Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-948X
  • E-ISSN: 2666-9498

Abstract

Background

Medical waste poses various risks to public health, with heightened importance post-COVID-19. The pandemic escalated the ever-growing generation of medical waste, which demands meticulous handling to mitigate potential risks to the healthcare system and the public. Medical waste management relies heavily on logistics, ensuring the safe and proper disposal of medical waste.

Objective

Quantitative models play an integral part in establishing effective, flexible, and cost-efficient logistics in medical waste management. They enable precise planning, optimizing routes, and determining the most efficient disposal methods. This paper provides a systematic review of quantitative models for the logistics of medical waste management.

Methods

Through comprehensive search, filtering, and screening, we identify 96 documents for detail review.

Results

We present a structural review covering key aspects of modeling: entities involved, objectives, constraints, solution methods, uncertainties and stochastic input, multi-criteria decision analysis, and post-optimality analysis.

Conclusion

This state-of-the-art review provides a general guideline for the current approaches to modeling and quantitatively analyzing the logistics of wase management. Our paper also serves as a starting point for practitioners aiming to learn the basics of running logistics of medical waste management.

Loading

Article metrics loading...

/content/journals/celt/10.2174/012666948X307322240825172401
2024-09-11
2025-04-16
Loading full text...

Full text loading...

References

  1. LeeB.K. EllenbeckerM.J. Moure-ErsasoR. Alternatives for treatment and disposal cost reduction of regulated medical wastes.Waste Manag.200424214315110.1016/j.wasman.2003.10.00814761753
    [Google Scholar]
  2. WindfeldE.S. BrooksM.S.L. Medical waste management – A review.J. Environ. Manage.20151639810810.1016/j.jenvman.2015.08.01326301686
    [Google Scholar]
  3. EkerH.H. BilgiliM.S. SekmanE. TopS. Evaluation of the regulation changes in medical waste management in Turkey.Waste Manag. Res.201028111034103810.1177/0734242X1036615820406751
    [Google Scholar]
  4. InsaE. ZamoranoM. LópezR. Critical review of medical waste legislation in Spain.Resour. Conserv. Recycling201054121048105910.1016/j.resconrec.2010.06.005
    [Google Scholar]
  5. AttrahM. ElmanadelyA. AkterD. ReneE.R. A review on medical waste management: Treatment, recycling, and disposal options.Environments202291114610.3390/environments9110146
    [Google Scholar]
  6. MarinkovićN. VitaleK. HolcerN.J. DžakulaA. PavićT. Management of hazardous medical waste in Croatia.Waste Manag.20082861049105610.1016/j.wasman.2007.01.02117451931
    [Google Scholar]
  7. YongZ. GangX. GuanxingW. TaoZ. DaweiJ. Medical waste management in China: A case study of Nanjing.Waste Manag.20092941376138210.1016/j.wasman.2008.10.02319157838
    [Google Scholar]
  8. BirpınarM.E. BilgiliM.S. ErdoğanT. Medical waste management in Turkey: A case study of Istanbul.Waste Manag.200929144544810.1016/j.wasman.2008.03.01518550354
    [Google Scholar]
  9. MoreiraA.M.M. GüntherW.M.R. Assessment of medical waste management at a primary health-care center in São Paulo, Brazil.Waste Manag.201333116216710.1016/j.wasman.2012.09.01823122204
    [Google Scholar]
  10. van StratenB. DankelmanJ. van der EijkA. HoremanT. A circular healthcare economy; A feasibility study to reduce surgical stainless steel waste.Sustain. Prod. Consum.20212716917510.1016/j.spc.2020.10.030
    [Google Scholar]
  11. SinghN. OgunseitanO.A. TangY. Medical waste: Current challenges and future opportunities for sustainable management.Crit. Rev. Environ. Sci. Technol.202252112000202210.1080/10643389.2021.1885325
