Skip to content
2000
Volume 26, Issue 2
  • ISSN: 1389-2029
  • E-ISSN: 1875-5488

Abstract

Background

B-ALL is a hematologic malignancy that recurs in approximately 10-20% of children and has a poor prognosis. New prognostic biomarkers are needed to improve individualized therapy and achieve better clinical outcomes.

Methods

In this study, high-throughput sequencing technology was used to detect the BCR and TCR repertoires in children with B-ALL.

Results

We observed a gradual increase in the diversity of the BCR and TCR repertoires during the developmental stages (Pro-, Common-, Pre-B-ALL) of precursor B-ALL cells. Conversely, as minimal residual disease (MRD) levels on day 19 of induction therapy increased, the BCR/TCR repertoire diversity decreased. Furthermore, the BCR/TCR repertoire diversity was significantly greater in B-ALL patients at low risk and those harboring the ETV6/RUNX1 fusion than in patients with medium-risk disease and those harboring the ZNF384 fusion. Notably, the abundance of BCR/TCR clones varied significantly among patients with B-ALL and different clinical characteristics. Specifically, patients with Pre-B-ALL, low-risk disease, D19MRD levels <1%, and harboring the ETV6/RUNX1 fusion exhibited a predominance of BCR/TCR small clones. In our study, we noted an imbalanced occurrence of V and J gene utilization among patients with B-ALL; however, there seemed to be no discernible correlation with the clinical attributes.

Conclusion

BCR/TCR repertoires are expected to be potential prognostic biomarkers for patients with B-ALL.

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029319425240813074610
2024-08-21
2025-05-29
Loading full text...

Full text loading...

