Skip to content
2000
Volume 26, Issue 2
  • ISSN: 1389-2029
  • E-ISSN: 1875-5488

Abstract

Introduction

The gut microbiota plays a crucial role in maintaining human health, and probiotics have gained significant attention for their potential benefits. Among the diverse array of gut bacteria, and spp. have emerged as promising candidates for their putative probiotic properties.

Methods

In this study, we conducted a comprehensive comparative analysis of the genomes of and to decipher their probiotic potential. Utilizing a range of bioinformatics tools, we evaluated various genomic attributes, including functional gene content, metabolic pathways, antimicrobial peptide production, adhesion factors, and stress response elements. These findings revealed distinctive genomic signatures between the two genera. genomes exhibited a high prevalence of mucin-degrading enzymes, suggesting a specialized adaptation for mucin utilization in the gut environment.

Results

Additionally, the presence of specific pathways for short-chain fatty acid production highlighted its potential impact on host health. genomes, on the other hand, demonstrated a diverse repertoire of functional genes associated with probiotic attributes, including the production of antimicrobial peptides and adhesion factors, indicating potential for host-microbe interactions and immune modulation. Furthermore, this analysis unveiled the genetic basis of stress tolerance in both genera, revealing conserved mechanisms for surviving the dynamic conditions of the gut ecosystem.

Conclusion

This study also shed light on the distribution of antibiotic-resistance genes, allowing us to assess safety concerns associated with their potential use as probiotics. Overall, this comparative exploration provides valuable insights into the genomic foundation of and probiotic potential. These findings contribute to the understanding of their respective roles within the gut microbiota and offer a foundation for further experimental investigations. As probiotic applications continue to expand, this study advances our knowledge of the genetic underpinnings that govern their functionality and highlights promising avenues for future therapeutic interventions and personalized health strategies.

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029317403240815044408
2024-08-23
2025-06-21
Loading full text...

Full text loading...