    [Google Scholar]
  12. DataR.R. Pharma and Healthcare - Medical Waste Management Market, 2023. Available from: https://www.reportsanddata.com/report-detail/medical-waste-management-market Accessed 14 January 2023.
  13. GowdaN.R. SiddharthV. InquillabiK. SharmaD.K. War on waste: Challenges and experiences in COVID-19 waste managementDisaster Med. Public Health Prep.2021161-13734096492
    [Google Scholar]
  14. PaciarottiC. TorregianiF. The logistics of the short food supply chain: A literature review.Sustain. Prod. Consum.20212642844210.1016/j.spc.2020.10.002
    [Google Scholar]
  15. PatilA. ShardeoV. DwivediA. MadaanJ. VarmaN. Barriers to sustainability in humanitarian medical supply chains.Sustain. Prod. Consum.2021271794180710.1016/j.spc.2021.04.022
    [Google Scholar]
  16. Rolewicz-KalińskaA. Logistic constraints as a part of a sustainable medical waste management system.Transp. Res. Procedia20161647348210.1016/j.trpro.2016.11.044
    [Google Scholar]
  17. NolzP.C. AbsiN. FeilletD. “A stochastic inventory routing problem for infectious medical waste collection,” Networks.Int. J.20146318295
    [Google Scholar]
  18. KhanD. SamadderS.R. Municipal solid waste management using geographical information system aided methods: A mini review.Waste Manag. Res.201432111049106210.1177/0734242X1455464425352293
    [Google Scholar]
  19. TavaresG. ZsigraiovaZ. SemiaoV. CarvalhoM.G. Optimisation of MSW collection routes for minimum fuel consumption using 3D GIS modelling.Waste Manag.20092931176118510.1016/j.wasman.2008.07.01318835768
    [Google Scholar]
  20. MoherD. LiberatiA. TetzlaffJ. AltmanD.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement.PLoS Med.200967e100009710.1371/journal.pmed.100009719621072
    [Google Scholar]
  21. DonthuN. KumarS. MukherjeeD. PandeyN. LimW.M. How to conduct a bibliometric analysis: An overview and guidelines.J. Bus. Res.202113328529610.1016/j.jbusres.2021.04.070
    [Google Scholar]
  22. GovindanK. NasrA.K. MostafazadehP. MinaH. Medical waste management during coronavirus disease 2019 (COVID-19) outbreak: A mathematical programming model.Comput. Ind. Eng.202116210766810766810.1016/j.cie.2021.10766834545265
    [Google Scholar]
  23. OuertaniN. Ben-RomdhaneH. NouaouriI. AllaouiH. KrichenS. A multi-compartment VRP model for the health care waste transportation problem.J. Comput. Sci.20237210210410210410.1016/j.jocs.2023.102104
    [Google Scholar]
  24. WidagdoJ.S. CakravastiaA. Tabu search algorithm for the vehicle routing problem with time windows, heterogeneous fleet, and accessibility restrictions.Adv Intell Syst Comput.201986418119310.1007/978‑3‑030‑00612‑9_16
    [Google Scholar]
  25. AhlaqqachM. BenhraJ. MoutassimS. LamraniS. Multi-objective optimization of heterogeneous vehicles routing in the case of medical waste using genetic algorithm3rd International Conference on Smart Applications and Data Analysis for Smart Cyber-Physical SystemsSpringer, Cham, 04 June202025626910.1007/978‑3‑030‑45183‑7_20
    [Google Scholar]
  26. DeshpandeR.P. TembhurkarA.R. Optimal routing of complex transportation system of biomedical waste with multiple depot and disposal options.Int. J. Environ. Technol. Manag.2018211/2779010.1504/IJETM.2018.092564
    [Google Scholar]
  27. GerginZ. TunçbilekN. EsnafŞ. Clustering approach using artificial bee colony algorithm for healthcare waste disposal facility location problem.Int. J. Oper. Res. Inf. Syst.2019101567510.4018/IJORIS.2019010104
    [Google Scholar]
  28. BudakA. UstundagA. Reverse logistics optimisation for waste collection and disposal in health institutions: The case of Turkey.Int J Logist Res Appl201720432234110.1080/13675567.2016.1234595
    [Google Scholar]