References

  1. MullighanC.G. GoorhaS. RadtkeI. MillerC.B. Coustan- SmithE. DaltonJ.D. GirtmanK. MathewS. MaJ. PoundsS.B. SuX. PuiC-H. RellingM.V. EvansW.E. ShurtleffS.A. DowningJ.R. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia.Nature2007446713775876410.1038/nature05690
    [Google Scholar]
  2. MullighanC.G. MillerC.B. RadtkeI. PhillipsL.A. DaltonJ. MaJ. WhiteD. HughesT.P. Le BeauM.M. PuiC-H. RellingM.V. ShurtleffS.A. DowningJ.R. BCR–ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros.Nature2008453719111011410.1038/nature06866
    [Google Scholar]
  3. SchrappeM. ReiterA. LudwigW.D. HarbottJ. ZimmermannM. HiddemannW. NiemeyerC. HenzeG. FeldgesA. ZintlF. KornhuberB. RitterJ. WelteK. GadnerH. RiehmH. Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: Results of trial ALL-BFM 90.Blood200095113310332210828010
    [Google Scholar]
  4. GaynonP.S. TriggM.E. HeeremaN.A. SenselM.G. SatherH.N. HammondG.D. BleyerW.A. Children’s Cancer Group trials in childhood acute lymphoblastic leukemia: 1983–1995.Leukemia200014122223223310.1038/sj.leu.240193911187913
    [Google Scholar]
  5. HarmsD.O. Janka-SchaubG.E. Co-operative study group for childhood acute lymphoblastic leukemia (COALL): Long-term follow-up of trials 82, 85, 89 and 92.Leukemia200014122234223910.1038/sj.leu.240197411187914
    [Google Scholar]
  6. SilvermanL.B. GelberR.D. DaltonV.K. AsselinB.L. BarrR.D. ClavellL.A. HurwitzC.A. MoghrabiA. SamsonY. SchorinM.A. ArkinS. DeclerckL. CohenH.J. SallanS.E. Improved outcome for children with acute lymphoblastic leukemia: Results of Dana-Farber Consortium Protocol 91-01.Blood20019751211121810.1182/blood.V97.5.121111222362
    [Google Scholar]
  7. GustafssonG. SchmiegelowK. ForestierE. ClausenN. GlomsteinA. JonmundssonG. MellanderL. MäkipernaaA. NygaardR. Saarinen-PihkalaU.M. Improving outcome through two decades in childhood ALL in the Nordic countries: The impact of high-dose methotrexate in the reduction of CNS irradiation.Leukemia200014122267227510.1038/sj.leu.240196111187918
    [Google Scholar]
  8. PuiC.H. SandlundJ.T. PeiD. RiveraG.K. HowardS.C. RibeiroR.C. RubnitzJ.E. RazzoukB.I. HudsonM.M. ChengC. RaimondiS.C. BehmF.G. DowningJ.R. RellingM.V. EvansW.E. Results of therapy for acute lymphoblastic leukemia in black and white children.JAMA2003290152001200710.1001/jama.290.15.200114559953
    [Google Scholar]
  9. GökbugetN. StanzeD. BeckJ. DiedrichH. HorstH.A. HüttmannA. KobbeG. KreuzerK.A. LeimerL. ReichleA. SchaichM. SchwartzS. ServeH. StarckM. StelljesM. StuhlmannR. ViardotA. WendelinK. FreundM. HoelzerD. Outcome of relapsed adult lymphoblastic leukemia depends on response to salvage chemotherapy, prognostic factors, and performance of stem cell transplantation.Blood2012120102032204110.1182/blood‑2011‑12‑39928722493293
    [Google Scholar]
  10. GökbugetN. DombretH. RiberaJ.M. FieldingA.K. AdvaniA. BassanR. ChiaV. DoubekM. GiebelS. HoelzerD. IfrahN. KatzA. KelshM. MartinelliG. MorgadesM. OBrienS. RoweJ.M. StieglmaierJ. WadleighM. KantarjianH. International reference analysis of outcomes in adults with B-precursor Ph-negative relapsed/refractory acute lymphoblastic leukemia.Haematologica2016101121524153310.3324/haematol.2016.14431127587380
    [Google Scholar]
  11. OskarssonT. SöderhällS. ArvidsonJ. ForestierE. MontgomeryS. BottaiM. LausenB. CarlsenN. HellebostadM. LähteenmäkiP. Saarinen-PihkalaU.M. JónssonÓ.G. HeymanM. Relapsed childhood acute lymphoblastic leukemia in the Nordic countries: Prognostic factors, treatment and outcome.Haematologica20161011687610.3324/haematol.2015.13168026494838
    [Google Scholar]