References

  1. BelizárioJ. E. FaintuchJ. Microbiome and Gut Dysbiosis.Experientia Supplementum201810945947610.1007/978‑3‑319‑74932‑7_13
    [Google Scholar]
  2. ZoetendalE.G. Rajilić-StojanovićM. de VosW.M. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota.Gut200857111605161510.1136/gut.2007.13360318941009
    [Google Scholar]
  3. BäckhedF. FraserC.M. RingelY. SandersM.E. SartorR.B. ShermanP.M. VersalovicJ. YoungV. FinlayB.B. Defining a healthy human gut microbiome: Current concepts, future directions, and clinical applications.Cell Host Microbe201212561162210.1016/j.chom.2012.10.01223159051
    [Google Scholar]
  4. DerrienM. van Hylckama VliegJ.E.T. Fate, activity, and impact of ingested bacteria within the human gut microbiota.Trends Microbiol.201523635436610.1016/j.tim.2015.03.00225840765
    [Google Scholar]
  5. PostlerT.S. GhoshS. Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System.Cell Metab.201726111013010.1016/j.cmet.2017.05.00828625867
    [Google Scholar]
  6. SunJ. ChangE.B. Exploring gut microbes in human health and disease: Pushing the envelope.Genes Dis.20141213213910.1016/j.gendis.2014.08.00125642449
    [Google Scholar]
  7. PapadimitriouK. ZoumpopoulouG. FolignéB. AlexandrakiV. KazouM. PotB. TsakalidouE. Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches.Front. Microbiol.201565810.3389/fmicb.2015.0005825741323
    [Google Scholar]
  8. SinghA. VishwakarmaV. SinghalB. Metabiotics: The Functional Metabolic Signatures of Probiotics: Current State-of-Art and Future Research Priorities—Metabiotics: Probiotics Effector Molecules.Adv. Biosci. Biotechnol.20189414718910.4236/abb.2018.94012
    [Google Scholar]
  9. YanF. PolkD.B. Probiotics and Probiotic-Derived Functional Factors—Mechanistic Insights Into Applications for Intestinal Homeostasis.Front. Immunol.202011142810.3389/fimmu.2020.0142832719681
    [Google Scholar]
  10. CozzolinoA. VergalitoF. TremonteP. IorizzoM. LombardiS.J. SorrentinoE. LuongoD. CoppolaR. Di MarcoR. SucciM. Preliminary Evaluation of the Safety and Probiotic Potential of Akkermansia muciniphila DSM 22959 in Comparison with Lactobacillus rhamnosus GG.Microorganisms20208218910.3390/microorganisms802018932019075
    [Google Scholar]
  11. DaoM.C. EverardA. Aron-WisnewskyJ. SokolovskaN. PriftiE. VergerE.O. KayserB.D. LevenezF. ChillouxJ. HoylesL. DumasM.E. RizkallaS.W. DoréJ. CaniP.D. ClémentK. MICRO-Obes Consortium.Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology.Gut201665342643610.1136/gutjnl‑2014‑30877826100928
    [Google Scholar]
  12. MdF. ShishirM. YousufZ. KhanM.S.S. Next-generation probiotics - the future of biotherapeutics.Microb. Bioact.20225115616310.25163/microbbioacts.514309
    [Google Scholar]
  13. SalminenS. von WrightA. Lactic Acid Bacteria: Microbiological and Functional Aspects.3rd edCRC Press200410.1201/9780824752033
    [Google Scholar]
  14. CaniP.D. DepommierC. DerrienM. EverardA. de VosW.M. Akkermansia muciniphila: Paradigm for next-generation beneficial microorganisms.Nat. Rev. Gastroenterol. Hepatol.2022191062563710.1038/s41575‑022‑00631‑935641786
    [Google Scholar]
  15. CristoforiF. DargenioV.N. DargenioC. MinielloV.L. BaroneM. FrancavillaR. Anti-Inflammatory and Immunomodulatory Effects of Probiotics in Gut Inflammation: A Door to the Body.Front. Immunol.20211257838610.3389/fimmu.2021.57838633717063
    [Google Scholar]
  16. ChowdhuryA. HossainM. MostazirN. MdF. BillahM.M. AhmedM. From Buffalo Yoghurt for Probiotic and Antibacterial Activity.Screening of Lactobacillus spp.J. Bacteriol. Parasitol.20123815610.4172/2155‑9597.1000156
    [Google Scholar]
