Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-948X
  • E-ISSN: 2666-9498

Abstract

Background

Recently, an IRS has been proposed as a low-cost and effective solution for performance improvement in wireless communication. However, the configuration and setup necessary to derive optimal results have not been identified yet.

Objective

The paper seeks to build the knowledge by investigating the effects of IRS in the LOS and NLOS environment to verify the achievable gains from each and examine how different IRS positions impact the BER.

Methods

An IRS model was simulated in MATLAB to investigate the channel capacity gain of an IRS in LOS and NLOS scenarios for the verification of performance gains. Further, the effects of the IRS positioning (with respect to transmitter and end-user) on the BER were investigated.

Results

The channel capacity of an IRS system was found to be lower by 12Mbps compared to that of a direct link in a LOS scenario. This demonstrates that a passive IRS is only beneficial in the absence of a line of sight. In the case of a NLOS, for an SNR of 50, MIMO transmitter diversity and receiver diversity had channel capacities of 1.0 Mbps and 4.5 Mbps, respectively while the IRS system achieved 22 Mbps. As such, it is more beneficial to create an alternative path the IRS than to increase the number of transmit or receive antennas. The positioning of the IRS had a significant impact on the BER. From the results, positioning the IRS mid-way between the AP and STA led to up to 57.69% improvements in BER compared to close to STA or close to AP arrangements.

Conclusion

The results prove that an IRS is a cost-effective, low-power consumption solution for overcoming challenges associated with NLOS communication. The work also identified the ideal positioning of the IRS to be the midpoint between AP and STA, for the WLAN system. Further research will be needed to verify performance in other systems.

Loading

Article metrics loading...

/content/journals/celt/10.2174/012666948X319016240826054024
2024-09-10
2025-04-07
Loading full text...

Full text loading...

