Skip to content
2000
Volume 26, Issue 2
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Metabolic reprogramming and altered cellular energetics have been recently established as an important cancer hallmark. The modulation of glucose metabolism is one of the important characteristic features of metabolic reprogramming in cancer. It contributes to oncogenic progression by supporting the increased biosynthetic and bio-energetic demands of tumor cells. This oncogenic transformation consequently results in elevated expression of glucose transporters in these cells. Moreover, various cancers exhibit abnormal transporter expression patterns compared to normal tissues. Recent investigations have underlined the significance of glucose transporters in regulating cancer cell survival, proliferation, and metastasis. Abnormal regulation of these transporters, which exhibit varying affinities for hexoses, could enable cancer cells to efficiently manage their energy supply, offering a crucial edge for proliferation. Exploiting the upregulated expression of glucose transporters, GLUTs, and Sodium Linked Glucose Transporters (SGLTs), could serve as a novel therapeutic intervention for anti-cancer drug discovery as well as provide a unique targeting approach for drug delivery to specific tumor tissues. This review aims to discussthe previous and emerging research on the expression of various types of glucose transporters in tumor tissues, the role of glucose transport inhibitors as a cancer therapy intervention as well as emerging GLUT/SGLT-mediated drug delivery strategies that can be therapeutically employed to target various cancers.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501335877240926101134
2024-10-07
2025-01-18
Loading full text...

Full text loading...

References

  1. FaubertB. SolmonsonA. DeBerardinisR.J. Metabolic reprogramming and cancer progression.Science20203686487eaaw547310.1126/science.aaw547332273439
    [Google Scholar]
  2. CairnsR.A. HarrisI.S. MakT.W. Regulation of cancer cell metabolism.Nat. Rev. Cancer2011112859510.1038/nrc298121258394
    [Google Scholar]
  3. KroemerG. PouyssegurJ. Tumor cell metabolism: Cancer’s Achilles’ heel.Cancer Cell200813647248210.1016/j.ccr.2008.05.00518538731
    [Google Scholar]
  4. SchulzeA. HarrisA.L. How cancer metabolism is tuned for proliferation and vulnerable to disruption.Nature2012491742436437310.1038/nature1170623151579
    [Google Scholar]
  5. SogaT. Cancer metabolism: Key players in metabolic reprogramming.Cancer Sci.2013104327528110.1111/cas.1208523279446
    [Google Scholar]
  6. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  7. XiaoY. MaD. YangY.S. YangF. DingJ.H. GongY. JiangL. GeL.P. WuS.Y. YuQ. ZhangQ. BertucciF. SunQ. HuX. LiD.Q. ShaoZ.M. JiangY.Z. Comprehensive metabolomics expands precision medicine for triple-negative breast cancer.Cell Res.202232547749010.1038/s41422‑022‑00614‑035105939
    [Google Scholar]
  8. TanY. LiJ. ZhaoG. HuangK.C. CardenasH. WangY. MateiD. ChengJ.X. Metabolic reprogramming from glycolysis to fatty acid uptake and beta-oxidation in platinum-resistant cancer cells.Nat. Commun.2022131455410.1038/s41467‑022‑32101‑w35931676
    [Google Scholar]
  9. ChenY. LiY. Chapter Six - Metabolic reprogramming and immunity in cancer.Cancer Immunology and Immunotherapy. AmijiM.M. MilaneL.S. Academic Press2022137196https://www.sciencedirect.com/science/article/pii/B978012823397900006510.1016/B978‑0‑12‑823397‑9.00006‑5