  29. WangZ. HuangL. HeC.X. A multi-objective and multi-period optimization model for urban healthcare waste’s reverse logistics network design.J. Comb. Optim.202142478581210.1007/s10878‑019‑00499‑7
    [Google Scholar]
  30. BalciE. BalciS. SofuogluA. Multi-purpose reverse logistics network design for medical waste management in a megacity: Istanbul, Turkey.Environ. Syst. Decis.202242337238710.1007/s10669‑022‑09873‑z36035978
    [Google Scholar]
  31. TorkayeshA.E. VandchaliH.R. TirkolaeeE.B. Multi-objective optimization for healthcare waste management network design with sustainability perspective.Sustainability20211315827910.3390/su13158279
    [Google Scholar]
  32. Aydemir-KaradagA. Bi-objective adaptive large neighborhood search algorithm for the healthcare waste periodic location inventory routing problem.Arab. J. Sci. Eng.20224733861387610.1007/s13369‑021‑06106‑434567950
    [Google Scholar]
  33. GovindanK. Nosrati-AbarghooeeS. NasiriM.M. JolaiF. Green reverse logistics network design for medical waste management: A circular economy transition through case approach.J. Environ. Manage.202232211588811588810.1016/j.jenvman.2022.115888
    [Google Scholar]
  34. LuoX. LiaoW. Collaborative reverse logistics network for infectious medical waste management during the covid-19 outbreak.Int. J. Environ. Res. Public Health20221915973510.3390/ijerph1915973535955091
    [Google Scholar]
  35. ZarrinpoorN. A sustainable medical waste management system design in the face of uncertainty and risk during COVID-19.Fuzzy Optim. Decis. Making202322351955410.1007/s10700‑022‑09401‑3
    [Google Scholar]
  36. LiH. HuY. LyuJ. QuanH. XuX. LiC. Transportation risk control of waste disposal in the healthcare system with two-echelon waste collection network.Math. Probl. Eng.2021202111010.1155/2021/5580083
    [Google Scholar]
  37. NolzP.C. AbsiN. FeilletD. A Bi‐objective inventory routing problem for sustainable waste management under uncertainty.J. Multi-Criteria Decis. Anal.2014215-629931410.1002/mcda.1519
    [Google Scholar]
  38. PoursoltanL. Seyed-HosseiniS.M. JabbarzadehA. Green closed-loop supply chain network under the COVID-19 pandemic.Sustainability20211316940710.3390/su13169407
    [Google Scholar]
  39. AlizadehM. MakuiA. PaydarM.M. Forward and reverse supply chain network design for consumer medical supplies considering biological risk.Comput. Ind. Eng.202014010622910622910.1016/j.cie.2019.106229
    [Google Scholar]
  40. ShadkamE. Cuckoo optimization algorithm in reverse logistics: A network design for COVID-19 waste management.Waste Manag. Res.202240445846910.1177/0734242X21100394733759639
    [Google Scholar]
  41. WangZ. LiuX. WangS. MengX. LiuC. TangC. Design of drug recovery scheme based on path optimization2nd International Conference on Advances in Civil EngineeringNanning. 22-24 May202010.1088/1755‑1315/526/1/012183
    [Google Scholar]
  42. CaoC. LiJ. LiuJ. LiuJ. QiuH. ZhenJ. Sustainable development-oriented location-transportation integrated optimization problem regarding multi-period multi-type disaster medical waste during COVID-19 pandemic.Ann. Oper. Res.20222214736035452
    [Google Scholar]
  43. ZhaoF. WangX. LiuB. SunW. LiuZ. Research on optimization of medical waste emergency disposal transportation network for public health emergencies in the context of intelligent transportation.Appl. Sci.202313181012210.3390/app131810122
    [Google Scholar]
  44. LinfatiR. GaticaG. EscobarJ.W. A mathematical model for scheduling and assignment of customers in hospital waste collection routes.Appl. Sci.202111221055710.3390/app112210557
    [Google Scholar]
  45. ErdemM. Designing a sustainable logistics network for hazardous medical waste collection a case study in COVID-19 pandemic.J. Clean. Prod.202237613419213419210.1016/j.jclepro.2022.13419236158600
    [Google Scholar]