References

  1. BoikoJ. PyatinI. KarpovaL. EromenkoO. Study of the influence of changing signal propagation conditions in the communication channel on bit error rate.", In: Data-Centric Business and Applications: ICT Systems—Theory, Radio-Electronics, Information Technologies and Cybersecurity.Springer20217910310.1007/978‑3‑030‑71892‑3_4
    [Google Scholar]
  2. ZagharD.R. AbdullahH.N. FarhanI.M. A Review for the adopted techniques in low SNR communication systems.IJCCCE20202014052
    [Google Scholar]
  3. ÖzdoğanÖ. Signal processing aspects of massive mimo and irs-aided communications özgecan özdoğanwww.commsys.isy.liu.se
    [Google Scholar]
  4. WangK. SongT. WangY. FangC. HeJ. NirmalathasA. LimC. WongE. KandeepanS. Evolution of short-range optical wireless communications.J. Lightwave Technol.20234141019104010.1109/JLT.2022.3215590
    [Google Scholar]
  5. RehmanS. UllahS. ChongP. YongchareonS. KomosnyD. Visible light communication: a system perspective—overview and challenges.Sensors 2019195115310.3390/s1905115330866473
    [Google Scholar]
  6. MerdanF.A. ThiagarajahS. DambulK. Non-line of sight visible light communications: A technical and application based survey.Optik (Stuttg.)202225916898210.1016/j.ijleo.2022.168982
    [Google Scholar]
  7. AboagyeS. NdjiongueA.R. NgatchedT.M.N. DobreO.A. PoorH.V. RIS-assisted visible light communication systems: A tutorial.IEEE Commun. Surv. Tutor.202325125128810.1109/COMST.2022.3225859
    [Google Scholar]
  8. ZhangJ. GlazunovA. YangW. ZhangJ. Fundamental wireless performance of a building.IEEE Wirel. Commun.202229118619310.1109/MWC.121.2100244
    [Google Scholar]
  9. AhmedS. ChowdhuryM. JangY. Energy-efficient UAV-to-user scheduling to maximize throughput in wireless networks.IEEE Access20208212152122510.1109/ACCESS.2020.2969357
    [Google Scholar]
  10. UluocakS. BaşarE. Spatial modulation for multi-user massive MIMO systems 25th Signal Processing and Communications Applications Conference 15-18 May 2017Antalya, Turkey1410.1109/SIU.2017.7960432
    [Google Scholar]
  11. WenM. ZhengB. KimK.J. Di RenzoM. TsiftsisT.A. ChenK-C. Al-DhahirN. A survey on spatial modulation in emerging wireless systems: Research progresses and applications.IEEE J. Sel. Areas Comm.20193791949197210.1109/JSAC.2019.2929453
    [Google Scholar]
  12. YurdusevenO. AssimonisS.D. MatthaiouM. Intelligent reflecting surfaces with spatial modulation: An electromagnetic perspective.IEEE Open J. Commun. Soc.202011256126610.1109/OJCOMS.2020.3017237
    [Google Scholar]
  13. DingY. FuscoV. ShitvovA. XiaoY. LiH. Beam index modulation wireless communication with analog beamforming.IEEE Trans. Vehicular Technol.20186776340635410.1109/TVT.2018.2819728
    [Google Scholar]
  14. BasarE. Media-based modulation for future wireless systems: A tutorial.IEEE Wirel. Commun.201926516016610.1109/MWC.2019.1800568
    [Google Scholar]
  15. ShamasundarB. ChockalingamA. Multiuser media-based modulation for massive MIMO systems 18th International workshop on signal processing advances in wireless communications 03-06 July 2017, Sapporo, Japan, pp. 1-510.1109/SPAWC.2017.8227731
    [Google Scholar]
  16. MohammedR.K. Comparing various channel estimation techniques for OFDM systems using MATLAB.IJWMN20191131931
    [Google Scholar]
  17. SharmaP. TiwariR.N. SinghP. KumarP. KanaujiaB.K. MIMO antennas: Design approaches, techniques and applications.Sensors20222220781310.3390/s2220781336298163
    [Google Scholar]
  18. BjörnsonE. SanguinettiL. WymeerschH. HoydisJ. MarzettaT.L. Massive MIMO is a reality—What is next?Digit. Signal Process.20199432010.1016/j.dsp.2019.06.007
    [Google Scholar]
  19. De FlaviisF. JofreL. RomeuJ. GrauA. Multiantenna systems for MIMO communications.Springer Nature2022
    [Google Scholar]