  17. ChowdhuryA. MalakerR. HossainM. MdF. NoorR. AhmedM. Bacteriocin Profiling of Probiotic Lactobacillus spp. Isolated from Yoghurt.International Journal of Pharmaceutical Chemistry201335056
    [Google Scholar]
  18. CorsettiA. SettanniL. Lactobacilli in sourdough fermentation.Food Res. Int.200740553955810.1016/j.foodres.2006.11.001
    [Google Scholar]
  19. RiesenfeldC.S. SchlossP.D. HandelsmanJ. Metagenomics: genomic analysis of microbial communities.Annu. Rev. Genet.200438152555210.1146/annurev.genet.38.072902.09121615568985
    [Google Scholar]
  20. Chandra MohanaN. Yashavantha RaoH.C. RakshithD. MithunP.R. NuthanB.R. SatishS. Omics based approach for biodiscovery of microbial natural products in antibiotic resistance era.J. Genet. Eng. Biotechnol.20181611810.1016/j.jgeb.2018.01.00630647697
    [Google Scholar]
  21. ChandranH. MeenaM. SharmaK. Microbial Biodiversity and Bioremediation Assessment Through Omics Approaches.Frontiers in Environmental Chemistry2020157032610.3389/fenvc.2020.570326
    [Google Scholar]
  22. LeBlancJ.G. MilaniC. de GioriG.S. SesmaF. van SinderenD. VenturaM. Bacteria as vitamin suppliers to their host: a gut microbiota perspective.Curr. Opin. Biotechnol.201324216016810.1016/j.copbio.2012.08.00522940212
    [Google Scholar]
  23. UmbrelloG. EspositoS. Microbiota and neurologic diseases: potential effects of probiotics.J. Transl. Med.201614129810.1186/s12967‑016‑1058‑727756430
    [Google Scholar]
  24. SeemannT. Prokka: rapid prokaryotic genome annotation.Bioinformatics201430142068206910.1093/bioinformatics/btu15324642063
    [Google Scholar]
  25. BrettinT. DavisJ.J. DiszT. EdwardsR.A. GerdesS. OlsenG.J. OlsonR. OverbeekR. ParrelloB. PuschG.D. ShuklaM. ThomasonJ.A.III StevensR. VonsteinV. WattamA.R. XiaF. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes.Sci. Rep.201551836510.1038/srep0836525666585
    [Google Scholar]
  26. KanehisaM. SatoY. MorishimaK. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences.J. Mol. Biol.2016428472673110.1016/j.jmb.2015.11.00626585406
    [Google Scholar]
  27. JolleyK.A. BrayJ.E. MaidenM.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications.Wellcome Open Res.2018312410.12688/wellcomeopenres.14826.130345391
    [Google Scholar]
  28. EdgarR.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput.Nucleic Acids Res.20043251792179710.1093/nar/gkh34015034147
    [Google Scholar]
  29. StamatakisA. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Bioinformatics20143091312131310.1093/bioinformatics/btu03324451623
    [Google Scholar]
  30. StamatakisA. HooverP. RougemontJ. A rapid bootstrap algorithm for the RAxML Web servers.Syst. Biol.200857575877110.1080/1063515080242964218853362
    [Google Scholar]
  31. OverbeekR. BegleyT. ButlerR.M. ChoudhuriJ.V. ChuangH-Y. CohoonM. de Crécy-LagardV. DiazN. DiszT. EdwardsR. FonsteinM. FrankE.D. GerdesS. GlassE.M. GoesmannA. HansonA. Iwata-ReuylD. JensenR. JamshidiN. KrauseL. KubalM. LarsenN. LinkeB. McHardyA.C. MeyerF. NeuwegerH. OlsenG. OlsonR. OstermanA. PortnoyV. PuschG.D. RodionovD.A. RückertC. SteinerJ. StevensR. ThieleI. VassievaO. YeY. ZagnitkoO. VonsteinV. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes.Nucleic Acids Res.200533175691570210.1093/nar/gki86616214803
    [Google Scholar]
  32. SeemannT. Tseemann/abricate [Perl]2024Available at: https://github.com/tseemann/abricate
  33. PageA.J. CumminsC.A. HuntM. WongV.K. ReuterS. HoldenM.T.G. FookesM. FalushD. KeaneJ.A. ParkhillJ. Roary: rapid large-scale prokaryote pan genome analysis.Bioinformatics201531223691369310.1093/bioinformatics/btv42126198102
    [Google Scholar]
  34. ShermanB.T. HaoM. QiuJ. JiaoX. BaselerM.W. LaneH.C. ImamichiT. ChangW. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update).Nucleic Acids Res.202250W1W216W22110.1093/nar/gkac19435325185