  46. MeiX. HaoH. SunY. WangX. ZhouY. Optimization of medical waste recycling network considering disposal capacity bottlenecks under a novel coronavirus pneumonia outbreak.Environ. Sci. Pollut. Res. Int.20222953796697968710.1007/s11356‑021‑16027‑234480311
    [Google Scholar]
  47. JoneghaniN.M. ZarrinpoorN. EghtesadifardM. A mathematical model for designing a network of sustainable medical waste management under uncertainty.Comput. Ind. Eng.202217110837210837210.1016/j.cie.2022.108372
    [Google Scholar]
  48. HeZ. LiuS. Application of an improved genetic algorithm to the path optimization of urban medical waste recovery5th International Conference on Transportation EngineeringDalian Sep 21201572473010.1061/9780784479384.093
    [Google Scholar]
  49. BaradaranV. NikzamirM. PanahiY. Designing a logistic network for hospital waste management: A benders decomposition algorithm.Environ. Eng. Manag. J.202019111937195610.30638/eemj.2020.184
    [Google Scholar]
  50. KargarS. PourmehdiM. PaydarM.M. Reverse logistics network design for medical waste management in the epidemic outbreak of the novel coronavirus (COVID-19).Sci. Total Environ.202074614118314118310.1016/j.scitotenv.2020.14118332745861
    [Google Scholar]
  51. RajA. MishraV. TanksaleA. SamuelC. Solving hospital waste management problem in a developing country – a case of Varanasi city in India.Facilities2023
    [Google Scholar]
  52. TaslimiM. BattaR. KwonC. Medical waste collection considering transportation and storage risk.Comput. Oper. Res.202012010496610496610.1016/j.cor.2020.104966
    [Google Scholar]
  53. BudakA. UstundagA. Multi product multi period network design for reverse logistics2017 European International Conference on Industrial Engineering and Operations Management Bristol2017
    [Google Scholar]
  54. GoodarzianF. GhasemiP. GunasekaranA. LabibA. A fuzzy sustainable model for COVID-19 medical waste supply chain network.Fuzzy Optim. Decis. Making20242319312710.1007/s10700‑023‑09412‑8
    [Google Scholar]
  55. ErenE. Rıfat TuzkayaU. Safe distance-based vehicle routing problem: Medical waste collection case study in COVID-19 pandemic.Comput. Ind. Eng.202115710732810732810.1016/j.cie.2021.10732833879956
    [Google Scholar]
  56. BehnamianJ. KianiZ. An artificial bee colony algorithm for medical goods distribution and pharmacological waste collection by hybrid vehicles considering environmental criteriaJ. Mod. Manag.2023
    [Google Scholar]
  57. HejraniS. KoH.S. A reverse logistics model for medical waste management.Industrial and Systems Engineering Research Conference San Juan201397105
    [Google Scholar]
  58. AhlaqqachM. MouatassimS. BenhraJ. LamraniS. Modeling and optimization of a multi-objective ridesharing problem in the case of medical waste.Int J Recent Technol Eng20198219111918
    [Google Scholar]
  59. LiuZ. LiZ. ChenW. ZhaoY. YueH. WuZ. Path optimization of medical waste transport routes in the emergent public health event of COVID-19: A hybrid optimization algorithm based on the immune–ant colony algorithm.Int. J. Environ. Res. Public Health20201716583110.3390/ijerph1716583132806570
    [Google Scholar]
  60. XuX. WangF. ChenY. YangB. ZhangS. SongX. ShenL. Design of urban medical waste recycling network considering loading reliability under uncertain conditions.Comput. Ind. Eng.202318310947110947110.1016/j.cie.2023.109471
    [Google Scholar]
  61. NegarandehR. TajdinA. A robust fuzzy multi-objective programming model to design a sustainable hospital waste management network considering resiliency and uncertainty: A case study.Waste Manag. Res.202240443945710.1177/0734242X21103813434407709
    [Google Scholar]
  62. Saeidi-MobarakehZ. Tavakkoli-MoghaddamR. NavabakhshM. Amoozad-KhaliliH. A bi-level and robust optimization-based framework for a hazardous waste management problem: A real-world application.J. Clean. Prod.202025211983011983010.1016/j.jclepro.2019.119830