  20. MatalatalaM. DeruyckM. TangheE. MartensL. JosephW. Optimal low-power design of a multicell multiuser massive MIMO system at 3.7 GHz for 5G wireless networks.Wirel. Commun. Mob. Comput.201820181117
    [Google Scholar]
  21. BjörnsonE. LarssonE.G. MarzettaT.L. Massive MIMO: ten myths and one critical question.IEEE Commun. Mag.201654211412310.1109/MCOM.2016.7402270
    [Google Scholar]
  22. TanW. JinS. WenC.K. JiangT. Spectral efficiency of multi-user millimeter wave systems under single path with uniform rectangular arrays.EURASIP J. Wirel. Commun. Netw.20172017118110.1186/s13638‑017‑0966‑4
    [Google Scholar]
  23. AbbasiO. EbrahimiA. Cooperative NOMA with full‐duplex amplify‐and‐forward relaying.Trans. Emerg. Telecommun. Technol.2018297e342110.1002/ett.3421
    [Google Scholar]
  24. ChaoudhryB.B. HassanS.A. SpeidelJ. JungH. Energy efficiency of a decode-and-forward multiple-relay network with rate adaptive LDPC codes.Sensors 20191921479310.3390/s1921479331689959
    [Google Scholar]
  25. GazestaniA.H. GhorashiS.A. MousavinasabB. Shikh-BahaeiM. A survey on implementation and applications of full duplex wireless communications.Phys. Commun.20193412113410.1016/j.phycom.2019.03.006
    [Google Scholar]
  26. LiangY.C. LongR. ZhangQ. ChenJ. ChengH.V. GuoH. “Large intelligent surface/antennas (LISA): Making reflective radios smart”, J.Commn.Net201942405010.23919/JCIN.2019.8917871
    [Google Scholar]
  27. BjörnsonE. HoydisJ. SanguinettiL. Massive mimo networks: Spectral, energy, and hardware efficiency.Now Foundations and Trends201710.1561/2000000093
    [Google Scholar]
  28. EllingsonS.W. Path loss in reconfigurable intelligent surface-enabled channels32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications 13-16 September 2021, Helsinki, Finland82983510.1109/PIMRC50174.2021.9569465
    [Google Scholar]
  29. ÖzdoganO. BjörnsonE. LarssonE.G. Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling.IEEE Wirel. Commun. Lett.20209558158510.1109/LWC.2019.2960779
    [Google Scholar]
  30. GashtasbiA. SilvaM.M. DinisR. An overview of intelligent reflecting surfaces for future wireless systems13th International Symposium on Communication Systems, Networks and Digital Signal Processing 20-22 July 2022Porto, Portugal31431910.1109/CSNDSP54353.2022.9907933
    [Google Scholar]
  31. Pérez-AdánD. FresnedoÓ. González-ComaJ.P. CastedoL. Intelligent reflective surfaces for wireless networks: An overview of applications, approached issues, and open problems.Electronics 20211019234510.3390/electronics10192345
    [Google Scholar]
  32. HassounaS. JamshedM.A. RainsJ. KazimJ.R. RehmanM.U. AbualhayjaM. MohjaziL. CuiT.J. ImranM.A. AbbasiQ.H. A survey on reconfigurable intelligent surfaces: Wireless communication perspective.IET Commun.202317549753710.1049/cmu2.12571
    [Google Scholar]
  33. ZogovićN. Energy efficiency versus reliability tradeoff improvement in low-power wireless communications.IEEE Syst. J.20201433173318410.1109/JSYST.2020.2967541
    [Google Scholar]
  34. OkogbaaF.C. AhmedQ.Z. KhanF.A. AbbasW.B. CheF. ZaidiS. AladeT. Design and application of intelligent reflecting surface (IRS) for beyond 5G wireless networks: A review.Sensors 2022227243610.3390/s2207243635408051
    [Google Scholar]
  35. MedinaP.F. KvistS.H. JakobsenK.B. ThaysenJ. Transmit and receive diversity in body-centric wireless communications 34th Annual Antenna Measurement Techniques Association Symposium 2012 26 Oct 2012, Bellevue, Washington, United States, pp. 38–422012
    [Google Scholar]
  36. AhmadS. Performance comparison of transmit and receive diversity under rayleigh faded channel using extended alamouti’s scheme
    [Google Scholar]
  37. YueD.W. XuS. NguyenH.H. Diversity gain of millimeter-wave massive MIMO systems with distributed antenna arrays.EURASIP J. Wirel. Commun. Netw.2019201915410.1186/s13638‑019‑1366‑8
