Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-948X
  • E-ISSN: 2666-9498

Abstract

Introduction

Simulation of cadmium telluride (CdTe)-based solar cells (CdTe/CN/SnO) using Solar Cell Capacitance Simulator-1D (SCAPS-1D) has been presented in this article.

Methods

CN was introduced as a buffer layer, SnO was introduced as a window layer, and CdTe was introduced as an absorber layer.

Results

The impact of the thickness of the CdTe, SnO, and CN layers, the defect density and carrier concentration of the CdTe layer, and the impact of ambient temperature were analyzed.

Conclusion

The optimized solar cell demonstrated a maximum power conversion efficiency (PCE) of 22.41% with an open circuit voltage (V) of 1.07 V, a short circuit current density (J) of 23.59 mA/cm2, and an FF of 88.51%, indicating huge promise in low-cost solar energy harvesting.

Loading

Article metrics loading...

/content/journals/celt/10.2174/2666948X01666230914145127
2023-09-28
2024-11-26
Loading full text...

Full text loading...

References

  1. GaoR.T. HeD. WuL. HuK. LiuX. SuY. WangL. Towards long-term photostability of nickel hydroxide/BiVO4 photoanodes for oxygen evolution catalysts via in situ catalyst tuning.Angew. Chem. Int. Ed.202059156213621810.1002/anie.20191567131960559
    [Google Scholar]
  2. RimmaudoI. SalaveiA. RomeoA. Effects of activation treatment on the electrical properties of low temperature grown CdTe devices.Thin Solid Films.201353525325610.1016/j.tsf.2012.11.113
    [Google Scholar]
  3. GaoR.T. WangL. Stable cocatalyst-free BiVO4 photoanodes with passivated surface states for photocorrosion inhibition.Angew. Chem. Int. Ed.20205951230942309910.1002/anie.20201090832888248
    [Google Scholar]
  4. GaoR.T. NguyenN.T. NakajimaT. HeJ. LiuX. ZhangX. WangL. WuL. Dynamic semiconductor-electrolyte interface for sustainable solar water splitting over 600 hours under neutral conditions.Sci. Adv.202391eade458910.1126/sciadv.ade458936598972
    [Google Scholar]
  5. GaoR.T. ZhangJ. NakajimaT. HeJ. LiuX. ZhangX. WangL. WuL. Single-atomic-site platinum steers photogenerated charge carrier lifetime of hematite nanoflakes for photoelectrochemical water splitting.Nat. Commun.2023141264010.1038/s41467‑023‑38343‑637156781
    [Google Scholar]
  6. GreenM.A. EmeryK. HishikawaY. WartaW. DunlopE.D. Solar cell efficiency tables (Version 45).Prog. Photovolt. Res. Appl.20152311910.1002/pip.2573
    [Google Scholar]
  7. JimboK. KimuraR. KamimuraT. YamadaS. MawW.S. ArakiH. OishiK. KatagiriH. Cu2ZnSnS4-type thin film solar cells using abundant materials.Thin Solid Films.2007515155997599910.1016/j.tsf.2006.12.103
    [Google Scholar]
  8. HegedusS. Thin film solar modules: The low cost, high throughput and versatile alternative to Si wafers.Prog. Photovolt. Res. Appl.200614539341110.1002/pip.704
    [Google Scholar]
  9. MutalikdesaiA. RamaseshaS.K. Solution process for fabrication of thin film CdS/CdTe photovoltaic cell for building integration.Thin Solid Films2017632737810.1016/j.tsf.2017.04.036
    [Google Scholar]
  10. AminN. Introduction of inorganic solar cells.Comprehensive Guide on Organic and Inorganic Solar Cells.Elsevier2022576310.1016/B978‑0‑323‑85529‑7.00005‑0
    [Google Scholar]
  11. MahmoodJ. Nitrogenated holey two-dimensional structures NatNat. Commun.2015Vol. 6648610.1038/ncomms748625744355
    [Google Scholar]
  12. MahmoodJ. LiF. JungS.M. OkyayM.S. AhmadI. KimS.J. ParkN. JeongH.Y. BaekJ.B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction.Nat. Nanotechnol.201712544144610.1038/nnano.2016.30428192390
    [Google Scholar]
  13. LiC. XuY. ShengW. YinW-J. NieG-Z. AoZ. Apromising blue phosphorene/C2Nvan der Waals type-II heterojunction as asolar photocatalyst: A first-principles study Phys.Phys. Chem. Chem. Phys.20222261562310.1039/C9CP05667J
    [Google Scholar]
  14. WangL. ZhengX. ChenL. Xiong Y and XuH 2018 Van der Waals heterostructures comprised of ultrathin polymer nanosheets forefficient Z-scheme overall water splitting AngewAngew. Chem. Int. Ed.573454345810.1002/anie.201710557
    [Google Scholar]
  15. TripathiS. LohiaP. DwivediDK Contribution to sustainable and environmental friendly non-toxic CZTS solarcell with an innovative hybrid buffer layer.Sol. Energy20474876010.1016/j.solener.2020.05.033
    [Google Scholar]
  16. XuJ. Frameworks Of C2nandc3nas New Anode Materials For Lithium-Ionbatteries.Adv. Mater20172910.1002/adma.20170200728692757
    [Google Scholar]
