovasc. Nurs.20092429810310.1097/JCN.0b013e318197a6a519242274
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232292246240426125504
Loading
/content/journals/cgt/10.2174/0115665232292246240426125504
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test