Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1389-2029
  • E-ISSN: 1875-5488

Abstract

Introduction

Currently, macaques are used as animal models for human disease in biomedical research. There are two macaques species widely used as animal models, ., cynomolgus macaques and rhesus macaques. These two primates distribute widely, and their natural habitats are different. Cynomolgus macaques distribute in tropical climates, while rhesus macaques mostly distribute in relatively cold environments, and cynomolgus macaques have a common frostbite problem during winter when they are transferred to cold environments.

Methods

In order to explore the molecular mechanisms underlying the temperature adaptation in macaques, genetic analysis and natural selection tests were performed. Based on the analysis of heat shock protein genes, DNAJC22, DNAJC28, and HSF5 showed positive selection signals. To these 3 genes, the significantly differential expression had been confirmed between cynomolgus macaques and Chinese rhesus macaques.

Results

Molecular evolution analysis showed that mutations of DNAJC22, DNAJC28, and HSF5 in Chinese rhesus macaques could enable them to gain the ability to rapidly regulate body temperature. The heat shock proteins provided an important function for Chinese rhesus macaques, allowing them to adapt to a wide range of temperatures and spread widely. The selection time that was estimated suggested that the cold adaptation of Chinese rhesus macaques coincided with the time that the modern human populations migrated northward from tropic regions to relatively cold regions, and the selection genes were similar.

Conclusion

This study elucidated the evolutionary history of cynomolgus macaques and rhesus macaques from molecular adaptation. Furthermore, it provided an evolutionary perspective to reveal the different distribution and adaptation of macaques. Cynomolgus macaques is an ideal biomedical animal model to mimic human natural frostbite.

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029301969240708094053
2024-07-10
2024-12-26
Loading full text...

Full text loading...

