- Home
- A-Z Publications
- Current Drug Targets
- Previous Issues
- Volume 17, Issue 16, 2016
Current Drug Targets - Volume 17, Issue 16, 2016
Volume 17, Issue 16, 2016
-
-
A Central Role for ATP Signalling in Glial Interactions in the CNS
Authors: Andrea Rivera, Ilaria Vanzulli and Arthur M. ButtThe purine ATP has a prominent regulatory role in CNS function and pathology due to its actions on glial cells - microglia, astrocytes and oligodendrocytes. ATP serves as an apparently ubiquitous ‘gliotransmitter’ that is released by astrocytes and other cells to activate purine receptors on neighbouring cells. In pathology, the release of ATP mediates both tissue damage and repair by its direct effects on glial cell integrity Read More
-
-
-
The Emerging Role of the Cannabinoid Receptor Family in Peripheral and Neuro-immune Interactions
Authors: Orla Haugh, June Penman, Andrew J. Irving and Veronica A. CampbellThe classical endogenous cannabinoid (CB) system is composed of the endocannabinoid signalling molecules, 2-arachidonoyl glycerol (2-AG) and anandamide (AEA) and their G-protein coupled receptors (GPCR), CB1 and CB2 which together constitutes the endocannabinoid system (ECS). However, putative, novel lipid-sensing CB receptors have recently been identified, including the orphan GPR55 and GPR18 receptors that Read More
-
-
-
Sphingosine-1-Phosphate Receptors in the Central Nervous and Immune Systems
Authors: Luke M. Healy and Jack P. AntelSphingosine-1-phosphate receptor (S1PR) modulators have entered clinical practice as immune-modulators for the treatment of multiple sclerosis (MS). Pharmacologic modulation of S1PR expression on lymphocytes inhibits these cells capacity to respond to the S1P gradient within regional lymph nodes (LNs) (and thymus) that promotes their exit into peripheral circulation. The resultant peripheral blood restricted lymphopen Read More
-
-
-
The Role of the Oxysterol/EBI2 Pathway in the Immune and Central Nervous Systems
Authors: Aleksandra Rutkowska, Kumlesh K. Dev and Andreas W. SailerOxysterols are pleiotropic messengers interacting with multiple receptor systems. One of the cognate receptors for oxysterols is EBI2, a G protein-coupled receptor highly expressed in the cells of the immune system. Here we discuss the receptor’s role in the adapted immunity and inflammation as well as the receptor’s expression and function in the CNS with the focus on astrocytes. We also discuss expression and s Read More
-
-
-
Protease-Activated Receptor 2: Are Common Functions in Glial and Immune Cells Linked to Inflammation-Related CNS Disorders?
Protease-activated receptors (PARs) are a novel family of G-protein coupled receptors (GPCRs) whose activation requires the cleavage of the N-terminus by a serine protease. However, recent evidence reveals that alternative routes of activation also occur, that PARs signal via multiple pathways and that pathway activation is activator- dependent. Given our increased understanding of PAR function both under physiologi Read More
-
-
-
Astrocytes: Adhesion Molecules and Immunomodulation
Authors: Shane Liddelow and Daniel HoyerProtection of neurons, as well as maintenance of their general homeostasis and trophic support is performed by glial cells. Astrocytes, the most abundant glial cell, increase in size and number evolutionarily such that invertebrates contain fewer small astrocytes, while humans have large multi-branched astrocytes that constitute up to 60% of central nervous system (CNS) cells. Astrocytes provide neurotrophic support, ind Read More
-
-
-
IL-17A and Multiple Sclerosis: Signaling Pathways, Producing Cells and Target Cells in the Central Nervous System
Authors: Frank Kolbinger, Christine Huppertz, Anis Mir and Franco Di PadovaMultiple sclerosis (MS) is an immune mediated demyelinating disease of the central nervous system (CNS). The importance of immune cells to MS pathology is supported by clinical data linking the depletion of T and B cells, or the prevention of their migration into the brain with significant reduction in relapses and development of new lesions. In vitro studies, preclinical animal models and encouraging data with the anti-IL-1 Read More
-
-
-
PET Radiopharmaceuticals for Personalized Medicine
More LessRecent advances in the self-shielded cyclotrons, improved targets, videomonitored hot cells design, and automated PET radiopharmaceutical (RPs) synthesis modules, utilizing computer-controlled graphic user interphase (GUI) has revolutionized PET molecular imaging technology for basic biomedical research and theranostics to accomplish the ultimate goal of evidence-based personalized medicine. Particularly, [18F]HX4: ( Read More
-
-
-
Targeting ADAM17 Sheddase Activity in Cancer
Authors: Armando Rossello, Elisa Nuti, Silvano Ferrini and Marina FabbiA disintegrin and metalloprotease (ADAM)17 is a sheddase, capable of releasing the ectodomains of membrane proteins such as growth factors (e.g. Epidermal Growth Factor Receptor ligands), cytokines and their receptors, adhesion and signaling molecules. These activities regulate several physiological and pathological processes including inflammation, tumor growth and metastatic progression. In this review, we will summ Read More
-
-
-
Strategies Targeting DNA Topoisomerase I in Cancer Chemotherapy: Camptothecins, Nanocarriers for Camptothecins, Organic Non-Camptothecin Compounds and Metal Complexes
More LessTopoisomerase I (Topo I) is a nuclear enzyme engaged in adjustment of DNA topological structure during cell cycle by cleaving and reannealing one of the two strands of the DNA double helix. Inhibition of this enzyme results in DNA strand breaks, ultimately leads to apoptosis and cell death; additionally it is in raised level in solid tumors contrasted with healthy tissues. Consequently, Topo I has a great potential as a target for t Read More
-
-
-
Phospholipase A2 Isoforms as Novel Targets for Prevention and Treatment of Inflammatory and Oncologic Diseases
Phospholipase A2s (PLA2s) are group of enzymes, which cleave phospholipids specifically at sn-2 position to liberate free fatty acid, mostly arachidonic acid (AA) and lysophospholipids (LPLs). Inhibition of PLA2 prevents the liberation of AA and LPLs. Hence, researchers have been considering PLA2s could be a better therapeutic target than the downstream enzymes cyclooxygense and lipoxygenase. Several isoform Read More
-
-
-
Aspirin Intolerance: Experimental Models for Bed-to-Bench
More LessAspirin is the oldest non-steroidal anti-inflammatory drug (NSAID), and it sometimes causes asthma-like symptoms known as aspirin-exacerbated respiratory disease (AERD), which can be serious. Unwanted effects of aspirin (aspirin intolerance) are also observed in patients with food-dependent exercise-induced anaphylaxis, a type I allergy disease, and aspirin-induced urticaria (AIU). However the target and the mech Read More
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
Article
content/journals/cdt
Journal
10
5
false
en