  17. HussainT. SajjadM. SinghD. BaeH. LeeH. LarssonJ.A. Sensing of volatile organic compounds on twodimensionalnitrogenated holey graphene, graphdiyne, and their heterostructure.Carbon16321322310.1016/j.carbon.2020.02.078
    [Google Scholar]
  18. YongY. CuiH. ZhouQ. SuX. KuangY. C2N monolayer asNH3 and NO sensors: A DFT study.Appl. Surf. Sci.48748849510.1016/j.apsusc.2019.05.040
    [Google Scholar]
  19. HashmiA. KhanI. HongS.J. Ultra-high-capacity hydrogen storage in a Li decorated two-dimensional C2N layer.J. of Materials Chem. A.20175610.1039/C6TA08924K
    [Google Scholar]
  20. Guerrero-AvilésR. OrellanaW. Hydrogen storage on cation-decorated biphenylene carbon and nitrogenated holey graphene.Int. J. Hydrogen Energy.20184351229662297510.1016/j.ijhydene.2018.10.165
    [Google Scholar]
  21. SunJ. ZhangR. A many-bodyGW1 BSE investigation of electronic and optical properties of C2NAppl.Phys. Lett.20161091310.1063/1.4963654
    [Google Scholar]
  22. BafekryA. StampfC. GhergherehchimandshayestehS. A first-principles study of the effects of atom impurities, defects, strain, electric field and layer thickness on the electronic and magnetic properties of the C2Nnanosheet.Carbon201915737138410.1016/j.carbon.2019.10.038
    [Google Scholar]
  23. BurgelmanM. NolletP. DegraveS. Modelling polycrystalline semiconductor solar cells.Thin Solid Films2000361-36252753210.1016/S0040‑6090(99)00825‑1
    [Google Scholar]
  24. BhariB. Numerical Simulation of Ultrathin CdTe Solar Cell by SCAPS-1DConf. Ser. Mater. Sci. Eng.vol. 1278012002202310.1088/1757‑899X/1278/1/012002
    [Google Scholar]
  25. Zepeda MedinaJ.C. Rosendo AndrésE. Morales RuízC. Camacho EspinosaE. Treviño YarceL. Galeazzi IsasmendiR. Romano TrujilloR. García SalgadoG. Coyopol SolisA. Nieto CaballeroF.G. Carranza SanchezA.C. Performance simulation of solar cell based on AZO/CdTe heterostructure by SCAPS 1D software.Heliyon202393e1454710.1016/j.heliyon.2023.e1454736967952
    [Google Scholar]
  26. HossainM.M. JahanN. Ul HossainR. Simulation and optimization of a highly efficient ZnO/Cu2O/CdS/CdTe solar cell using SCAPS-1D 2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE)Gazipur, Bangladesh202210.1109/ICAEEE54957.2022.9836410
    [Google Scholar]
  27. RahmanM.F. "Design and numerical investigation of cadmium telluride (CdTe) and iron silicide (FeSi2) based double absorber solar cells to enhance power conversion efficiency".AIP Adv20221210.1063/5.0108459
    [Google Scholar]
  28. DoroodyC. RahmanK.S. RoslyH.N. HarifM.N. HaqueF. TiongS.K. AminN. Impact of high resistivity transparent (HRT) layer in cadmium telluride solar cells from numerical simulation.J. Renew. Sustain. Energy.202012202370210.1063/1.5132838
    [Google Scholar]
  29. SarkerK. SumonM.S. OrtheM.F. BiswasS.K. AhmedM.M. Numerical simulation of high efficiency environment friendly cubi2o4-based thin-film solar cell using SCAPS-1D.Int. J. Photoenergy2023202311110.1155/2023/7208502
    [Google Scholar]
  30. SinghN.K. Effect of MoS2 as a buffer layer on CdTe photovoltaic cell through numerical simulationJ. Eng. Res.2021
    [Google Scholar]
  31. SimyaO.K. MahaboobbatchaA. BalachanderK. A comparative study on the performance of Kesterite based thin film solar cells using SCAPS simulation program.Superlattices Microstruct.20158224826110.1016/j.spmi.2015.02.020
    [Google Scholar]
  32. NiemegeersM. Numerical modelling of AC-characteristics of CdTe and CIS solar cellsConference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference1996Washington, DC, USA
    [Google Scholar]
  33. DecockK. ZabierowskiP. BurgelmanM. Modeling metastabilities in chalcopyrite-based thin film solar cells.J. Appl. Phys.2012111404370310.1063/1.3686651
    [Google Scholar]
  34. S. O, A. G, and D. OSimulation of the performance of CdTe/CdS/ZnO Multi-junction thin film solar cell Review of Information EnggRev. inf. eng. appl.20163111010.18488/journal.79/2016.3.1/79.1.1.10
    [Google Scholar]
  35. ZhouX. HanJ. Design and simulation of C2N based solar cell by SCAPS-1D software.Mater. Res. Express202071212630310.1088/2053‑1591/abcdd6
    [Google Scholar]
  36. GreenM.A. General temperature dependence of solar cell performance and implications for device modelling.Prog. Photovolt. Res. Appl.200311533334010.1002/pip.496
    [Google Scholar]
/content/journals/celt/10.2174/2666948X01666230914145127
Loading
/content/journals/celt/10.2174/2666948X01666230914145127
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): C2N; CdTe; SCAPS-1D; simulation; SnO2; solar cell
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test