References

  1. SmithD.G. McdonoughJ.W. GeorgeD.A. Mitochondrial DNA variation within and among regional populations of longtail macaques ( Macaca fascicularis ) in relation to other species of the fascicularis group of macaques.Am. J. Primatol.200769218219810.1002/ajp.2033717177314
    [Google Scholar]
  2. SmithD.G. McDonoughJ. Mitochondrial DNA variation in Chinese and Indian rhesus macaques (Macaca mulatta).Am. J. Primatol.200565112510.1002/ajp.2009415645455
    [Google Scholar]
  3. HernandezR.D. HubiszM.J. WheelerD.A. SmithD.G. FergusonB. RogersJ. NazarethL. IndapA. BourquinT. McPhersonJ. MuznyD. GibbsR. NielsenR. BustamanteC.D. Demographic histories and patterns of linkage disequilibrium in Chinese and Indian rhesus macaques.Science2007316582224024310.1126/science.114046217431170
    [Google Scholar]
  4. BlancherA. BonhommeM. Crouau-RoyB. TeraoK. KitanoT. SaitouN. Mitochondrial DNA sequence phylogeny of 4 populations of the widely distributed cynomolgus macaque (Macaca fascicularis fascicularis).J. Hered.200899325426410.1093/jhered/esn00318334507
    [Google Scholar]
  5. WeinsteinK.J. Climatic and altitudinal influences on variation in macaca limb morphology.Anat. Res. Int.2011201111810.1155/2011/71462422567298
    [Google Scholar]
  6. KrebsK.C. JinZ. RudersdorfR. HughesA.L. O’ConnorD.H. Unusually high frequency MHC class I alleles in Mauritian origin cynomolgus macaques.J. Immunol.200517585230523910.4049/jimmunol.175.8.523016210628
    [Google Scholar]
  7. YanG. ZhangG. FangX. ZhangY. LiC. LingF. CooperD.N. LiQ. LiY. van GoolA.J. DuH. ChenJ. ChenR. ZhangP. HuangZ. ThompsonJ.R. MengY. BaiY. WangJ. ZhuoM. WangT. HuangY. WeiL. LiJ. WangZ. HuH. YangP. LeL. StensonP.D. LiB. LiuX. BallE.V. AnN. HuangQ. ZhangY. FanW. ZhangX. LiY. WangW. KatzeM.G. SuB. NielsenR. YangH. WangJ. WangX. WangJ. Genome sequencing and comparison of two nonhuman primate animal models, the cynomolgus and Chinese rhesus macaques.Nat. Biotechnol.201129111019102310.1038/nbt.199222002653
    [Google Scholar]
  8. SchinoG. TroisiA. Behavioral thermoregulation in long-tailed macaques: Effect on social preference.Physiol. Behav.19904761125112810.1016/0031‑9384(90)90362‑82395916
    [Google Scholar]
  9. RoseM.D. Quadrupedalism in primates.Primates197314433735710.1007/BF01731356
    [Google Scholar]
  10. HladikC.M. Ecology, diet, and social patterning in old and new world primates.Socioecology and Psychology of Primates.DE GRUYTER MOUTON197533610.1515/9783110803839.3
    [Google Scholar]
  11. SoligoC. MartinR.D. Adaptive origins of primates revisited.J. Hum. Evol.200650441443010.1016/j.jhevol.2005.11.00116364405
    [Google Scholar]
  12. ShiH. TanS. ZhongH. HuW. LevineA. XiaoC. PengY. QiX. ShouW. MaR.Z. LiY. SuB. LuX. Winter temperature and UV are tightly linked to genetic changes in the p53 tumor suppressor pathway in Eastern Asia.Am. J. Hum. Genet.200984453454110.1016/j.ajhg.2009.03.00919344876
    [Google Scholar]
  13. YangZ. ShiH. MaP. ZhaoS. KongQ. BianT. GongC. ZhaoQ. LiuY. QiX. ZhangX. HanY. LiuJ. LiQ. ChenH. SuB. Darwinian positive selection on the pleiotropic effects of KITLG explain skin pigmentation and winter temperature adaptation in eurasians.Mol. Biol. Evol.20183592272228310.1093/molbev/msy13629961894
    [Google Scholar]
  14. HeY. LuoX. ZhouB. HuT. MengX. AudanoP.A. KronenbergZ.N. EichlerE.E. JinJ. GuoY. YangY. QiX. SuB. Long-read assembly of the Chinese rhesus macaque genome and identification of ape-specific structural variants.Nat. Commun.2019101423310.1038/s41467‑019‑12174‑w31530812
    [Google Scholar]
  15. EmmsD.M. KellyS. OrthoFinder: Solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy.Genome Biol.201516115710.1186/s13059‑015‑0721‑226243257
    [Google Scholar]
  16. ZhangZ. XiaoJ. WuJ. ZhangH. LiuG. WangX. DaiL. ParaAT: A parallel tool for constructing multiple protein-coding DNA alignments.Biochem. Biophys. Res. Commun.2012419477978110.1016/j.bbrc.2012.02.10122390928
    [Google Scholar]
  17. WangD. ZhangY. ZhangZ. ZhuJ. YuJ. KaKs_Calculator 2.0: A toolkit incorporating gamma-series methods and sliding window strategies.Genomics Proteomics Bioinformatics201081778010.1016/S1672‑0229(10)60008‑320451164
    [Google Scholar]
  18. WangR.J. ThomasG.W.C. RaveendranM. HarrisR.A. DoddapaneniH. MuznyD.M. CapitanioJ.P. RadivojacP. RogersJ. HahnM.W. Paternal age in rhesus macaques is positively associated with germline mutation accumulation but not with measures of offspring sociability.Genome Res.202030682683410.1101/gr.255174.11932461224
