Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4080
  • E-ISSN:

Abstract

Backgroun

Tyrosine kinases are of great importance nowadays in cancer treatment. As designing new inhibitors with more potency is an optimal goal of pharmaceutical companies, using previous improvements in this area would be beneficial. One of the most popular and widely used methods is creating a QSAR model. Another useful way is to build a pharmacophoric map to address important features of inhibitors.

Methods

Upon this, a large dataset of molecules was applied to create a QSAR model for the prediction of the inhibitory activity of molecules against the epidermal growth factor receptor. Using MOE software, molecular descriptors were calculated in 3d, and a model was built.

Results

9 descriptors were selected, which describe the energy, shape, and hydrophobicity of the molecules. A pharmacophoric map was also created, and 3 important features were selected: Hydrophobic areas, H-bond acceptor regions, and Aromatic moieties.

Conclusion

These findings proved the results obtained result from the QSAR model.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080272807231127050546
2024-03-01
2024-11-16
Loading full text...

Full text loading...

References

  1. XuM.J. JohnsonD.E. GrandisJ.R. EGFR-targeted therapies in the post-genomic era.Cancer Metastasis Rev.201736346347310.1007/s10555‑017‑9687‑8 28866730
    [Google Scholar]
  2. GrantS.K. Therapeutic protein kinase inhibitors.Cell. Mol. Life Sci.20096671163117710.1007/s00018‑008‑8539‑7 19011754
    [Google Scholar]
  3. NobleM.E.M. EndicottJ.A. JohnsonL.N. Protein kinase inhibitors: Insights into drug design from structure.Science200430356651800180510.1126/science.1095920 15031492
    [Google Scholar]
  4. AroraA. ScholarE.M. Role of tyrosine kinase inhibitors in cancer therapy.J. Pharmacol. Exp. Ther.2005315397197910.1124/jpet.105.084145 16002463
    [Google Scholar]
  5. MadhusudanS. GanesanT.S. Tyrosine kinase inhibitors in cancer therapy.Clin. Biochem.200437761863510.1016/j.clinbiochem.2004.05.006 15234243
    [Google Scholar]
  6. CohenM.H. WilliamsG.A. SridharaR. ChenG. PazdurR. FDA drug approval summary: Gefitinib (ZD1839) (Iressa) tablets.Oncologist20038430330610.1634/theoncologist.8‑4‑303 12897327
    [Google Scholar]
  7. IrmerD. FunkJ.O. BlaukatA. EGFR kinase domain mutations – functional impact and relevance for lung cancer therapy.Oncogene200726395693570110.1038/sj.onc.1210383 17353898
    [Google Scholar]
  8. ZhaoY. BilalM. RazaA. Tyrosine kinase inhibitors and their unique therapeutic potentialities to combat cancer.Int. J. Biol. Macromol.2021168223710.1016/j.ijbiomac.2020.12.009 33290765
    [Google Scholar]
  9. RoskoskiR.Jr Properties of FDA-approved small molecule protein kinase inhibitors: A 2020 update.Pharmacol. Res.202015210460910.1016/j.phrs.2019.104609 31862477
    [Google Scholar]
  10. SabeV.T. NtombelaT. JhambaL.A. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review.Eur. J. Med. Chem.202122411370510.1016/j.ejmech.2021.113705 34303871
    [Google Scholar]
  11. DixonS.L. SmondyrevA.M. KnollE.H. RaoS.N. ShawD.E. FriesnerR.A. PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results.J. Comput. Aided Mol. Des.20062010-1164767110.1007/s10822‑006‑9087‑6 17124629
    [Google Scholar]
  12. Hajiagha BozorgiA. ZarghiA. Search for the pharmacophore of histone deacetylase inhibitors using pharmacophore query and docking study.Iran. J. Pharm. Res.201413411651172 25587304
    [Google Scholar]