  12. SlaytonW.B. SchultzK.R. KairallaJ.A. DevidasM. MiX. PulsipherM.A. ChangB.H. MullighanC. IacobucciI. SilvermanL.B. BorowitzM.J. CarrollA.J. HeeremaN.A. Gastier- FosterJ.M. WoodB.L. MizrahyS.L. MerchantT. BrownV.I. SiegerL. SiegelM.J. RaetzE.A. WinickN.J. LohM.L. CarrollW.L. HungerS.P. Dasatinib Plus Intensive Chemotherapy in Children, Adolescents, and Young Adults With Philadelphia Chromosome–Positive Acute Lymphoblastic Leukemia: Results of Children’s Oncology Group Trial AALL0622.J. Clin. Oncol.201836222306231410.1200/JCO.2017.76.722829812996
    [Google Scholar]
  13. WitkowskiM.T. LasryA. CarrollW.L. AifantisI. Immune-Based Therapies in Acute Leukemia.Trends Cancer201951060461810.1016/j.trecan.2019.07.00931706508
    [Google Scholar]
  14. HungerS.P. MullighanC.G. Acute Lymphoblastic Leukemia in Children.N. Engl. J. Med.2015373161541155210.1056/NEJMra140097226465987
    [Google Scholar]
  15. InabaH. GreavesM. MullighanC.G. Acute lymphoblastic leukaemia.Lancet201338198811943195510.1016/S0140‑6736(12)62187‑423523389
    [Google Scholar]
  16. MalardF. MohtyM. Acute lymphoblastic leukaemia.Lancet2020395102301146116210.1016/S0140‑6736(19)33018‑1
    [Google Scholar]
  17. SaraivaD.D.C.A. SantosS.D.S. MonteiroG.T.R. Leukemia mortality trends in children and adolescents in Brazilian state capitals: 1980-2015.Epidemiol. Serv. Saude2018273e201731010.5123/S1679‑4974201800030000430281713
    [Google Scholar]
  18. BoumedieneA. VachinP. SendeyoK. OniszczukJ. ZhangS. HeniqueC. PawlakA. AudardV. OlleroM. GuigonisV. SahaliD. NEPHRUTIX: A randomized, double-blind, placebo vs Rituximab-controlled trial assessing T-cell subset changes in Minimal Change Nephrotic Syndrome.J. Autoimmun.2018889110210.1016/j.jaut.2017.10.00629056249
    [Google Scholar]
  19. RobertsS Conventional and Unconventional T Cells.Clinical and Basic ImmunodermatologyChamSpringer2008
    [Google Scholar]
  20. MiyasakaA. YoshidaY. WangT. TakikawaY. Next-generation sequencing analysis of the human T-cell and B-cell receptor repertoire diversity before and after hepatitis B vaccination.Hum. Vaccin. Immunother.201915112738275310.1080/21645515.2019.160098730945971
    [Google Scholar]
  21. PapadopoulouM. Sanchez SanchezG. VermijlenD. Innate and adaptive γδ T cells: How, when, and why.Immunol. Rev.202029819911610.1111/imr.12926
    [Google Scholar]
  22. SzczepańskiT. FlohrT. van der VeldenV.H.J. BartramC.R. van DongenJ.J.M. Molecular monitoring of residual disease using antigen receptor genes in childhood acute lymphoblastic leukaemia.Best Pract. Res. Clin. Haematol.2002151375710.1053/beha.2002.018411987915
    [Google Scholar]
  23. Pongers-WillemseM.J. VerhagenO.J.H.M. TibbeG.J.M. WijkhuijsA.J.M. de HaasV. RooversE. van der SchootC.E. van DongenJ.J.M. Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes.Leukemia199812122006201410.1038/sj.leu.24012469844931
    [Google Scholar]
  24. van der VeldenV.H.J. SzczepanskiT. WijkhuijsJ.M. HartP.G. HoogeveenP.G. HopW.C.J. van WeringE.R. van DongenJ.J.M. Age-related patterns of immunoglobulin and T-cell receptor gene rearrangements in precursor-B-ALL: Implications for detection of minimal residual disease.Leukemia20031791834184410.1038/sj.leu.240303812970784
    [Google Scholar]
  25. BrüggemannM. DroeseJ. BolzI. LüthP. PottC. von NeuhoffN. ScheueringU. KnebaM. Improved assessment of minimal residual disease in B cell malignancies using fluorogenic consensus probes for real-time quantitative PCR.Leukemia20001481419142510.1038/sj.leu.240183110942238
    [Google Scholar]
  26. O’ConnorD. EnshaeiA. BartramJ. HancockJ. HarrisonC.J. HoughR. SamarasingheS. SchwabC. VoraA. WadeR. MoppettJ. MoormanA.V. GouldenN. Genotype-Specific Minimal Residual Disease Interpretation Improves Stratification in Pediatric Acute Lymphoblastic Leukemia.J. Clin. Oncol.2018361344310.1200/JCO.2017.74.044929131699
    [Google Scholar]