    [Google Scholar]
  63. BaatiD. MellouliM. HachichaW. Designing a new infectious healthcare-waste management system in Sfax Governorate, TunisiaInternational Conference on Advanced Logistics and TransportHammamet, Tunisia 01-03 May201435035510.1109/ICAdLT.2014.6866337
    [Google Scholar]
  64. MeteS. SerinF. Optimization of medical waste routing problem: The case of TRB1 region in Turkey.Int. J. Optim. Control Theor. Appl.20199219720710.11121/ijocta.01.2019.00714
    [Google Scholar]
  65. M. Liu, and T. Dai, "Optimization Strategy for Reverse Logistics Network of Medical Waste under COVID-19", 202241st Chinese Control Conference (CCC) Hefei, China 25-27 July 202219341939
    [Google Scholar]
  66. XinL. XiC. SagirM. WenboZ. How can infectious medical waste be forecasted and transported during the COVID-19 pandemic? A hybrid two-stage method.Technol. Forecast. Soc. Change202318712218812218810.1016/j.techfore.2022.12218836439940
    [Google Scholar]
  67. YuH. SunX. SolvangW.D. ZhaoX. Reverse logistics network design for effective management of medical waste in epidemic outbreaks: Insights from the Coronavirus Disease 2019 (COVID-19) Outbreak in Wuhan (China).Int. J. Environ. Res. Public Health2020175177010.3390/ijerph1705177032182811
    [Google Scholar]
  68. HomayouniZ. PishvaeeM.S. A bi-objective robust optimization model for hazardous hospital waste collection and disposal network design problem.J. Mater. Cycles Waste Manag.20202261965198410.1007/s10163‑020‑01081‑8
    [Google Scholar]
  69. YaspalB. JauharS.K. KambleS. BelhadiA. TiwariS. A data-driven digital transformation approach for reverse logistics optimization in a medical waste management system.J. Clean. Prod.202343013970313970310.1016/j.jclepro.2023.139703
    [Google Scholar]
  70. RahiminiaM. ShahrabifarahaniS. Alipour-VaeziM. AghsamiA. JolaiF. A novel data-driven patient and medical waste queueing-inventory system under pandemic: A real-life case study.Int. J. Prod. Res.202311710.1080/00207543.2023.2217939
    [Google Scholar]
  71. SarK. GhadimiP. A bi-objective smart capacitated vehicle routing problem with threshold waste level for the home health care29th International Conference on Engineering, Technology, and Innovation: Shaping the FutureEdinburgh 19-22 June 2023202310.1109/ICE/ITMC58018.2023.10332278
    [Google Scholar]
  72. EshkitiA. SabouhiF. Bozorgi-AmiriA. A data-driven optimization model to response to COVID-19 pandemic: A case study.Ann. Oper. Res.2023328133738610.1007/s10479‑023‑05320‑737361061
    [Google Scholar]
  73. AlshraidehH. Abu QdaisH. Stochastic modeling and optimization of medical waste collection in Northern Jordan.J. Mater. Cycles Waste Manag.201719274375310.1007/s10163‑016‑0474‑3
    [Google Scholar]
  74. DaoudR. KammounM. HachichaW. Solving a routing problem of collect infectious healthcare waste with stochastic demand: Case of Sfax Governorate in Tunisia.World Rev. Intermodal Transp. Res.20209329731110.1504/WRITR.2020.108219
    [Google Scholar]
  75. YuH. SunX. SolvangW.D. LaporteG. LeeC.K.M. A stochastic network design problem for hazardous waste management.J. Clean. Prod.202027712356612356610.1016/j.jclepro.2020.12356632834570
    [Google Scholar]
  76. Nosrati-AbarghooeeS. SheikhalishahiM. NasiriM.M. Gholami-ZanjaniS.M. Designing reverse logistics network for healthcare waste management considering epidemic disruptions under uncertainty.Appl. Soft Comput.202314211037211037210.1016/j.asoc.2023.11037237168874
    [Google Scholar]
  77. KargarS. PaydarM.M. SafaeiA.S. A reverse supply chain for medical waste: A case study in Babol healthcare sector.Waste Manag.202011319720910.1016/j.wasman.2020.05.05232535372
    [Google Scholar]
