- Home
- A-Z Publications
- Current Drug Targets
- Previous Issues
- Volume 13, Issue 9, 2012
Current Drug Targets - Volume 13, Issue 9, 2012
Volume 13, Issue 9, 2012
-
-
Bacterial Cell Wall Compounds as Promising Targets of Antimicrobial Agents I. Antimicrobial Peptides and Lipopolyamines
The first barrier that an antimicrobial agent must overcome when interacting with its target is the microbial cell wall. In the case of Gram-negative bacteria, additional to the cytoplasmic membrane and the peptidoglycan layer, an outer membrane (OM) is the outermost barrier. The OM has an asymmetric distribution of the lipids with phospholipids and lipopolysaccharide (LPS) located in the inner and outer leaflets, respectively. Read More
-
-
-
Bacterial Cell Wall Compounds as Promising Targets of Antimicrobial Agents II. Immunological and Clinical Aspects
The bacterial cell wall represents the primary target for antimicrobial agents. Microbial destruction is accompanied by the release of potent immunostimulatory membrane constituents. Both Gram-positive and Gram-negative bacteria release a variety of lipoproteins and peptidoglycan fragments. Gram-positive bacteria additionally provide lipoteichoic acids, whereas Gram-negative bacteria also release lipopolysacchari Read More
-
-
-
Antimicrobial Peptide Action on Parasites
Authors: Marc Torrent, David Pulido, Luis Rivas and David AndreuDiseases caused by protozoan parasites can pose a severe thread to human health and are behind some serious neglected tropical diseases like malaria and leishmaniasis. Though several different drugs have been developed in order to eradicate these diseases, a successful candidate has not yet been discovered. Among the most active compounds tested, antimicrobial peptides (AMPs) are particularly appealing because of Read More
-
-
-
Discovering New In Silico Tools for Antimicrobial Peptide Prediction
Authors: Marc Torrent, M. Victoria Nogues and Ester BoixAntimicrobial peptides (AMPs) are important effectors of the innate immune system and play a vital role in the prevention of infections. Due to the increased emergence of new antibiotic-resistant bacteria, new drugs are constantly under investigation. AMPs in particular are recognized as promising candidates because of their modularity and wide antimicrobial spectrum. However, the mechanisms of action of AMPs, as wel Read More
-
-
-
Nanotools for the Delivery of Antimicrobial Peptides
Antimicrobial peptide drugs are increasingly attractive therapeutic agents as their roles in physiopathological processes are being unraveled and because the development of recombinant DNA technology has made them economically affordable in large amounts and high purity. However, due to lack of specificity regarding the target cells, difficulty in attaining them, or reduced half-lives, most current administration methods re Read More
-
-
-
Antimicrobial Peptide Delivery Strategies: Use of Recombinant Antimicrobial Peptides in Paratransgenic Control Systems
Authors: Ivy Hurwitz, Annabeth Fieck and Ravi DurvasulaAntimicrobial peptides (AMP's) are small peptides that have evolved as part of an innate cell defense mechanism in many organisms. We are currently developing methodologies to use these molecules to control the transmission of vector borne diseases utilizing a paratransgenic strategy. In this approach, symbiotic or commensal microbes of host insects are transformed to express gene products that interfere with pathog Read More
-
-
-
Pantothenate Kinase-Associated Neurodegeneration
Authors: Monika B. Hartig, Holger Prokisch, Thomas Meitinger and Thomas KlopstockPantothenate kinase-associated neurodegeneration (PKAN) is a hereditary progressive disorder and the most frequent form of neurodegeneration with brain iron accumulation (NBIA). PKAN patients present with a progressive movement disorder, dysarthria, cognitive impairment and retinitis pigmentosa. In magnetic resonance imaging, PKAN patients exhibit the pathognonomic “eye of the tiger” sign in the globus pallidus whi Read More
-
-
-
Aceruloplasminemia
By Satoshi KonoCeruloplasmin contains 95% of the copper in human serum and plays an important role in iron efflux from mammalian cells, including brain cells, due to the activity of ferroxidase, which oxidizes ferrous iron following its transfer to the cell surface via the iron transporter, ferroportin, and delivers ferric iron to extracellular transferrin. In the central nervous system, a glycosylphosphatidylinositol (GPI)-anchored ceruloplasmi Read More
-
-
-
Neuroferritinopathy: Update on Clinical Features and Pathogenesis
Authors: Alisdair McNeill and Patrick F. ChinneryNeuroferritinopathy is an autosomal dominant extra – pyramidal movement disorder caused by mutations in the ferritin light chain gene (FTL). The most frequent presentation is with chorea (50%), followed by dystonia (42.5 %) and parkinsonism (7.5%). Seven different mutations are known; 6 insertions in exon 4 and a missense mutation in exon 3 with the 460insA mutation in exon 4 being the most common. Brain magnetic re Read More
-
-
-
PLA2G6 Mutations and Other Rare Causes of Neurodegeneration with Brain Iron Accumulation
More LessThere is a wide variety of genetic and sporadic causes for neurodegenerative disorders with apparent brain iron accumulation on magnetic resonance imaging. Rare recessive causes include PLA2G6 mutations (infantile neuroaxonal dystrophy), and mutations of ATP13A2 (Kufor Rakeb syndrome) and FA2H. A variety of sporadic neurological disorders can present brain iron accumulation on imaging, including multiple scl Read More
-
-
-
Cardiovascular Therapeutics Targets on the NO–sGC–cGMP Signaling Pathway: A Critical Overview
In a brief overview, in NO–sGC–cGMP signaling in a blood vessel, l-arginine is converted in the endothelium monolayer by the endothelial nitric oxide synthase (eNOS) to NO which diffuses into both the vessel lumen and the vessel wall, thereby activating soluble guanylate cyclase (sGC). Heme-dependent sGC stimulators and hem-independent sGC activators increase the cellular cGMP concentration via the direct activation of sG Read More
-
-
-
TRAIL as Biomarker and Potential Therapeutic Tool for Cardiovascular Diseases
Authors: Stella Bernardi, Daniela Milani, Bruno Fabris, Paola Secchiero and Giorgio ZauliThis review focuses on TNF-related apoptosis-inducing ligand (TRAIL), also called Apo2 ligand, a protein belonging to the TNF superfamily. TRAIL can be found either in its transmembrane or circulating form, and its mostly studied peripheral effect is the induction of cellular apoptosis. Here, we discuss the evidences supporting the use of TRAIL as biomarker of cardiovascular diseases as well as the evidences showing the potenti Read More
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
Article
content/journals/cdt
Journal
10
5
false
en