  27. Sanz-PamplonaR. MelasM. MaozA. SchmitS.L. RennertH. LejbkowiczF. GreensonJ.K. SanjuanX. Lopez-ZambranoM. AlonsoM.H. QuC. McDonnellK.J. IdosG.E. VignaliM. EmersonR. FieldsP. GuinóE. SantosC. SalazarR. RobinsH.S. RennertG. GruberS.B. MorenoV. Lymphocytic infiltration in stage II microsatellite stable colorectal tumors: A retrospective prognosis biomarker analysis.PLoS Med.2020179e100329210.1371/journal.pmed.100329232970670
    [Google Scholar]
  28. Ingold HeppnerB. UntchM. DenkertC. PfitznerB.M. LedererB. SchmittW. EidtmannH. FaschingP.A. TeschH. SolbachC. RezaiM. ZahmD.M. HolmsF. GladosM. KrabischP. HeckE. OberA. LorenzP. DieboldK. HabeckJ.O. LoiblS. Tumor-Infiltrating Lymphocytes: A Predictive and Prognostic Biomarker in Neoadjuvant-Treated HER2-Positive Breast Cancer.Clin. Cancer Res.201622235747575410.1158/1078‑0432.CCR‑15‑233827189162
    [Google Scholar]
  29. LiJ. WangJ. ChenR. BaiY. LuX. The prognostic value of tumor-infiltrating T lymphocytes in ovarian cancer.Oncotarget201789156211563110.18632/oncotarget.1491928152503
    [Google Scholar]
  30. LiJ. TangY. HuangL. YuQ. HuG. ZouY. YuanX. A high number of stromal tumor-infiltrating lymphocytes is a favorable independent prognostic factor in M0 (stages I-III) esophageal squamous cell carcinoma.Dis. Esophagus20173011710.1093/dote/dox00627868286
    [Google Scholar]
  31. XuQiaoshi Prognostic Value of Tumor-Infiltrating Lymphocytes for Patients With Head and Neck Squamous Cell Carcinoma.Transl Oncol2017101101610.1016/j.tranon.2016.10.005
    [Google Scholar]
  32. FengW. LiY. ShenL. CaiX.W. ZhuZ.F. ChangJ.H. XiangJ.Q. ZhangY.W. ChenH.Q. FuX.L. Prognostic value of tumor-infiltrating lymphocytes for patients with completely resected stage IIIA(N2) non-small cell lung cancer.Oncotarget2016767227724010.18632/oncotarget.697926811495
    [Google Scholar]
  33. KangB.W. SeoA.N. YoonS. BaeH.I. JeonS.W. KwonO.K. ChungH.Y. YuW. KangH. KimJ.G. Prognostic value of tumor-infiltrating lymphocytes in Epstein–Barr virus-associated gastric cancer.Ann. Oncol.201627349450110.1093/annonc/mdv61026673353
    [Google Scholar]
  34. Scotto-LavinoE. DuG. FrohmanM.A. 5′ end cDNA amplification using classic RACE.Nat. Protoc.2006162555256210.1038/nprot.2006.48017406509
    [Google Scholar]
  35. DawidowskaM. JółkowskaJ. SzczepańskiT. DerwichK. WachowiakJ. WittM. Implementation of the standard strategy for identification of Ig/TCR targets for minimal residual disease diagnostics in B-cell precursor ALL pediatric patients: Polish experience.Arch. Immunol. Ther. Exp. (Warsz.)200856640941810.1007/s00005‑008‑0045‑y19043668
    [Google Scholar]
  36. AntićŽ. LelieveldS.H. van der HamC.G. SonneveldE. HoogerbruggeP.M. KuiperR.P. Unravelling the Sequential Interplay of Mutational Mechanisms during Clonal Evolution in Relapsed Pediatric Acute Lymphoblastic Leukemia.Genes (Basel)202112221410.3390/genes1202021433540666
    [Google Scholar]
  37. zur StadtU. AlawiM. AdaoM. IndenbirkenD. EscherichG. HorstmannM.A. Characterization of novel, recurrent genomic rearrangements as sensitive MRD targets in childhood B-cell precursor ALL.Blood Cancer J.20199129610.1038/s41408‑019‑0257‑x31784504
    [Google Scholar]
  38. TranT.H. HungerS.P. The genomic landscape of pediatric acute lymphoblastic leukemia and precision medicine opportunities.Semin. Cancer Biol.20228414415210.1016/j.semcancer.2020.10.01333197607
    [Google Scholar]
  39. LiJ.F. DaiY.T. LilljebjörnH. ShenS.H. CuiB.W. BaiL. LiuY.F. QianM.X. KubotaY. KiyoiH. MatsumuraI. MiyazakiY. OlssonL. TanA.M. AriffinH. ChenJ. TakitaJ. YasudaT. ManoH. JohanssonB. YangJ.J. YeohA.E.J. HayakawaF. ChenZ. PuiC.H. FioretosT. ChenS.J. HuangJ.Y. Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1,223 cases.Proc. Natl. Acad. Sci. USA201811550E11711E1172010.1073/pnas.181439711530487223
    [Google Scholar]
  40. BeneM.C. CastoldiG. KnappW. LudwigW.D. MatutesE. OrfaoA. van’t VeerM.B. Proposals for the immunological classification of acute leukemias.Leukemia1995910178317867564526