  78. Kayaİ. ÇolakM. TerziF. A comprehensive review of fuzzy multi criteria decision making methodologies for energy policy making.Energy Strategy Reviews20192420722810.1016/j.esr.2019.03.003
    [Google Scholar]
  79. SimicV. Ebadi TorkayeshA. Ijadi MaghsoodiA. Locating a disinfection facility for hazardous healthcare waste in the COVID-19 era: A novel approach based on Fermatean fuzzy ITARA-MARCOS and random forest recursive feature elimination algorithm.Ann. Oper. Res.2022328114635821664
    [Google Scholar]
  80. LiuS. ZhangJ. NiuB. LiuL. HeX. A novel hybrid multi-criteria group decision-making approach with intuitionistic fuzzy sets to design reverse supply chains for COVID-19 medical waste recycling channels.Comput. Ind. Eng.202216910822810822810.1016/j.cie.2022.10822835601730
    [Google Scholar]
  81. de AguiarH. LimaR. Healthcare waste management assessment: Challenges for hospitals in COVID-19 pandemic timesWaste Manag. Res.2021391-suppl566310.1177/0734242X211010362
    [Google Scholar]
  82. JangreJ. PrasadK. PatelD. Application of ArcGIS and QFD-based model for site selection for bio-medical waste disposal.Waste Manag. Res.202240791993110.1177/0734242X21106061234859719
    [Google Scholar]
  83. HarizH.A. DönmezC.Ç. SennarogluB. Siting of a central healthcare waste incinerator using GIS-based multi-criteria decision analysis.J. Clean. Prod.20171661031104210.1016/j.jclepro.2017.08.091
    [Google Scholar]
  84. KarimiH. HerkiB. GardiS.Q. GalalizadehS. HossiniH. MirzaeiK. PirsahebM. Site selection and environmental risks assessment of medical solid waste landfill for the City of Kermanshah-Iran.Int. J. Environ. Health Res.202232115516710.1080/09603123.2020.174287632183563
    [Google Scholar]
  85. ChauhanA. SinghA. A hybrid multi-criteria decision making method approach for selecting a sustainable location of healthcare waste disposal facility.J. Clean. Prod.20161391001101010.1016/j.jclepro.2016.08.098
    [Google Scholar]
  86. WichapaN. KhokhajaikiatP. A novel holistic approach for solving the multi-criteria transshipment problem for infectious waste management.Decision Science Letters20198444145410.5267/j.dsl.2019.5.002
    [Google Scholar]
  87. CinelliM. KadzińskiM. MiebsG. GonzalezM. SłowińskiR. Recommending multiple criteria decision analysis methods with a new taxonomy-based decision support system.Eur. J. Oper. Res.2022302263365110.1016/j.ejor.2022.01.011
    [Google Scholar]
  88. FerraraM. CianoT. NavaC.R. CananàL. Multi-criteria decision analysis: Hesitant fuzzy methodology towards expert systems for analyzing financial markets dynamics.Soft Comput.202310.1007/s00500‑023‑09441‑w
    [Google Scholar]
  89. AchillasC. MoussiopoulosN. KaragiannidisA. BaniasG. PerkoulidisG. The use of multi-criteria decision analysis to tackle waste management problems: A literature review.Waste Manag. Res.201331211512910.1177/0734242X1247020323315368
    [Google Scholar]
  90. T. Saaty, The Analytic Hierarchy Process.New YorkMcGraw-Hill1980
    [Google Scholar]
  91. IshtiaqP. KhanS.A. HaqM. A multi-criteria decision-making approach to rank supplier selection criteria for hospital waste management: A case from Pakistan.Waste Manag. Res.201836438639410.1177/0734242X1875589429451104
    [Google Scholar]
  92. SaatyT.L. Decision making — The analytic hierarchy and network processes (AHP/ANP).J. Syst. Sci. Syst. Eng.200413113510.1007/s11518‑006‑0151‑5
    [Google Scholar]
  93. ChauhanA. SinghS.P. Selection of healthcare waste disposal firms using a multi-method approach.J. Environ. Manage.202129511311711311710.1016/j.jenvman.2021.11311734214788
    [Google Scholar]
  94. ChakrabortyS. TOPSIS and modified TOPSIS: A comparative analysis.Decis Analytics J2021210002110.31224/osf.io/y39j7
    [Google Scholar]
  95. ThakkarJ.J. Decision-making trial and evaluation laboratory (DEMATEL).Studies in Systems, Decision and Control.SingaporeSpringer2021336139159