    [Google Scholar]
  35. van HeelA.J. de JongA. SongC. VielJ.H. KokJ. KuipersO.P. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins.Nucleic Acids Res.201846W1W278W28110.1093/nar/gky38329788290
    [Google Scholar]
  36. CantalapiedraC.P. Hernández-PlazaA. LetunicI. BorkP. Huerta-CepasJ. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale.Mol. Biol. Evol.202138125825582910.1093/molbev/msab29334597405
    [Google Scholar]
  37. KrzywinskiM. ScheinJ. Birolİ. ConnorsJ. GascoyneR. HorsmanD. JonesS.J. MarraM.A. Circos: An information aesthetic for comparative genomics.Genome Res.20091991639164510.1101/gr.092759.10919541911
    [Google Scholar]
  38. AlikhanN.F. PettyN.K. Ben ZakourN.L. BeatsonS.A. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons.BMC Genomics201112140210.1186/1471‑2164‑12‑40221824423
    [Google Scholar]
  39. BlinK. ShawS. AugustijnH.E. ReitzZ.L. BiermannF. AlanjaryM. FetterA. TerlouwB.R. MetcalfW.W. HelfrichE.J.N. van WezelG.P. MedemaM.H. WeberT. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation.Nucleic Acids Res.202351W1W46W5010.1093/nar/gkad34437140036
    [Google Scholar]
  40. ChenL. ZhengD. LiuB. YangJ. JinQ. VFDB 2016: hierarchical and refined dataset for big data analysis—10 years on.Nucleic Acids Res.201644D1D694D69710.1093/nar/gkv123926578559
    [Google Scholar]
  41. FeldgardenM. BroverV. HaftD.H. PrasadA.B. SlottaD.J. TolstoyI. TysonG.H. ZhaoS. HsuC.H. McDermottP.F. TadesseD.A. MoralesC. SimmonsM. TillmanG. WasilenkoJ. FolsterJ.P. KlimkeW. Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates.Antimicrob. Agents Chemother.20196311e00483-1910.1128/AAC.00483‑1931427293
    [Google Scholar]
  42. ZankariE. HasmanH. CosentinoS. VestergaardM. RasmussenS. LundO. AarestrupF.M. LarsenM.V. Identification of acquired antimicrobial resistance genes.J. Antimicrob. Chemother.201267112640264410.1093/jac/dks26122782487
    [Google Scholar]
  43. JiaB. RaphenyaA.R. AlcockB. WaglechnerN. GuoP. TsangK.K. LagoB.A. DaveB.M. PereiraS. SharmaA.N. DoshiS. CourtotM. LoR. WilliamsL.E. FryeJ.G. ElsayeghT. SardarD. WestmanE.L. PawlowskiA.C. JohnsonT.A. BrinkmanF.S.L. WrightG.D. McArthurA.G. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database.Nucleic Acids Res.201745D1D566D57310.1093/nar/gkw100427789705
    [Google Scholar]
  44. Benítez-PáezA. Gómez Del PulgarE.M. KjølbækL. BraheL.K. AstrupA. LarsenL. SanzY. Impact of dietary fiber and fat on gut microbiota re-modeling and metabolic health.Trends Food Sci. Technol.20165720121210.1016/j.tifs.2016.11.001
    [Google Scholar]
  45. The role of dietary proteins and carbohydrates in gut microbiome composition and activity: A review.Food Hydrocolloids202112010691110.1016/j.foodhyd.2021.106911
    [Google Scholar]
  46. LeBlancJ.G. ChainF. MartínR. Bermúdez-HumaránL.G. CourauS. LangellaP. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria.Microb. Cell Fact.20171617910.1186/s12934‑017‑0691‑z28482838
    [Google Scholar]
  47. PhippsO. Al-HassiH.O. QuraishiM.N. KumarA. BrookesM.J. Influence of iron on the gut microbiota in colorectal cancer.Nutrients2020129251210.3390/nu1209251232825236
    [Google Scholar]
  48. RusuI.G. SuharoschiR. VodnarD.C. PopC.R. SocaciS.A. VulturarR. IstratiM. MoroșanI. FărcașA.C. KerezsiA.D. MureșanC.I. PopO.L. Iron supplementation influence on the gut microbiota and probiotic intake effect in iron deficiency—a literature-based review.Nutrients2020127199310.3390/nu1207199332635533
    [Google Scholar]
  49. PeiZ. SadiqF. A. HanX. ZhaoJ. ZhangH. RossR. P. LuW. ChenW. Comprehensive scanning of prophages in lactobacillus: Distribution, diversity, antibiotic resistance genes, and linkages with CRISPR-Cas systems.mSystems20216310.1128/mSystems.01211‑20