    [Google Scholar]
  41. WangY.F. ZhangG. JiangY.M. GaoJ. [Relationship between Immune Differentiation Antigen and Minimal Residual Disease in Childhood B-ALL].Zhongguo Shi Yan Xue Ye Xue Za Zhi20182651301130810.7534/j.issn.1009‑2137.2018.05.00830295242
    [Google Scholar]
  42. CavéH. van der Werff ten BoschJ. SuciuS. GuidalC. WaterkeynC. OttenJ. BakkusM. ThielemansK. GrandchampB. VilmerE. NelkenB. FournierM. BoutardP. LebrunE. MéchinaudF. GarandR. RobertA. DastugueN. PlouvierE. RacadotE. FersterA. GyselinckJ. FenneteauO. DuvalM. SolbuG. ManelA-M. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer-Childhood Leukemia Cooperative Group.N. Engl. J. Med.1998339959159810.1056/NEJM1998082733909049718378
    [Google Scholar]
  43. van DongenJ.J.M. SeriuT. Panzer-GrümayerE.R. BiondiA. Pongers-WillemseM.J. CorralL. StolzF. SchrappeM. MaseraG. KampsW.A. GadnerH. van WeringE.R. LudwigW.D. BassoG. de BruijnM.A.C. CazzanigaG. HettingerK. van der Does-van den BergA. HopW.C.J. RiehmH. BartramC.R. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood.Lancet199835291421731173810.1016/S0140‑6736(98)04058‑69848348
    [Google Scholar]
  44. O’ConnorD. MoormanA.V. WadeR. HancockJ. TanR.M.R. BartramJ. MoppettJ. SchwabC. PatrickK. HarrisonC.J. HoughR. GouldenN. VoraA. SamarasingheS. Use of Minimal Residual Disease Assessment to Redefine Induction Failure in Pediatric Acute Lymphoblastic Leukemia.J. Clin. Oncol.201735666066710.1200/JCO.2016.69.627828045622
    [Google Scholar]
  45. BassanR. SpinelliO. OldaniE. IntermesoliT. TosiM. PerutaB. RossiG. BorlenghiE. PoglianiE.M. TerruzziE. FabrisP. CassibbaV. Lambertenghi-DeliliersG. CortelezziA. BosiA. GianfaldoniG. CiceriF. BernardiM. GallaminiA. MatteiD. Di BonaE. RomaniC. ScattolinA.M. BarbuiT. RambaldiA. Improved risk classification for risk-specific therapy based on the molecular study of minimal residual disease (MRD) in adult acute lymphoblastic leukemia (ALL).Blood2009113184153416210.1182/blood‑2008‑11‑18513219141862
    [Google Scholar]
  46. RiberaJ.M. OriolA. MorgadesM. MontesinosP. SarràJ. González-CamposJ. BrunetS. TormoM. Fernández-AbellánP. GuàrdiaR. BernalM.T. EsteveJ. BarbaP. MorenoM.J. BermúdezA. CladeraA. EscodaL. García-BoyeroR. del PotroE. BerguaJ. AmigoM.L. GrandeC. RabuñalM.J. Hernández-RivasJ.M. FeliuE. Treatment of high-risk Philadelphia chromosome-negative acute lymphoblastic leukemia in adolescents and adults according to early cytologic response and minimal residual disease after consolidation assessed by flow cytometry: Final results of the PETHEMA ALL-AR-03 trial.J. Clin. Oncol.201432151595160410.1200/JCO.2013.52.242524752047
    [Google Scholar]
  47. ConterV. BartramC.R. ValsecchiM.G. SchrauderA. Panzer-GrümayerR. MörickeA. AricòM. ZimmermannM. MannG. De RossiG. StanullaM. LocatelliF. BassoG. NiggliF. BarisoneE. HenzeG. LudwigW.D. HaasO.A. CazzanigaG. KoehlerR. SilvestriD. BradtkeJ. ParasoleR. BeierR. van DongenJ.J.M. BiondiA. SchrappeM. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: Results in 3184 patients of the AIEOP-BFM ALL 2000 study.Blood2010115163206321410.1182/blood‑2009‑10‑24814620154213
    [Google Scholar]
  48. GökbugetN. KnebaM. RaffT. TrautmannH. BartramC.R. ArnoldR. FietkauR. FreundM. GanserA. LudwigW.D. MaschmeyerG. RiederH. SchwartzS. ServeH. ThielE. BrüggemannM. HoelzerD. Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies.Blood201212091868187610.1182/blood‑2011‑09‑37771322442346
    [Google Scholar]
  49. Kheira BeldjordS. C. Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia.Blood20141231243739374910.1182/blood‑2014‑01‑54769524740809
    [Google Scholar]