    [Google Scholar]
  38. RawatA. KaushikR. TiwariA. An overview of MIMO OFDM system for wireless communication.Int. J. Techni. Resear. Sci.20216X1410.30780/IJTRS.V06.I10.001
    [Google Scholar]
  39. WuQ. ZhangR. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming.IEEE Trans. Wirel. Commun.201918115394540910.1109/TWC.2019.2936025
    [Google Scholar]
  40. BjörnsonE. ÖzdoganO. LarssonE.G. Intelligent reflecting surface versus decode-and-forward: How large surfaces are needed to beat relaying?IEEE Wirel. Commun. Lett.20209224424810.1109/LWC.2019.2950624
    [Google Scholar]
  41. YangY. ZhengB. ZhangS. ZhangR. Intelligent reflecting surface meets ofdm: protocol design and rate maximization.IEEE Trans. Commun.20206874522453510.1109/TCOMM.2020.2981458
    [Google Scholar]
  42. GuoH. LiangY.C. ChenJ. LarssonE.G. Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks.IEEE Trans. Wirel. Commun.20201953064307610.1109/TWC.2020.2970061
    [Google Scholar]
  43. CiuonzoD. RossiP.S. VarshneyP.K. Distributed detection in wireless sensor networks under multiplicative fading via generalized score tests.IEEE Internet Things J.20218119059907110.1109/JIOT.2021.3056325
    [Google Scholar]
  44. BasarE. Reconfigurable intelligent surfaces for Doppler effect and multipath fading mitigation Front. commun. netw, vol. 2, p. 672857, 2021.10.3389/frcmn.2021.672857
    [Google Scholar]
  45. DhruvakumarT. ChaturvediA. Intelligent reflecting surface assisted millimeter wave communication for achievable rate and coverage enhancement.Vehicul. Commun.20223310043110.1016/j.vehcom.2021.100431
    [Google Scholar]
  46. IbrahimE. NilssonR. Van De BeekJ. On the position of intelligent reflecting surfaces Joint European Conference on Networks and Communications 6G Summit 08-11 June 2021, Porto, Portugal, pp. 66–71 202110.1109/EuCNC/6GSummit51104.2021.9482610
    [Google Scholar]
  47. XuB. ZhouT. XuT. WangY. Reconfigurable intelligent surface configuration and deployment in three-dimensional scenarios 2021 IEEE International Conference on Communications Workshops 14-23 June 2021, Montreal, QC, Canada, pp. 1-6202110.1109/ICCWorkshops50388.2021.9473592
    [Google Scholar]
  48. ShaikhM.H.N. BoharaV.A. SrivastavaA. GhatakG. Intelligent reflecting surfaces versus full-duplex relaying: Performance comparison for non-ideal transmitter case32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications 14-23 June 2021Montreal, QC, Canada51351810.1109/PIMRC50174.2021.9569598
    [Google Scholar]
  49. YusofA.L. Ab RahimM.A.I. Ya’acobN. ZainaliN.S. Impact of transmitter and receiver distance of 3.5 ghz networks channel propagation in line-of-sight (los) and non-line-of-sight (nlos) environments.JPSP20226383418358
    [Google Scholar]
  50. YuX. XuD. SchoberR. MISO wireless communication systems via intelligent reflecting surfaces 2019 IEEE/CIC International Conference on Communications in China (ICCC) 11-13 August 2019, Changchun, China, 735 740
    [Google Scholar]
  51. HanY. ZhangS. DuanL. ZhangR. Double-IRS aided MIMO communication under LoS channels: Capacity maximization and scaling.IEEE Trans. Commun.20227042820283710.1109/TCOMM.2022.3151893
    [Google Scholar]
  52. ChoiJ. KwonG. ParkH. Multiple intelligent reflecting surfaces for capacity maximization in LOS MIMO systems.IEEE Wirel. Commun. Lett.20211081727173110.1109/LWC.2021.3078151
    [Google Scholar]
  53. IbrahimE. NilssonR. van de BeekJ. Intelligent reflecting surfaces for MIMO communications in LoS environments ", In: 2021 IEEE Wireless Communications and Networking Conference . 29 March 2021 - 01 April 2021, Nanjing, China, pp. 1–62021
    [Google Scholar]
  54. ZhuJ. HuangY. WangJ. NavaieK. HuangW. DingZ. On the Position Optimization of IRS.IEEE Internet Things J.2022914117121172410.1109/JIOT.2021.3131771