    [Google Scholar]
  50. Bermudez-BritoM. Plaza-DíazJ. Muñoz-QuezadaS. Gómez-LlorenteC. GilA. Probiotic mechanisms of action.Ann. Nutr. Metab.201261216017410.1159/00034207923037511
    [Google Scholar]
  51. OelschlaegerT.A. Mechanisms of probiotic actions – A review.Int. J. Med. Microbiol.20103001576210.1016/j.ijmm.2009.08.00519783474
    [Google Scholar]
  52. Surendran NairM. AmalaradjouM.A. VenkitanarayananK. Chapter One—Antivirulence Properties of Probiotics in Combating Microbial Pathogenesis.Advances in Applied Microbiology. SariaslaniS. GaddG.M. Academic Press2017Vol. 9812910.1016/bs.aambs.2016.12.001
    [Google Scholar]
  53. LiB. SelmiC. TangR. GershwinM.E. MaX. The microbiome and autoimmunity: a paradigm from the gut–liver axis.Cell. Mol. Immunol.201815659560910.1038/cmi.2018.729706647
    [Google Scholar]
  54. GloverJ.S. TicerT.D. EngevikM.A. Characterizing the mucin-degrading capacity of the human gut microbiota.Sci. Rep.2022121845610.1038/s41598‑022‑11819‑z35589783
    [Google Scholar]
  55. EverardA. BelzerC. GeurtsL. OuwerkerkJ.P. DruartC. BindelsL.B. GuiotY. DerrienM. MuccioliG.G. DelzenneN.M. de VosW.M. CaniP.D. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity.Proc. Natl. Acad. Sci. USA2013110229066907110.1073/pnas.121945111023671105
    [Google Scholar]
  56. HiippalaK. JouhtenH. RonkainenA. HartikainenA. KainulainenV. JalankaJ. SatokariR. The Potential of Gut Commensals in Reinforcing Intestinal Barrier Function and Alleviating Inflammation.Nutrients201810898810.3390/nu1008098830060606
    [Google Scholar]
  57. OttmanN. ReunanenJ. MeijerinkM. PietiläT.E. KainulainenV. KlievinkJ. HuuskonenL. AalvinkS. SkurnikM. BoerenS. SatokariR. MercenierA. PalvaA. SmidtH. de VosW.M. BelzerC. Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function.PLoS One2017123e017300410.1371/journal.pone.017300428249045
    [Google Scholar]
  58. Ramos MeyersG. SamoudaH. BohnT. Short Chain Fatty Acid Metabolism in Relation to Gut Microbiota and Genetic Variability.Nutrients20221424536110.3390/nu1424536136558520
    [Google Scholar]
  59. Ríos-CoviánD. Ruas-MadiedoP. MargollesA. GueimondeM. de los Reyes-GavilánC.G. SalazarN. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health.Front. Microbiol.2016718510.3389/fmicb.2016.0018526925050
    [Google Scholar]
  60. Rodríguez-CarrioJ. SalazarN. MargollesA. GonzálezS. GueimondeM. de los Reyes-GavilánC.G. SuárezA. Free Fatty Acids Profiles Are Related to Gut Microbiota Signatures and Short-Chain Fatty Acids.Front. Immunol.2017882310.3389/fimmu.2017.0082328791008
    [Google Scholar]
  61. BuckB.L. AltermannE. SvingerudT. KlaenhammerT.R. Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM.Appl. Environ. Microbiol.200571128344835110.1128/AEM.71.12.8344‑8351.200516332821
    [Google Scholar]
  62. Van TassellM.L. MillerM.J. Lactobacillus adhesion to mucus.Nutrients20113561363610.3390/nu305061322254114
    [Google Scholar]
  63. DesmondC. FitzgeraldG.F. StantonC. RossR.P. Improved stress tolerance of GroESL-overproducing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338.Appl. Environ. Microbiol.200470105929593610.1128/AEM.70.10.5929‑5936.200415466535
    [Google Scholar]
  64. RealeA. Di RenzoT. RossiF. ZottaT. IacuminL. PreziusoM. ParenteE. SorrentinoE. CoppolaR. Tolerance of Lactobacillus casei, Lactobacillus paracasei and Lactobacillus rhamnosus strains to stress factors encountered in food processing and in the gastro-intestinal tract.Lebensm. Wiss. Technol.201560272172810.1016/j.lwt.2014.10.022
    [Google Scholar]
  65. AnisimovaE.A. YarullinaD.R. Antibiotic Resistance of LACTOBACILLUS Strains.Curr. Microbiol.201976121407141610.1007/s00284‑019‑01769‑731555856
