Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-4844
  • E-ISSN: 2666-4852

Abstract

Nanomaterials due to their small size have high surface area and catalytic activity, and therefore, have found applications in forensic sample analysis. Surface engineering of these nanomaterials enhances their stability, chemical reactivity, specificity and sensitivity towards other analytes. Covalent bonds, hydrogen bonds and electrostatic interaction play a major role in attaching functional groups on the surface of various nanomaterials. Over the years, several SENMs have been developed for the analysis of forensic science samples, such as fingerprints, unlawful drugs, explosives, doping agents, chemical and biological warfare agents. These SENMs have been functionalized with a myriad of functionalization agents, such as polymers, organosilanes, acids or alkalis, and compounds of biological origin with different strategies. In this paper, the different surface engineering strategies of nanomaterials, the applications of these nanomaterials in forensic science, and the mechanism behind their detection of forensic analytes have been discussed. The challenges for using SENMs for forensic applications have also been elaborated.

Loading

Article metrics loading...

/content/journals/cfs/10.2174/2666484401666220119101815
2023-01-01
2024-11-26
Loading full text...

Full text loading...

References

  1. TharmavaramM. RawtaniD. PandeyG. Fabrication routes for one-dimensional nanostructures via block copolymers.Nano Converg.2017411210.1186/s40580‑017‑0106‑128546902
    [Google Scholar]
  2. HussainC.M. RawtaniD. PandeyG. TharmavaramM. Handbook of analytical techniques for forensic samples: current and emerging developments.1st edElsevier2021
    [Google Scholar]
  3. HemanthK. TharmavaramM. PandeyG. History of Forensic Science. Technology in Forensic Science. (1st ed.). Wiley2020pp. 116 https://onlinelibrary.wiley.com/doi/10.1002/9783527827688.ch1 10.1002/9783527827688.ch1
  4. BhattP.V. PandeyG. TharmavaramM. RawtaniD. Mustansar HussainC. Nanotechnology and taggant technology in forensic science. Technology in Forensic Science. (1st ed.). Wiley2020pp. 279301 https://onlinelibrary.wiley.com/doi/10.1002/9783527827688.ch14 10.1002/9783527827688.ch14
  5. PurohitS. PandeyG. TharmavaramM. RawtaniD. Mustansar HussainC. Sensors for the detection of illicit drugs.Technology in Forensic Science.1st edWiley2020221238 https://onlinelibrary.wiley.com/doi/10.1002/9783527827688.ch11 10.1002/9783527827688.ch11
    [Google Scholar]
  6. DubeS. TharmavaramM. PandeyG. RawtaniD. Mustansar HussainC. Sensors for the detection of biological fluids.Technology in Forensic Science.1st edWiley2020239258https://onlinelibrary.wiley.com/doi/10.1002/9783527827688.ch1210.1002/9783527827688.ch12
    [Google Scholar]
  7. KoyaniK. TharmavaramM. PandeyG. RawtaniD. Mustansar HussainC. Sensors for the detection of explosives and gunshots residues.Technology in Forensic Science. (1st ed.). Wiley2020pp. 199220 https://onli1n9e9li-b2r2a0ry..wiley.com/-doi/10.1002/9783527827688.ch10 10.1002/9783527827688.ch10
  8. BhojY. PandeyG. BhojA. TharmavaramM. RawtaniD. Recent advancements in practices related to desalination by means of nanotechnology.Chemical Physics Impact2021210002510.1016/j.chphi.2021.100025
    [Google Scholar]
  9. PandeyG. RawtaniD. AgrawalY.K. Aspects of nanoelectronics in materials development.IntechOpen.2016Available from: https://www.intechopen.com/chapters/51378
    [Google Scholar]
  10. RawtaniD. TharmavaramM. PandeyG. HussainC.M. Functionalized nanomaterial for forensic sample analysis.Trends Analyt. Chem.201912011566110.1016/j.trac.2019.115661
    [Google Scholar]
  11. TharmavaramM. PandeyG. RawtaniD. Surface modified halloysite nanotubes: A flexible interface for biological, environmental and catalytic applications.Adv. Colloid Interface Sci.20182618210110.1016/j.cis.2018.09.00130243667
    [Google Scholar]
  12. RawtaniD. PandeyG. TharmavaramM. PathakP. AkkireddyS. AgrawalY.K. Development of a novel ‘nanocarrier’ system based on Halloysite Nanotubes to overcome the complexation of ciprofloxacin with iron: An in vitro approach.Appl. Clay Sci.201715029330210.1016/j.clay.2017.10.002
    [Google Scholar]
  13. PandeyG. MunguambeD.M. TharmavaramM. RawtaniD. AgrawalY.K. Halloysite nanotubes - An efficient ‘nano-support’ for the immobilization of α-amylase.Appl. Clay Sci.201713618419110.1016/j.clay.2016.11.034
    [Google Scholar]
  14. LiH. GuoX. LiuJ. LiF. A synthesis of fluorescent starch based on carbon nanoparticles for fingerprints detection.Opt. Mater.20166040441010.1016/j.optmat.2016.08.010
    [Google Scholar]
  15. WangY.F. YangR.Q. ShiZ.X. LiuJ.J. ZhaoK. WangY.J. The effectiveness of CdSe nanoparticle suspension for developing latent fingermarks.J. Saudi Chem. Soc.2014181131810.1016/j.jscs.2011.05.007