    [Google Scholar]
  55. BjörnsonE. SanguinettiL. Power scaling laws and near-field behaviors of massive MIMO and intelligent reflecting surfaces.IEEE Open J. Commun. Soc.202011306132410.1109/OJCOMS.2020.3020925
    [Google Scholar]
  56. WangJ. NiH. Path loss modeling and performance evaluation of double IRSs-aided wireless communication systems based on spatial scattering channel model.Sci. Rep.2023131840010.1038/s41598‑023‑34562‑537225763
    [Google Scholar]
  57. YouC. ZhengB. ZhangR. Wireless communication via double IRS: Channel estimation and passive beamforming designs.IEEE Wirel. Commun. Lett.202110243143510.1109/LWC.2020.3034388
    [Google Scholar]
  58. MeiW. ZhangR. Cooperative beam routing for multi-IRS aided communication.IEEE Wirel. Commun. Lett.202110242643010.1109/LWC.2020.3034370
    [Google Scholar]
  59. MaJ. Modified shannon’s capacity for wireless communication [speaker’s corner.IEEE Microw. Mag.20212299710010.1109/MMM.2021.3086386
    [Google Scholar]
  60. JaiswalA.K. KumarA. TripathiS. ChaudharyA.K. To study the effect of ber and q-factor in intersatellite optical wireless communication system IOSR J. Elect. Commun. Eng., Vol. 3,19212012https://api.semanticscholar.org/CorpusID:33052881
    [Google Scholar]
  61. MalviyaL. PanigrahiR.K. KartikeyanM.V. MIMO antennas for wireless communication: Theory and design.CRC Press202010.1201/9781003080275
    [Google Scholar]
  62. ImoizeA.L. IbhazeA.E. AtayeroA. KavithaK. Standard propagation channel models for MIMO communication systems.Wirel. Commun. Mob. Comput.20212021113610.1155/2021/8838792
    [Google Scholar]
  63. ChatautR. AklR. Massive MIMO systems for 5G and beyond networks—overview, recent trends, challenges, and future research direction.Sensors20202010275310.3390/s2010275332408531
    [Google Scholar]
  64. TangW. ChenM.Z. ChenX. DaiJ.Y. HanY. Di RenzoM. ZengY. JinS. ChengQ. CuiT.J. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement.IEEE Trans. Wirel. Commun.202120142143910.1109/TWC.2020.3024887
    [Google Scholar]
  65. WangJ. Reconfigurable intelligent surface: Power consumption modeling and practical measurement validation", arXiv preprint2022 1,
    [Google Scholar]
  66. WuQ. ZhangS. ZhengB. YouC. ZhangR. Intelligent reflecting surface-aided wireless communications: A tutorial.IEEE Trans. Commun.20216953313335110.1109/TCOMM.2021.3051897
    [Google Scholar]
  67. BasarE. Di RenzoM. De RosnyJ. DebbahM. AlouiniM.S. ZhangR. Wireless communications through reconfigurable intelligent surfaces.IEEE Access2019711675311677310.1109/ACCESS.2019.2935192
    [Google Scholar]
  68. YouC. ZhangR. Wireless communication aided by intelligent reflecting surface: Active or passive?IEEE Wirel. Commun. Lett.202110122659266310.1109/LWC.2021.3111044
    [Google Scholar]
  69. YangP. GuanY.L. XiaoY. RenzoM.D. LiS. HanzoL. Transmit precoded spatial modulation: maximizing the minimum euclidean distance versus minimizing the bit error ratio.IEEE Trans. Wirel. Commun.20161532054206810.1109/TWC.2015.2497692
    [Google Scholar]
  70. SamouniN. JilbabA. HammouchA. A Critical review on recent research on reliable communication for wireless body area network.Int. J. Sensors Wirel. Commun. Control20199443244210.2174/2210327909666181217112948
    [Google Scholar]
  71. YuK. YuJ. DongA. Cooperative communication and mobility for securing URLLC of future wireless networks.IEEE Trans. Vehicular Technol.20227155331534210.1109/TVT.2022.3151063
    [Google Scholar]
/content/journals/celt/10.2174/012666948X319016240826054024
Loading
/content/journals/celt/10.2174/012666948X319016240826054024
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): access point; BER; channel capacity; IRS; mobile station; NLOS communication
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test