    [Google Scholar]
  10. GyamfiJ. KimJ. ChoiJ. Cancer as a metabolic disorder.Int. J. Mol. Sci.2022233115510.3390/ijms2303115535163079
    [Google Scholar]
  11. SchiliroC. FiresteinB.L. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation.Cells2021105105610.3390/cells1005105633946927
    [Google Scholar]
  12. ChenZ. HanF. DuY. ShiH. ZhouW. Hypoxic microenvironment in cancer: Molecular mechanisms and therapeutic interventions.Signal Transduct. Target. Ther.2023817010.1038/s41392‑023‑01332‑836797231
    [Google Scholar]
  13. NagarajanS.R. ButlerL.M. HoyA.J. The diversity and breadth of cancer cell fatty acid metabolism.Cancer Metab.202191210.1186/s40170‑020‑00237‑233413672
    [Google Scholar]
  14. LinX. XiaoZ. ChenT. LiangS.H. GuoH. Glucose metabolism on tumor plasticity, diagnosis, and treatment.Front. Oncol.202010317https://www.frontiersin.org/articles/10.3389/fonc.2020.00317/full10.3389/fonc.2020.0031732211335
    [Google Scholar]
  15. YunJ. RagoC. CheongI. PagliariniR. AngenendtP. RajagopalanH. SchmidtK. WillsonJ.K.V. MarkowitzS. ZhouS. DiazL.A.Jr VelculescuV.E. LengauerC. KinzlerK.W. VogelsteinB. PapadopoulosN. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells.Science200932559471555155910.1126/science.117422919661383
    [Google Scholar]
  16. WeiZ. LiuX. ChengC. YuW. YiP. Metabolism of amino acids in cancer.Front. Cell Dev. Biol.2021860383710.3389/fcell.2020.60383733511116
    [Google Scholar]
  17. DeBerardinisR.J. ChandelN.S. Fundamentals of cancer metabolism.Sci. Adv.201625e160020010.1126/sciadv.160020027386546
    [Google Scholar]
  18. CalvoM.B. FigueroaA. PulidoE.G. CampeloR.G. AparicioL.A. Potential role of sugar transporters in cancer and their relationship with anticancer therapy.Int. J. Endocrinol.2010201011410.1155/2010/20535720706540
    [Google Scholar]
  19. GhanavatM. ShahrouzianM. Deris ZayeriZ. BanihashemiS. KazemiS.M. SakiN. Digging deeper through glucose metabolism and its regulators in cancer and metastasis.Life Sci.202126411860310.1016/j.lfs.2020.11860333091446
    [Google Scholar]
  20. Vander HeidenM.G. CantleyL.C. ThompsonC.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation.Science200932459301029103310.1126/science.116080919460998
    [Google Scholar]
  21. MakowskiL. SundaramS. JohnsonA.R. Obesity, metabolism and the microenvironment: Links to cancer.J. Carcinog.20131211910.4103/1477‑3163.11960624227994
    [Google Scholar]
  22. FanK. LiuZ. GaoM. TuK. XuQ. ZhangY. Targeting nutrient dependency in cancer treatment.Front. Oncol.20221282017310.3389/fonc.2022.82017335178349
    [Google Scholar]
  23. Garcia-BermudezJ. WilliamsR.T. GuarecucoR. BirsoyK. Targeting extracellular nutrient dependencies of cancer cells.Mol. Metab.202033678210.1016/j.molmet.2019.11.01131926876
    [Google Scholar]
  24. PapalazarouV. MaddocksO.D.K. Supply and demand: Cellular nutrient uptake and exchange in cancer.Mol. Cell202181183731374810.1016/j.molcel.2021.08.02634547236
    [Google Scholar]
  25. ZhuJ. ThompsonC.B. Metabolic regulation of cell growth and proliferation.Nat. Rev. Mol. Cell Biol.201920743645010.1038/s41580‑019‑0123‑530976106
    [Google Scholar]
  26. WarburgO. WindF. NegeleinE. The metabolism of tumors in the body.J. Gen. Physiol.19278651953010.1085/jgp.8.6.51919872213
    [Google Scholar]