  50. BeldjordK. ChevretS. AsnafiV. HuguetF. BoullandM.L. LeguayT. ThomasX. CayuelaJ.M. GrardelN. ChalandonY. BoisselN. SchaeferB. DelabesseE. CavéH. ChevallierP. BuzynA. FestT. RemanO. VernantJ.P. LhéritierV. BénéM.C. LafageM. MacintyreE. IfrahN. DombretH. Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia.Blood2014123243739374910.1182/blood‑2014‑01‑54769524740809
    [Google Scholar]
  51. PuiC.H. RellingM.V. DowningJ.R. Acute lymphoblastic leukemia.N. Engl. J. Med.2004350151535154810.1056/NEJMra02300115071128
    [Google Scholar]
  52. RubnitzJ.E. WichlanD. DevidasM. ShusterJ. LindaS.B. KurtzbergJ. BellB. HungerS.P. ChauvenetA. PuiC.H. CamittaB. PullenJ. Prospective analysis of TEL gene rearrangements in childhood acute lymphoblastic leukemia: A Children’s Oncology Group study.J. Clin. Oncol.200826132186219110.1200/JCO.2007.14.355218445843
    [Google Scholar]
  53. RubnitzJ.E. DowningJ.R. PuiC.H. ShurtleffS.A. RaimondiS.C. EvansW.E. HeadD.R. CristW.M. RiveraG.K. HancockM.L. BoyettJ.M. BuijsA. GrosveldG. BehmF.G. TEL gene rearrangement in acute lymphoblastic leukemia: A new genetic marker with prognostic significance.J. Clin. Oncol.19971531150115710.1200/JCO.1997.15.3.11509060558
    [Google Scholar]
  54. BorkhardtA. CazzanigaG. ViehmannS. ValsecchiM.G. LudwigW.D. BurciL. MangioniS. SchrappeM. RiehmH. LampertF. BassoG. MaseraG. HarbottJ. BiondiA. Incidence and clinical relevance of TEL/AML1 fusion genes in children with acute lymphoblastic leukemia enrolled in the German and Italian multicenter therapy trials.Blood199790257157710.1182/blood.V90.2.5719226156
    [Google Scholar]
  55. ShagoM. AblaO. HitzlerJ. WeitzmanS. AbdelhaleemM. Frequency and outcome of pediatric acute lymphoblastic leukemia with ZNF384 gene rearrangements including a novel translocation resulting in an ARID1B/ZNF384 gene fusion.Pediatr. Blood Cancer201663111915192110.1002/pbc.2611627392123
    [Google Scholar]
  56. MeffreE. MililiM. Blanco-BetancourtC. AntunesH. NussenzweigM.C. SchiffC. Immunoglobulin heavy chain expression shapes the B cell receptor repertoire in human B cell development.J. Clin. Invest.2001108687988610.1172/JCI1305111560957
    [Google Scholar]
  57. MaityP.C. BilalM. KoningM.T. YoungM. van BergenC.A.M. RennaV. NicolòA. DattaM. Gentner-GöbelE. BarendseR.S. SomersS.F. de GroenR.A.L. VermaatJ.S.P. SteinbrecherD. SchneiderC. TauschE. BittoloT. BombenR. MazzarelloA.N. del PoetaG. KroesW.G.M. van WezelJ.T. ImkellerK. BusseC.E. DeganoM. BakchoulT. SchulzA.R. MeiH. GhiaP. KottaK. StamatopoulosK. WardemannH. ZucchettoA. ChiorazziN. GatteiV. StilgenbauerS. VeelkenH. JumaaH. IGLV3-21 * 01 is an inherited risk factor for CLL through the acquisition of a single-point mutation enabling autonomous BCR signaling.Proc. Natl. Acad. Sci. USA202011784320432710.1073/pnas.191381011732047037
    [Google Scholar]
  58. NadeuF. RoyoR. ClotG. Duran-FerrerM. NavarroA. MartínS. LuJ. ZenzT. BaumannT. JaresP. PuenteX.S. Martín-SuberoJ.I. DelgadoJ. CampoE. IGLV3-21R110 identifies an aggressive biological subtype of chronic lymphocytic leukemia with intermediate epigenetics.Blood2021137212935294610.1182/blood.202000831133211804
    [Google Scholar]
  59. Del GiudiceI. ChiarettiS. SantangeloS. TavolaroS. PeragineN. MarinelliM. IlariC. RaponiS. MessinaM. NanniM. MauroF.R. PiciocchiA. BontempiK. RossiD. GaidanoG. GuariniA. FoàR. Stereotyped subset #1 chronic lymphocytic leukemia: A direct link between B-cell receptor structure, function, and patients’ prognosis.Am. J. Hematol.2014891748210.1002/ajh.2359124030933
    [Google Scholar]
  60. NCCN The NCCN Pediatric Acute Lymphoblastic Leukemia clinical practice guidelines in oncology.2023Available From: https://www.nccn.org/login?ReturnURL=https://www.nccn.org/professionals/physician_gls/pdf/ped_all.pdf
/content/journals/cg/10.2174/0113892029319425240813074610
Loading
/content/journals/cg/10.2174/0113892029319425240813074610
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test