    [Google Scholar]
  19. FornesO. Castro-MondragonJ.A. KhanA. van der LeeR. ZhangX. RichmondP.A. ModiB.P. CorreardS. GheorgheM. BaranašićD. Santana-GarciaW. TanG. ChènebyJ. BallesterB. ParcyF. SandelinA. LenhardB. WassermanW.W. MathelierA. JASPAR 2020: Update of the open-access database of transcription factor binding profiles.Nucleic Acids Res.2019gkz100110.1093/nar/gkz100131701148
    [Google Scholar]
  20. DanecekP. AutonA. AbecasisG. AlbersC.A. BanksE. DePristoM.A. HandsakerR.E. LunterG. MarthG.T. SherryS.T. McVeanG. DurbinR. 1000 Genomes Project Analysis Group The variant call format and VCFtools.Bioinformatics201127152156215810.1093/bioinformatics/btr33021653522
    [Google Scholar]
  21. The 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing.Nature201046710611073
    [Google Scholar]
  22. AutonA. A global reference for human genetic variation.Nature201552675716874
    [Google Scholar]
  23. HolsingerK.E. WeirB.S. Genetics in geographically structured populations: Defining, estimating and interpreting FST.Nat. Rev. Genet.200910963965010.1038/nrg261119687804
    [Google Scholar]
  24. WillingE.M. DreyerC. van OosterhoutC. Estimates of genetic differentiation measured by F(ST) do not necessarily require large sample sizes when using many SNP markers.PLoS One201278e4264910.1371/journal.pone.004264922905157
    [Google Scholar]
  25. AlbersP.K. McVeanG. Dating genomic variants and shared ancestry in population-scale sequencing data.PLoS Biol.2020181e300058610.1371/journal.pbio.300058631951611
    [Google Scholar]
  26. ZhangC. GaoY. NingZ. LuY. ZhangX. LiuJ. XieB. XueZ. WangX. YuanK. GeX. PanY. LiuC. TianL. WangY. LuD. HohB.P. XuS. PGG.SNV: Understanding the evolutionary and medical implications of human single nucleotide variations in diverse populations.Genome Biol.201920121510.1186/s13059‑019‑1838‑531640808
    [Google Scholar]
  27. WangF. ZhangW. YangQ. KangY. FanY. WeiJ. LiuZ. DaiS. LiH. LiZ. XuL. ChuC. QuJ. SiC. JiW. LiuG.H. LongC. NiuY. Generation of a Hutchinson–Gilford progeria syndrome monkey model by base editing.Protein Cell2020111180982410.1007/s13238‑020‑00740‑832729022
    [Google Scholar]
  28. ShiL. LuoX. JiangJ. ChenY. LiuC. HuT. LiM. LinQ. LiY. HuangJ. WangH. NiuY. ShiY. StynerM. WangJ. LuY. SunX. YuH. JiW. SuB. Transgenic rhesus monkeys carrying the human MCPH1 gene copies show human-like neoteny of brain development.Natl. Sci. Rev.20196348049310.1093/nsr/nwz04334691896
    [Google Scholar]
  29. EwelsP. MagnussonM. LundinS. KällerM. MultiQC: Summarize analysis results for multiple tools and samples in a single report.Bioinformatics201632193047304810.1093/bioinformatics/btw35427312411
    [Google Scholar]
  30. ChenS. ZhouY. ChenY. GuJ. fastp: An ultra-fast all-in-one FASTQ preprocessor.Bioinformatics20183417i884i89010.1093/bioinformatics/bty56030423086
    [Google Scholar]
  31. KimD. LangmeadB. SalzbergS.L. HISAT: A fast spliced aligner with low memory requirements.Nat. Methods201512435736010.1038/nmeth.331725751142
    [Google Scholar]
  32. LiH. HandsakerB. WysokerA. FennellT. RuanJ. HomerN. MarthG. AbecasisG. DurbinR. 1000 Genome Project Data Processing Subgroup The sequence alignment/map format and SAMtools.Bioinformatics200925162078207910.1093/bioinformatics/btp35219505943
    [Google Scholar]
  33. LiaoY. SmythG.K. ShiW. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features.Bioinformatics201430792393010.1093/bioinformatics/btt65624227677
    [Google Scholar]
  34. LoveM.I. HuberW. AndersS. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.Genome Biol.2014151255010.1186/s13059‑014‑0550‑825516281
    [Google Scholar]
  35. GuZ. EilsR. SchlesnerM. Complex heatmaps reveal patterns and correlations in multidimensional genomic data.Bioinformatics201632182847284910.1093/bioinformatics/btw31327207943
    [Google Scholar]
  36. LangfelderP. HorvathS. WGCNA: An R package for weighted correlation network analysis.BMC Bioinformatics20089155910.1186/1471‑2105‑9‑55919114008
    [Google Scholar]
  37. YuG. WangL.G. HanY. HeQ.Y. clusterProfiler: An R package for comparing biological themes among gene clusters.OMICS201216528428710.1089/omi.2011.011822455463
    [Google Scholar]
  38. ParkS.J. KimY.H. HuhJ.W. LeeS.R. KimS.H. KimS.U. KimJ.S. JeongK.J. KimK.M. KimH.S. ChangK.T. Selection of new appropriate reference genes for RT-qPCR analysis via transcriptome sequencing of cynomolgus monkeys (Macaca fascicularis).PLoS One201384e6075810.1371/journal.pone.006075823613744