    [Google Scholar]
  96. SiS.L. YouX.Y. LiuH.C. ZhangP. DEMATEL technique: A systematic review of the state-of-the-art literature on methodologies and applications.Math. Probl. Eng.2018201813310.1155/2018/3696457
    [Google Scholar]
  97. AtanassovK.T. Intuitionistic fuzzy sets.Fuzzy Sets Syst.1986201879610.1016/S0165‑0114(86)80034‑3
    [Google Scholar]
  98. SuhandiV. ChenP.S. Closed-loop supply chain inventory model in the pharmaceutical industry toward a circular economy.J. Clean. Prod.202338313547413547410.1016/j.jclepro.2022.135474
    [Google Scholar]
  99. DwivediN. SharmaH. ShankerS. BarveA. Third-party logistics in bio-medical waste system: A path towards a risk-free sector.Proc. Integr. Optim. Sustain.2022641075110210.1007/s41660‑022‑00259‑x
    [Google Scholar]
  100. ShaerpourM. AzaniM. AghsamiA. RabbaniM. A new fuzzy bi-objective mixed-integer linear programming for designing a medical waste management network in the Coronavirus epidemic: A case study.Int J Manag Sci Eng Manage2024193212227
    [Google Scholar]
  101. ChakrabortyS. RautR.D. RofinT.M. ChakrabortyS. “A grey ordinal priority approach for healthcare waste disposal location selection”, Grey Systems.Theory and Application202313476778410.1108/GS‑05‑2023‑0040
    [Google Scholar]
  102. LiuZ. LiuT. LiuX. WeiA. WangX. YinY. LiY. Research on optimization of healthcare waste management system based on green governance principle in the COVID-19 pandemic.Int. J. Environ. Res. Public Health20211810531610.3390/ijerph1810531634067709
    [Google Scholar]
  103. Karbassi YazdiA. WankeP.F. HanneT. BottaniE. A decision-support approach under uncertainty for evaluating reverse logistics capabilities of healthcare providers in Iran.J. Enterp. Inf. Manag.2020335991102210.1108/JEIM‑09‑2019‑0299
    [Google Scholar]
  104. Ensar IşıkE. Topaloglu YildizS. Optimizing the COVID-19 cold chain vaccine distribution network with medical waste management: A robust optimization approach.Expert Syst. Appl.202322912051012051010.1016/j.eswa.2023.12051037251535
    [Google Scholar]
  105. CakirE. TasM.A. UlukanZ. A new circular intuitionistic fuzzy MCDM: A case of COVID-19 medical waste landfill site evaluation21st IEEE International Symposium on Computational Intelligence and InformaticsBudapest, Hungary 18-20 November202100014300014810.1109/CINTI53070.2021.9668563
    [Google Scholar]
  106. TrivediV. GharibM. A multi-objective network design for recycling healthcare waste from large-scale immunization1st International Conference on Green Energy, Environmental Engineering and Sustainable TechnologiesBelagavi 5-6 October 2023202310.1051/e3sconf/202345501006
    [Google Scholar]
  107. OrrilloD.A.B. AdrianoC.L. GutiérrezJ.A.T. Mixed integer programming model for reverse logistics in the management of Covid vaccination waste in health facilities located in marginal areas: Case study of North Lima - Peru10th International Conference on Industrial Engineering and ApplicationsRome2013
    [Google Scholar]
  108. CaoC. XieY. LiuY. LiuJ. ZhangF. Two-phase COVID-19 medical waste transport optimisation considering sustainability and infection probability.J. Clean. Prod.202338913598513598510.1016/j.jclepro.2023.13598536647542
    [Google Scholar]
  109. EfendiS. ChenT.C. WidjajaG. HansenH. BakhvalovS.Y. GerasimovaY.R. AbilmazhinovY. AnichkinaO. RahmanF.F. Reverse supply chain and pharmaceutical waste collection management utilizing location-routing model.Math. Model. Eng. Probl.2023101556210.18280/mmep.100107
    [Google Scholar]
  110. GhoushchiS.J. BonabS.R. GhiaciA.M. HaseliG. TomaskovaH. Hajiaghaei-KeshteliM. Landfill site selection for medical waste using an integrated SWARA-WASPAS framework based on spherical fuzzy set.Sustainability202113241395010.3390/su132413950