    [Google Scholar]
  16. RiskinM. Tel-VeredR. BourenkoT. GranotE. WillnerI. Imprinting of molecular recognition sites through electropolymerization of functionalized Au nanoparticles: development of an electrochemical TNT sensor based on pi-donor-acceptor interactions.J. Am. Chem. Soc.2008130309726973310.1021/ja711278c18597454
    [Google Scholar]
  17. De RooJ. De KeukeleereK. HensZ. Van DriesscheI. From ligands to binding motifs and beyond; the enhanced versatility of nanocrystal surfaces.Dalton Trans.20164534132771328310.1039/C6DT02410F27461488
    [Google Scholar]
  18. KoralaL. PrietoA.L. Chemical functionalization of colloidal inorganic nanocrystals (NCs) via ligand exchange. In:reference module in chemistry, molecular sciences and chemical engineering.2017Elsevier Available from: http://www.sciencedirect.com/science/article/pii/B9780124095472142908
    [Google Scholar]
  19. ZhangT. WuY. PanX. ZhengZ. DingX. PengY. An approach for the surface functionalized gold nanoparticles with pH-responsive polymer by combination of RAFT and click chemistry.Eur. Polym. J.20094561625163310.1016/j.eurpolymj.2009.03.016
    [Google Scholar]
  20. WangM. LiM. YuA. ZhuY. YangM. MaoC. Fluorescent nanomaterials for the development of latent fingerprints in forensic sciences.Adv. Funct. Mater.20172714160624310.1002/adfm.20160624329657570
    [Google Scholar]
  21. MaY. WangS. WangL. Nanomaterials for luminescence detection of nitroaromatic explosives.Trends Analyt. Chem.201565132110.1016/j.trac.2014.09.007
    [Google Scholar]
  22. O’MahonyA.M. WangJ. Nanomaterial-based electrochemical detection of explosives: a review of recent developments.Anal. Methods2013517429610.1039/c3ay40636a
    [Google Scholar]
  23. KumarV. KumarP. PournaraA. VellingiriK. KimK-H. Nanomaterials for the sensing of narcotics: Challenges and opportunities.Trends Analyt. Chem.20181068411510.1016/j.trac.2018.07.003
    [Google Scholar]
  24. RawtaniD. AgrawalY.K. PrajapatiP. Interaction behavior of DNA with halloysite nanotube–silver nanoparticle-based composite.Bionanoscience201331737810.1007/s12668‑012‑0071‑4
    [Google Scholar]
  25. RawtaniD. AgrawalY.K. Study the interaction of DNA with halloysite nanotube-gold nanoparticle based composite.J of Bionanosci201262959810.1166/jbns.2012.1080
    [Google Scholar]
  26. ReynoldsJ.G. HartB.R. Nanomaterials and their application to defense and homeland security.JOM2004561363910.1007/s11837‑004‑0270‑8
    [Google Scholar]
  27. AlgarraM. CamposB.B. MirandaM.S. da SilvaJ.C.G.E. CdSe quantum dots capped PAMAM dendrimer nanocomposites for sensing nitroaromatic compounds.Talanta20118351335134010.1016/j.talanta.2010.10.05621238718
    [Google Scholar]
  28. GanigaM. CyriacJ. Detection of PETN and RDX using a FRET-based fluorescence sensor system.Anal. Methods20157135412541810.1039/C5AY00416K
    [Google Scholar]
  29. LiY. JiX. LiuB. Chemiluminescence aptasensor for cocaine based on double-functionalized gold nanoprobes and functionalized magnetic microbeads.Anal. Bioanal. Chem.2011401121321910.1007/s00216‑011‑5064‑621559755
    [Google Scholar]
  30. GaoZ AgarwalA TriggAD SinghN FangC TungC-H Silicon nanowire arrays for label-free detection of DNA.Anal Chem.200779932917
    [Google Scholar]
  31. WangJ LiuG WuH LinY. Sensitive electrochemical immunoassay for 2,4,6-trinitrotoluene based on functionalized silica nanoparticle labels.Anal Chim Acta.200861011128
    [Google Scholar]
  32. WangX YangY DongJ BeiF AiS. Lanthanum-functionalized gold nanoparticles for coordination–bonding recognition and colorimetric detection of methyl parathion with high sensitivity.Sens and Actua B: Chemi.201420411924
    [Google Scholar]
  33. D’souzaSL PatiRK KailasaSK. Ascorbic acid functionalized gold nanoparticles as a probe for colorimetric and visual read-out determination of dichlorvos in environmental samples.Anal Meth.2014622900714
    [Google Scholar]
  34. NavaeeA SalimiA TeymourianH. Graphene nanosheets modified glassy carbon electrode for simultaneous detection of heroine, morphine and noscapine.Biosens and Bioel.201231120511
    [Google Scholar]
  35. MohammedMI HaswellS GibsonI. Lab-on-a-chip or chip-in-alab: challenges of commercialization lost in translation.Proced Techno.201520549
    [Google Scholar]
  36. HuangX LiuY YungB XiongY ChenX. Nanotechnology-enhanced no-wash biosensors for in Vitro diagnostics of cancer.ACS Nano.2017116523892
    [Google Scholar]
  37. SteinbergHL. STANDARD REFERENCE COLLECTIONS OF FORENSIC SCIENCE MATERIALS: STATUS AND NEEDS. U.S.DEPARTMENT OF JUSTICE law Enforcement Assistance Administration National Institute of law Enforcement and Criminal Justice1977
    [Google Scholar]
/content/journals/cfs/10.2174/2666484401666220119101815
Loading
/content/journals/cfs/10.2174/2666484401666220119101815
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test