Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the most prevalent malignancy of the pancreas, and the incidence of this disease is approximately equivalent to the mortality rate. Immunotherapy has made a remarkable breakthrough in numerous cancers, while its efficacy in PDAC remains limited due to the immunosuppressive microenvironment. Immunotherapy efficacy is highly correlated with the abundance of immune cells, particularly cytotoxic T cells. Therefore, molecular classifier is needed to identify relatively hot tumors that may benefit from immunotherapy.

Methods

In this study, we carried out a transcriptome analysis of 145 pancreatic tumors to define the underlying immune regulatory mechanism driving the PDAC immunosuppressive microenvironment. The immune subtype was identified by consensus clustering, and the underlying PDAC immune activation mechanism was thoroughly examined using single sample gene set enrichment analysis (ssGSEA). Area under the curve (AUC) of the receiver operating characteristic (ROC) curve was used to assess the accuracy of the molecular classifier in differentiating immunological subgroups of PDAC.5

Results

The protein level of molecular classifier was verified by immunohistochemistry in human PDAC tissue. Immune-hot tumors displayed higher levels of immune cell infiltration and immune checkpoint, in line with enriched immune escape pathways. Hematopoietic cell signal transducer (HCST), a molecular classifier used to differentiate immunological subtypes of PDAC, has shown a substantial link with the expression levels of cytotoxic markers, such as CD8A and CD8B. At the single cell level, we found that HCST was predominantly expressed in CD8T cells. By immunohistochemistry and survival analysis, we further demonstrated the prognostic value of HCST in PDAC.