    [Google Scholar]
  111. GörçünÖ.F. AytekinA. SelcukK. TirkolaeeE.B. Evaluating and selecting sustainable logistics service providers for medical waste disposal treatment in the healthcare industry.J. Clean. Prod.2023408137194
    [Google Scholar]
  112. HachichaW. MellouliM. KhemakhemM. ChabchoubH. Routing system for infectious healthcare-waste transportation in Tunisia: A case study.Environ. Eng. Manag. J.2014131212810.30638/eemj.2014.004
    [Google Scholar]
  113. LingJ. LiX. LinM. Medical waste treatment station selection based on linguistic q-rung orthopair fuzzy numbers.Comput. Model. Eng. Sci.2021129111714810.32604/cmes.2021.016356
    [Google Scholar]
  114. MantzarasG. VoudriasE.A. An optimization model for collection, haul, transfer, treatment and disposal of infectious medical waste: Application to a Greek region.Waste Manag.20176951853410.1016/j.wasman.2017.08.03728886977
    [Google Scholar]
  115. MishraA.R. RaniP. Multi-criteria healthcare waste disposal location selection based on Fermatean fuzzy WASPAS method.Complex Intell. Syst.2021752469248410.1007/s40747‑021‑00407‑9
    [Google Scholar]
  116. NikzamirM. BaradaranV. A healthcare logistic network considering stochastic emission of contamination: Bi-objective model and solution algorithm.Transp. Res., Part E Logist. Trans. Rev.202014210206010206010.1016/j.tre.2020.10206032863733
    [Google Scholar]
  117. OsabaE. YangX.S. FisterI.Jr Del SerJ. Lopez-GarciaP. Vazquez-PardavilaA.J. A discrete and improved bat algorithm for solving a medical goods distribution problem with pharmacological waste collection.Swarm Evol. Comput.20194427328610.1016/j.swevo.2018.04.001
    [Google Scholar]
  118. ThakurD.V. Locating temporary waste treatment facilities in the cities to handle the explosive growth of HCWs during pandemics: A novel Grey-AHP-OCRA hybrid approach.Sustain Cities Soc.20228210390710390710.1016/j.scs.2022.10390735528480
    [Google Scholar]
  119. ThakurV. RameshA. Quantitative grey-ANP-TOPSIS based model for evaluating healthcare waste disposal partner.Int. J. Procure. Manag.201710668370510.1504/IJPM.2017.087308
    [Google Scholar]
  120. TirkolaeeE.B. AbbasianP. WeberG.W. Sustainable fuzzy multi-trip location-routing problem for medical waste management during the COVID-19 outbreak.Sci. Total Environ.202175614360714360710.1016/j.scitotenv.2020.14360733220997
    [Google Scholar]
  121. TorkayeshA.E. ZolfaniS.H. KahvandM. Stratified hybrid decision model with constrained attributes: Recycling facility location for urban healthcare plastic waste.Sustain Cities Soc.202167102712
    [Google Scholar]
  122. Van ThanhN. Hoang HaiN. Thi Kim LanN. Fuzzy MCDM model for selection of infectious waste management contractors.Comput. Mater. Continua20227222191220210.32604/cmc.2022.026357
    [Google Scholar]
  123. WangY. Ranking model for selection of medical waste logistic firms.Journal of Quality2018253143152
    [Google Scholar]
  124. YazdaniM. TavanaM. PamučarD. ChatterjeeP. A rough based multi-criteria evaluation method for healthcare waste disposal location decisions.Comput. Ind. Eng.202014310639410639410.1016/j.cie.2020.106394
    [Google Scholar]
  125. de CamposE.A.R. TavanaM. ten CatenC.S. BouzonM. de PaulaI.C. A grey-DEMATEL approach for analyzing factors critical to the implementation of reverse logistics in the pharmaceutical care process.Environ. Sci. Pollut. Res. Int.20212811141561417610.1007/s11356‑020‑11138‑833206293
    [Google Scholar]
/content/journals/celt/10.2174/012666948X307322240825172401
Loading
/content/journals/celt/10.2174/012666948X307322240825172401
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keyword(s): hospital waste; logistics; Medical waste; optimization; quantitative model COVID-19
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test