  27. SomP. AtkinsH.L. BandoypadhyayD. FowlerJ.S. MacGregorR.R. MatsuiK. OsterZ.H. SackerD.F. ShiueC.Y. TurnerH. WanC.N. WolfA.P. ZabinskiS.V. A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): Nontoxic tracer for rapid tumor detection.J. Nucl. Med.19802176706757391842
    [Google Scholar]
  28. AdekolaK. RosenS.T. ShanmugamM. Glucose transporters in cancer metabolism.Curr. Opin. Oncol.201224665065410.1097/CCO.0b013e328356da7222913968
    [Google Scholar]
  29. ThorensB. MuecklerM. Glucose transporters in the 21st Century.Am. J. Physiol. Endocrinol. Metab.20102982E141E14510.1152/ajpendo.00712.200920009031
    [Google Scholar]
  30. JoostH.G. ThorensB. The extended GLUT-family of sugar/polyol transport facilitators: Nomenclature, sequence characteristics, and potential function of its novel members.Mol. Membr. Biol.200118424725610.1080/0968768011009045611780753
    [Google Scholar]
  31. UldryM. ThorensB. The SLC2 family of facilitated hexose and polyol transporters.Pflugers Arch.2004447548048910.1007/s00424‑003‑1085‑012750891
    [Google Scholar]
  32. AugustinR. The protein family of glucose transport facilitators: It’s not only about glucose after all.IUBMB Life201062531533310.1002/iub.31520209635
    [Google Scholar]
  33. PliszkaM. SzablewskiL. Glucose transporters as a target for anticancer therapy.Cancers.20211316418410.3390/cancers1316418434439338
    [Google Scholar]
  34. BarronC.C. BilanP.J. TsakiridisT. TsianiE. Facilitative glucose transporters: Implications for cancer detection, prognosis and treatment.Metabolism201665212413910.1016/j.metabol.2015.10.00726773935
    [Google Scholar]
  35. MedinaR.A. OwenG. Glucose transporters: Expression, regulation and cancer.Biol. Res.200235192610.4067/S0716‑9760200200010000412125211
    [Google Scholar]
  36. MachedaM.L. RogersS. BestJ.D. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer.J. Cell. Physiol.2005202365466210.1002/jcp.2016615389572
    [Google Scholar]
  37. KoppenolW.H. BoundsP.L. DangC.V. Otto Warburg’s contributions to current concepts of cancer metabolism.Nat. Rev. Cancer201111532533710.1038/nrc303821508971
    [Google Scholar]
  38. KrzeslakA. Wojcik-KrowirandaK. FormaE. JozwiakP. RomanowiczH. BienkiewiczA. BrysM. Expression of GLUT1 and GLUT3 glucose transporters in endometrial and breast cancers.Pathol. Oncol. Res.201218372172810.1007/s12253‑012‑9500‑522270867
    [Google Scholar]
  39. UldryM. IbbersonM. HosokawaM. ThorensB. GLUT2 is a high affinity glucosamine transporter.FEBS Lett.20025241-319920310.1016/S0014‑5793(02)03058‑212135767
    [Google Scholar]
  40. PragallapatiS. ManyamR. Glucose transporter 1 in health and disease.J. Oral Maxillofac. Pathol.201923344344910.4103/jomfp.JOMFP_22_1831942129
    [Google Scholar]
  41. ZhaoF.Q. KeatingA. Functional properties and genomics of glucose transporters.Curr. Genomics20078211312810.2174/13892020778036818718660845
    [Google Scholar]
  42. TakataK. KasaharaT. KasaharaM. EzakiO. HiranoH. Erythrocyte/HEPG2-type glucose transporter is concentrated in cells of blood-tissue barriers.Biochem. Biophys. Res. Commun.19901731677310.1016/S0006‑291X(05)81022‑82256938
    [Google Scholar]
  43. LuoX-M. ZhouS-H. FanJ. Glucose transporter-1 as a new therapeutic target in laryngeal carcinoma.J. Int. Med. Res.20103861885189210.1177/14732300100380060121226991
    [Google Scholar]
  44. GodoyA. UlloaV. RodríguezF. ReinickeK. YañezA.J. GarcíaM.A. MedinaR.A. CarrascoM. BarberisS. CastroT. MartínezF. KochX. VeraJ.C. PobleteM.T. FigueroaC.D. PeruzzoB. PérezF. NualartF. Differential subcellular distribution of glucose transporters GLUT1–6 and GLUT9 in human cancer: Ultrastructural localization of GLUT1 and GLUT5 in breast tumor tissues.J. Cell. Physiol.2006207361462710.1002/jcp.2060616523487