Conclusion

We identified HCST as a molecular classifier to distinguish PDAC immune subtypes, which may be useful for early diagnosis and targeted therapy of PDAC.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/1566523223666230720101531
2025-02-01
2024-11-26
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  2. LiY.J. WuJ.Y. WangJ.M. XiangD.X. Emerging nanomedicine-based strategies for preventing metastasis of pancreatic cancer.J. Control. Release202032010511110.1016/j.jconrel.2020.01.041 31978441
    [Google Scholar]
  3. WolfgangC.L. HermanJ.M. LaheruD.A. Recent progress in pancreatic cancer.CA Cancer J. Clin.201363531834810.3322/caac.21190 23856911
    [Google Scholar]
  4. WenmingW. GangJ. ChunyouW. The current surgical treatment of pancreatic cancer in China: A national wide cross-sectional study.J. Pancreatol.2019211621
    [Google Scholar]
  5. McBrideA. BonafedeM. CaiQ. Comparison of treatment patterns and economic outcomes among metastatic pancreatic cancer patients initiated on nab -paclitaxel plus gemcitabine versus FOLFIRINOX.Expert Rev. Clin. Pharmacol.201710101153116010.1080/17512433.2017.1365598 28795609
    [Google Scholar]
  6. KangJ. HwangI. YooC. Nab-paclitaxel plus gemcitabine versus FOLFIRINOX as the first-line chemotherapy for patients with metastatic pancreatic cancer: Retrospective analysis.Invest. New Drugs201836473274110.1007/s10637‑018‑0598‑5 29616439
    [Google Scholar]
  7. ShimpeiM. MichiakiU. JunY. Adjuvant and neoadjuvant therapy for pancreatic cancer.J. Pancreatol.201923100106
    [Google Scholar]
  8. LeonhardtC.S. TraubB. Adjuvant and neoadjuvant chemotherapy in pancreatic ductal adenocarcinoma.J. Pancreatol.20202020111
    [Google Scholar]
  9. BrahmerJ.R. TykodiS.S. ChowL.Q.M. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer.N. Engl. J. Med.2012366262455246510.1056/NEJMoa1200694 22658128
    [Google Scholar]
  10. GaoY. ChenS. VafaeiS. ZhongX. Tumor-infiltrating immune cell signature predicts the prognosis and chemosensitivity of patients with pancreatic ductal adenocarcinoma.Front. Oncol.20201055763810.3389/fonc.2020.557638 33102222
    [Google Scholar]
  11. IorioV. RosatiA. D’AuriaR. Combined effect of anti-BAG3 and anti-PD-1 treatment on macrophage infiltrate, CD8+ T cell number and tumour growth in pancreatic cancer.Gut2018674780782 28801350
    [Google Scholar]
  12. RenB. CuiM. YangG. Tumor microenvironment participates in metastasis of pancreatic cancer.Mol. Cancer201817110810.1186/s12943‑018‑0858‑1 30060755
    [Google Scholar]
  13. PrincipeD.R. KorcM. KamathS.D. MunshiH.G. RanaA. Trials and tribulations of pancreatic cancer immunotherapy.Cancer Lett.202150411410.1016/j.canlet.2021.01.031 33549709
    [Google Scholar]
  14. ShiJ. LuP. ShenW. CD90 highly expressed population harbors a stemness signature and creates an immunosuppressive niche in pancreatic cancer.Cancer Lett.201945315816910.1016/j.canlet.2019.03.051 30954649
    [Google Scholar]
  15. RoyalR.E. LevyC. TurnerK. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma.J. Immunother.201033882883310.1097/CJI.0b013e3181eec14c 20842054
    [Google Scholar]
  16. HerbstR.S. SoriaJ.C. KowanetzM. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients.Nature2014515752856356710.1038/nature14011 25428504
    [Google Scholar]
  17. LeD.T. LutzE. UramJ.N. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer.J. Immunother.201336738238910.1097/CJI.0b013e31829fb7a2 23924790
    [Google Scholar]
  18. BaileyP. ChangD.K. NonesK. Genomic analyses identify molecular subtypes of pancreatic cancer.Nature20165317592475210.1038/nature16965 26909576
    [Google Scholar]
  19. DanilovaL. HoW.J. ZhuQ. Programmed cell death ligand-1 (PD-L1) and CD8 expression profiling identify an immunologic subtype of pancreatic ductal adenocarcinomas with favorable survival.Cancer Immunol. Res.20197688689510.1158/2326‑6066.CIR‑18‑0822 31043417
    [Google Scholar]
  20. SakaguchiM. MurataH. AoyamaY. DNAX-activating protein 10 (DAP10) membrane adaptor associates with receptor for advanced glycation end products (RAGE) and modulates the RAGE-triggered signaling pathway in human keratinocytes.J. Biol. Chem.201428934233892340210.1074/jbc.M114.573071 25002577
    [Google Scholar]
  21. Hernández-CasellesT. MiguelR.C.S. Ruiz-AlcarazA.J. García-PeñarrubiaP. CD33 (Siglec-3) inhibitory function: Role in the NKG2D/DAP10 activating pathway.J. Immunol. Res.2019201911510.1155/2019/6032141 31143782
    [Google Scholar]
  22. ZhengL. RenL. KouhiA. A humanized lym-1 CAR with novel DAP10/DAP12 signaling domains demonstrates reduced tonic signaling and increased antitumor activity in B-cell lymphoma models.Clin. Cancer Res.202026143694370610.1158/1078‑0432.CCR‑19‑3417 32273277
    [Google Scholar]
  23. LiM. ZhiL. YinM. A novel bispecific chimeric PD1-DAP10/NKG2D receptor augments NK92-cell therapy efficacy for human gastric cancer SGC-7901 cell.Biochem. Biophys. Res. Commun.2020523374575210.1016/j.bbrc.2020.01.005 31952789
    [Google Scholar]
  24. QiX. QiC. WuT. HuY. CSF1R and HCST: Novel candidate biomarkers predicting the response to immunotherapy in non-small cell lung cancer.Technol. Cancer Res. Treat.20201910.1177/1533033820970663 33153411
    [Google Scholar]
  25. ZhouY. WangX. ZhangW. The immune-related gene HCST as a novel biomarker for the diagnosis and prognosis of clear cell renal cell carcinoma.Front. Oncol.20211163070610.3389/fonc.2021.630706 33968730