    [Google Scholar]
  39. CarithersL.J. MooreH.M. The genotype-tissue expression (GTEx) project.Biopreserv. Biobank.201513530730810.1089/bio.2015.29031.hmm26484569
    [Google Scholar]
  40. The GTEx Consortium atlas of genetic regulatory effects across human tissues.Science2020369650913181330
    [Google Scholar]
  41. WagnerG.P. KinK. LynchV.J. A model based criterion for gene expression calls using RNA-seq data.Theory Biosci.2013132315916410.1007/s12064‑013‑0178‑323615947
    [Google Scholar]
  42. HoriT. NakayamaT. TokuraH. HaraF. SuzukiM. Thermoregulation of the Japanese macaque living in a snowy mountain area.Jpn. J. Physiol.197727330531910.2170/jjphysiol.27.305410988
    [Google Scholar]
  43. TokuraH. HaraF. OkadaM. MekataF. OhsawaW. A comparison of thermoregulatory responses in the Japanese macaque (Macca fuscata) and the crab-eating macaque (Macaca irus) during cold exposure.Jpn. J. Physiol.197525214715210.2170/jjphysiol.25.1471152303
    [Google Scholar]
  44. TangwancharoenS. MoyG.W. BurtonR.S. Multiple modes of adaptation: Regulatory and structural evolution in a small heat shock protein gene.Mol. Biol. Evol.20183592110211910.1093/molbev/msy13830020488
    [Google Scholar]
  45. GivisiezP.E.N. FerroJ.A. FerroM.I.T. KronkaS.N. DecuypereE. MacariM. Hepatic concentration of heat shock protein 70 kD (Hsp70) in broilers subjected to different thermal treatments.Br. Poult. Sci.199940229229610.1080/0007166998772810465398
    [Google Scholar]
  46. HaqueN. LudriA. HossainS.A. AshutoshM. Comparative studies on temperature threshold for heat shock protein 70 induction in young and adult Murrah buffaloes.J. Anim. Physiol. Anim. Nutr.201296592092910.1111/j.1439‑0396.2011.01208.x21848850
    [Google Scholar]
  47. SazziniM. SchiavoG. De FantiS. MartelliP.L. CasadioR. LuiselliD. Searching for signatures of cold adaptations in modern and archaic humans: hints from the brown adipose tissue genes.Heredity2014113325926710.1038/hdy.2014.2424667833
    [Google Scholar]
  48. IgoshinA.V. GunbinK.V. YudinN.S. VoevodaM.I. Searching for signatures of cold climate adaptation in TRPM8 gene in populations of east asian ancestry.Front. Genet.20191075910.3389/fgene.2019.0075931507633
    [Google Scholar]
  49. ShiH. SuB. Origin of modern humans in East Asia: Clues from the Y chromosome.Front. Biol. China20094324124710.1007/s11515‑009‑0010‑0
    [Google Scholar]
  50. FuQ. PosthC. HajdinjakM. PetrM. MallickS. FernandesD. FurtwänglerA. HaakW. MeyerM. MittnikA. NickelB. PeltzerA. RohlandN. SlonV. TalamoS. LazaridisI. LipsonM. MathiesonI. SchiffelsS. SkoglundP. DereviankoA.P. DrozdovN. SlavinskyV. TsybankovA. CremonesiR.G. MallegniF. GélyB. VaccaE. MoralesM.R.G. StrausL.G. Neugebauer-MareschC. Teschler-NicolaM. ConstantinS. MoldovanO.T. BenazziS. PeresaniM. CoppolaD. LariM. RicciS. RonchitelliA. ValentinF. ThevenetC. WehrbergerK. GrigorescuD. RougierH. CrevecoeurI. FlasD. SemalP. ManninoM.A. CupillardC. BocherensH. ConardN.J. HarvatiK. MoiseyevV. DruckerD.G. SvobodaJ. RichardsM.P. CaramelliD. PinhasiR. KelsoJ. PattersonN. KrauseJ. PääboS. ReichD. The genetic history of ice age Europe.Nature2016534760620020510.1038/nature1799327135931
    [Google Scholar]
  51. BurgessJ.E. MacfarlaneF. Retrospective analysis of the ethnic origins of male British army soldiers with peripheral cold weather injury.J. R. Army Med. Corps20091551111510.1136/jramc‑155‑01‑0419817081
    [Google Scholar]
  52. SinghG.K. DattaA. GrewalR.S. SureshM.S. VaishampayanS.S. Pattern of chilblains in a high altitude region of Ladakh, India.Med. J. Armed Forces India201571326526910.1016/j.mjafi.2013.01.01126286795
    [Google Scholar]
  53. AbeggC. ThierryB. Macaque evolution and dispersal in insular south-east Asia.Biol. J. Linn. Soc. Lond.200275455557610.1046/j.1095‑8312.2002.00045.x
    [Google Scholar]
  54. BehrensmeyerA.K. Atmosphere. Climate change and human evolution.Science2006311576047647810.1126/science.111605116439650
    [Google Scholar]
  55. StreetS.L. KyesR.C. GrantR. FergusonB. Single nucleotide polymorphisms (SNPs) are highly conserved in rhesus (Macaca mulatta) and cynomolgus (Macaca fascicularis) macaques.BMC Genomics20078148010.1186/1471‑2164‑8‑48018166133
    [Google Scholar]
/content/journals/cg/10.2174/0113892029301969240708094053
Loading
/content/journals/cg/10.2174/0113892029301969240708094053
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test