  13. Hajiagha BozorgiA. GhomiH. Tabatabaei, Jouyban A. QSAR and pharmacophore studies of telomerase inhibitors.Medicinal Chemistry Resreash20116853866
    [Google Scholar]
  14. RoyK. KarS. Das RN. Statistical methods in QSAR/QSPR.In: A primer on QSAR/QSPR modeling. Springer2015375910.1007/978‑3‑319‑17281‑1_2
    [Google Scholar]
  15. GonzálezM. TeránC. Saíz-Urra L. Teijeira M. Variable selection methods in QSAR: An overview.Curr. Top. Med. Chem.20088181606162710.2174/156802608786786552 19075770
    [Google Scholar]
  16. YooC. ShahlaeiM. The applications of PCA in QSAR studies: A case study on CCR5 antagonists.Chem. Biol. Drug Des.201891113715210.1111/cbdd.13064 28656625
    [Google Scholar]
  17. GoodarziM. DejaegherB. HeydenY.V. Feature selection methods in QSAR studies.J. AOAC Int.201295363665110.5740/jaoacint.SGE_Goodarzi 22816254
    [Google Scholar]
  18. KaregowdaA.G. ManjunathA.S. JayaramM.A. Feature subset selection problem using wrapper approach in supervised learning.Int. J. Comput. Appl.201017131710.5120/169‑295
    [Google Scholar]
  19. https://www.chemcomp.com/Available from: https://www.chemcomp.com/index.htm
  20. MosayebniaM. Hajiagha BozorgiA. RezaeianpourM. KobarfardF. In silico prediction of SARS-CoV-2 main protease and polymerase inhibitors: 3D-Pharmacophore modelling.J. Biomol. Struct. Dyn.202240146569658610.1080/07391102.2021.1886991 33599180
    [Google Scholar]
  21. LiangJ-w. Discovery of ABCG2/VEGFR2 dual-target inhibitor with anti-drug resistance activity based on the ATP binding site.Research Square202010.21203/rs.3.rs‑127221/v1
    [Google Scholar]
  22. ProsserK.E. StokesR.W. CohenS.M. Evaluation of 3-dimensionality in approved and experimental drug space.ACS Med. Chem. Lett.20201161292129810.1021/acsmedchemlett.0c00121 32551014
    [Google Scholar]
  23. Available from:https://www.nlm.nih.gov/nichsr/stats_tutorial/section2/mod8_sd.html#:~:text=A%20standard%20deviation%20
  24. FatemehKeramatnia AliShayanfar HajiaghaBozorgi A. Marjan Mottaghi &. AbolghasemJouyban Prediction of drug solubility data in polyethylene glycols + water mixtures at various temperatures.Lat. Am. J. Pharm.201534816141621
    [Google Scholar]
  25. JawarkarR.D. SharmaP. JainN. QSAR, molecular docking, md simulation and mmgbsa calculations approaches to recognize concealed pharmacophoric features requisite for the optimization of alk tyrosine kinase inhibitors as anticancer leads.Molecules20222715495110.3390/molecules27154951 35956900
    [Google Scholar]
  26. SunX. ChenL. LiY. Structure-based ensemble-QSAR model: A novel approach to the study of the EGFR tyrosine kinase and its inhibitors.Acta Pharmacol. Sin.201435230131010.1038/aps.2013.148 24335842
    [Google Scholar]
  27. A QSAR study on a series of indolin-2-ones acting as non-receptor src tyrosine kinase inhibitors.Lett. Drug Des. Discov.2011810[918 - 925].
    [Google Scholar]
  28. AbdulilahE.C.E. E-pharmacophore mapping combined with virtual screening and molecular docking to identify potent and selective inhibitors of p90 ribosomal s6 kinase (rsk).Turk J Pharm Sci2016132241248
    [Google Scholar]
  29. ChangY-S. WangB-C. YangL-L. Pharmacophore modeling of tyrosine kinase inhibitors: 4-anilinoquinazoline derivatives.J. Chin. Chem. Soc.2010574B91692410.1002/jccs.201000127
    [Google Scholar]
/content/journals/cei/10.2174/0115734080272807231127050546
Loading
/content/journals/cei/10.2174/0115734080272807231127050546
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test