    [Google Scholar]
  66. CampedelliI. MathurH. SalvettiE. ClarkeS. ReaM.C. TorrianiS. RossR.P. HillC. O’TooleP.W. Genus-Wide Assessment of Antibiotic Resistance in Lactobacillus spp.Appl. Environ. Microbiol.2019851e01738-1810.1128/AEM.01738‑1830366997
    [Google Scholar]
  67. FilardiR. GargariG. MoraD. ArioliS. Characterization of antibiotic-resistance traits in Akkermansia muciniphila strains of human origin.Sci. Rep.20221211942610.1038/s41598‑022‑23980‑636371559
    [Google Scholar]
  68. LamberteL.E. van SchaikW. Antibiotic resistance in the commensal human gut microbiota.Curr. Opin. Microbiol.20226810215010.1016/j.mib.2022.10215035490629
    [Google Scholar]
  69. ZhaiQ. FengS. ArjanN. ChenW. A next generation probiotic, Akkermansia muciniphila.Crit. Rev. Food Sci. Nutr.201959193227323610.1080/10408398.2018.151772530373382
    [Google Scholar]
  70. Di CerboA. PalmieriB. AponteM. Morales-MedinaJ.C. IannittiT. Mechanisms and therapeutic effectiveness of lactobacilli.J. Clin. Pathol.201669318720310.1136/jclinpath‑2015‑20297626578541
    [Google Scholar]
  71. ZouY. ChenT. Engineered <em>Akkermansia muciniphila</em>: A promising agent against diseases (Review).Exp. Ther. Med.2020206110.3892/etm.2020.941533209129
    [Google Scholar]
  72. Aguilar-ToaláJ.E. HallF.G. Urbizo-ReyesU.C. GarciaH.S. Vallejo-CordobaB. González-CórdovaA.F. Hernández-MendozaA. LiceagaA.M. In Silico prediction and in vitro assessment of multifunctional properties of postbiotics obtained from two probiotic bacteria.Probiotics Antimicrob. Proteins202012260862210.1007/s12602‑019‑09568‑z31280464
    [Google Scholar]
  73. LuoJ. JiangL. GaoB. ChaiY. BaoY. Comprehensive in silico analysis of the probiotics, and preparation of compound probiotics-Polygonatum sibiricum saponin with hypoglycemic properties.Food Chem.2023404Pt A13456910.1016/j.foodchem.2022.13456936244070
    [Google Scholar]
  74. VijayalakshmiS. AdeyemiD.E. ChoiI.Y. SultanG. MadarI.H. ParkM.K. Comprehensive in silico analysis of lactic acid bacteria for the selection of desirable probiotics.Lebensm. Wiss. Technol.202013010961710.1016/j.lwt.2020.109617
    [Google Scholar]
  75. HenningS.M. SummanenP.H. LeeR.P. YangJ. FinegoldS.M. HeberD. LiZ. Pomegranate ellagitannins stimulate the growth of Akkermansia muciniphila in vivo.Anaerobe201743566010.1016/j.anaerobe.2016.12.00327940244
    [Google Scholar]
  76. LinS.Y. AyresJ.W. WinklerW.Jr SandineW.E. Lactobacillus effects on cholesterol: in vitro and in vivo results.J. Dairy Sci.198972112885289910.3168/jds.S0022‑0302(89)79439‑X2516523
    [Google Scholar]
  77. OyetayoV.O. AdetuyiF.C. AkinyosoyeF.A. Safety and protective effect of Lactobacillus acidophilus and Lactobacillus casei used as probiotic agent in vivo.Afr. J. Biotechnol.200321144845210.5897/AJB2003.000‑1090
    [Google Scholar]
  78. SgourasD. MaragkoudakisP. PetrakiK. Martinez-GonzalezB. EriotouE. MichopoulosS. KalantzopoulosG. TsakalidouE. MentisΑ. In vitro and in vivo inhibition of Helicobacter pylori by Lactobacillus casei strain Shirota.Appl. Environ. Microbiol.200470151852610.1128/AEM.70.1.518‑526.200414711683
    [Google Scholar]
  79. AminT. KarimM.A.B. OysheI. HossainA. KarimT. SultanaJ. BulbulN. ShishirM. SafaA. MdF. Unlocking nature’s treasure trove: Exploring microorganisms for novel bioactives.Journal of Angiotherapy2023711810.25163/angiotherapy.719345
    [Google Scholar]
/content/journals/cg/10.2174/0113892029317403240815044408
Loading
/content/journals/cg/10.2174/0113892029317403240815044408
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Akkermansia muciniphila; genome; In silico; Lactobacillus; probiotic; sequence
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test