    [Google Scholar]
  26. WangW. LiS. LinJ. The roles and potential mechanisms of HCST in the prognosis and immunity of KIRC via comprehensive analysis.Am. J. Transl. Res.2022142752771 35273683
    [Google Scholar]
  27. MoffittR.A. MarayatiR. FlateE.L. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma.Nat. Genet.201547101168117810.1038/ng.3398 26343385
    [Google Scholar]
  28. SteeleN.G. CarpenterE.S. KempS.B. Multimodal mapping of the tumor and peripheral blood immune landscape in human pancreatic cancer.Nat. Can.20201111097111210.1038/s43018‑020‑00121‑4 34296197
    [Google Scholar]
  29. YoshiharaK. ShahmoradgoliM. MartínezE. Inferring tumour purity and stromal and immune cell admixture from expression data.Nat. Commun.201341261210.1038/ncomms3612 24113773
    [Google Scholar]
  30. AranD. HuZ. ButteA.J. xCell: Digitally portraying the tissue cellular heterogeneity landscape.Genome Biol.201718122010.1186/s13059‑017‑1349‑1 29141660
    [Google Scholar]
  31. WilkersonM.D. HayesD.N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking.Bioinformatics201026121572157310.1093/bioinformatics/btq170 20427518
    [Google Scholar]
  32. GaujouxR. SeoigheC. A flexible R package for nonnegative matrix factorization.BMC Bioinformatics201011136710.1186/1471‑2105‑11‑367 20598126
    [Google Scholar]
  33. HänzelmannS. CasteloR. GuinneyJ. GSVA: Gene set variation analysis for microarray and RNA-Seq data.BMC Bioinformatics2013141710.1186/1471‑2105‑14‑7 23323831
    [Google Scholar]
  34. BarbieD.A. TamayoP. BoehmJ.S. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1.Nature2009462726910811210.1038/nature08460 19847166
    [Google Scholar]
  35. SeckingerA. MeißnerT. MoreauxJ. Clinical and prognostic role of annexin A2 in multiple myeloma.Blood201212051087109410.1182/blood‑2012‑03‑415588 22705595
    [Google Scholar]
  36. HaoY. HaoS. Andersen-NissenE. Integrated analysis of multimodal single-cell data.Cell20211841335733587.e2910.1016/j.cell.2021.04.048 34062119
    [Google Scholar]
  37. LallS. SinhaD. BandyopadhyayS. SenguptaD. Structure-aware principal component analysis for single-cell RNA-seq data.J. Comput. Biol.201825121365137310.1089/cmb.2018.0027 30133312
    [Google Scholar]
  38. SatijaR. FarrellJ.A. GennertD. SchierA.F. RegevA. Spatial reconstruction of single-cell gene expression data.Nat. Biotechnol.201533549550210.1038/nbt.3192 25867923
    [Google Scholar]
  39. AranD. LooneyA.P. LiuL. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage.Nat. Immunol.201920216317210.1038/s41590‑018‑0276‑y 30643263
    [Google Scholar]
  40. CaoL. HuangC. Cui ZhouD. Proteogenomic characterization of pancreatic ductal adenocarcinoma.Cell20211841950315052.e2610.1016/j.cell.2021.08.023 34534465
    [Google Scholar]
  41. ChenZ. WangY. FongW.P. A quantitative score of immune cell infiltration predicts the prognosis in pancreatic ductal adenocarcinoma.Int. Immunopharmacol.20219810789010.1016/j.intimp.2021.107890 34174701
    [Google Scholar]
  42. KleinD. The Tumor Vascular Endothelium as Decision Maker in Cancer Therapy.Front. Oncol.2018836710.3389/fonc.2018.00367 30250827
    [Google Scholar]
  43. SchaafM.B. GargA.D. AgostinisP. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy.Cell Death Dis.20189211510.1038/s41419‑017‑0061‑0 29371595
    [Google Scholar]
  44. QianJ. WangC. WangB. The IFN-γ/PD-L1 axis between T cells and tumor microenvironment: Hints for glioma anti-PD-1/PD-L1 therapy.J. Neuroinflammation201815129010.1186/s12974‑018‑1330‑2 30333036
    [Google Scholar]
  45. LiR. HeY. ZhangH. Identification and validation of immune molecular subtypes in pancreatic ductal adenocarcinoma: Implications for prognosis and immunotherapy.Front. Immunol.20211269005610.3389/fimmu.2021.690056 34335594
    [Google Scholar]
  46. Hyka-NouspikelN. PhillipsJ.H. Physiological roles of murine DAP10 adapter protein in tumor immunity and autoimmunity.Immunol. Rev.2006214110611710.1111/j.1600‑065X.2006.00456.x 17100879
    [Google Scholar]
  47. LiT.J. JinK.Z. LiH. SIGLEC15 amplifies immunosuppressive properties of tumor-associated macrophages in pancreatic cancer.Cancer Lett.202253014215510.1016/j.canlet.2022.01.026 35077803
    [Google Scholar]
  48. HamiltonJ.A. Colony-stimulating factors in inflammation and autoimmunity.Nat. Rev. Immunol.20088753354410.1038/nri2356 18551128
    [Google Scholar]
  49. FujiwaraT. YakoubM.A. ChandlerA. CSF1/CSF1R signaling inhibitor pexidartinib (PLX3397) reprograms tumor-associated macrophages and stimulates T-cell infiltration in the sarcoma microenvironment.Mol. Cancer Ther.20212081388139910.1158/1535‑7163.MCT‑20‑0591 34088832
    [Google Scholar]
  50. GirardiM. OppenheimD.E. SteeleC.R. Regulation of cutaneous malignancy by gammadelta T cells.Science2001294554260560910.1126/science.1063916 11567106
    [Google Scholar]
  51. CerwenkaA. BaronJ.L. LanierL.L. Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo.Proc. Natl. Acad. Sci. USA20019820115211152610.1073/pnas.201238598 11562472
    [Google Scholar]
/content/journals/cgt/10.2174/1566523223666230720101531
Loading
/content/journals/cgt/10.2174/1566523223666230720101531
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keyword(s): HCST; immune subtype; immunosuppressive; molecular classifier; PDAC; TME
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test