    [Google Scholar]
  45. WangJ. YeC. ChenC. XiongH. XieB. ZhouJ. ChenY. ZhengS. WangL. Glucose transporter GLUT1 expression and clinical outcome in solid tumors: A systematic review and meta-analysis.Oncotarget2017810168751688610.18632/oncotarget.1517128187435
    [Google Scholar]
  46. ZhangB. XieZ. LiB. The clinicopathologic impacts and prognostic significance of GLUT1 expression in patients with lung cancer: A meta-analysis.Gene2019689768310.1016/j.gene.2018.12.00630552981
    [Google Scholar]
  47. ZhaoH. SunJ. ShaoJ. ZouZ. QiuX. WangE. WuG. Glucose transporter 1 promotes the malignant phenotype of non-small cell lung cancer through integrin β1/Src/FAK signaling.J. Cancer201910204989499710.7150/jca.3077231598171
    [Google Scholar]
  48. ShenY.M. ArbmanG. OlssonB. SunX.F. Overexpression of GLUT1 in colorectal cancer is independently associated with poor prognosis.Int. J. Biol. Markers201126316617210.5301/JBM.2011.855021786248
    [Google Scholar]
  49. SchlößerH.A. DrebberU. UrbanskiA. HaaseS. BaltinC. BerlthF. NeißS. von Bergwelt-BaildonM. FetznerU.K. Warnecke-EberzU. BollschweilerE. HölscherA.H. MönigS.P. AlakusH. Glucose transporters 1, 3, 6, and 10 are expressed in gastric cancer and glucose transporter 3 is associated with UICC stage and survival.Gastric Cancer2017201839110.1007/s10120‑015‑0577‑x26643879
    [Google Scholar]
  50. BaerS.C. CasaubonbL. YounesM. Expression of the human erythrocyte glucose transporter Glut1 in cutaneous neoplasia.J. Am. Acad. Dermatol.199737457557710.1016/S0190‑9622(97)70174‑99344196
    [Google Scholar]
  51. JohnsonJ.H. NewgardC.B. MilburnJ.L. LodishH.F. ThorensB. The high Km glucose transporter of islets of Langerhans is functionally similar to the low affinity transporter of liver and has an identical primary sequence.J. Biol. Chem.1990265126548655110.1016/S0021‑9258(19)39181‑12182619
    [Google Scholar]
  52. ColvilleC.A. SeatterM.J. JessT.J. GouldG.W. ThomasH.M. Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes: Substrate specificities and effects of transport inhibitors.Biochem. J.1993290370170610.1042/bj29007018457197
    [Google Scholar]
  53. FukumotoH. SeinoS. ImuraH. SeinoY. EddyR.L. FukushimaY. ByersM.G. ShowsT.B. BellG.I. Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein.Proc. Natl. Acad. Sci. USA198885155434543810.1073/pnas.85.15.54343399500
    [Google Scholar]
  54. ThorensB. ChengZ.Q. BrownD. LodishH.F. Liver glucose transporter: A basolateral protein in hepatocytes and intestine and kidney cells.Am. J. Physiol. Cell Physiol.19902592C279C28510.1152/ajpcell.1990.259.2.C2791701966
    [Google Scholar]
  55. GuillamM.T. DuprazP. ThorensB. Glucose uptake, utilization, and signaling in GLUT2-null islets.Diabetes20004991485149110.2337/diabetes.49.9.148510969832
    [Google Scholar]
  56. ThorensB. GLUT2, glucose sensing and glucose homeostasis.Diabetologia201558222123210.1007/s00125‑014‑3451‑125421524
    [Google Scholar]
  57. HamannI. KrysD. GlubrechtD. BouvetV. MarshallA. VosL. MackeyJ.R. WuestM. WuestF. Expression and function of hexose transporters GLUT1, GLUT2, and GLUT5 in breast cancer—effects of hypoxia.FASEB J.20183295104511810.1096/fj.201800360R29913554
    [Google Scholar]
  58. AparicioL.M.A. VillaamilV.M. CalvoM.B. RubiraL.V. RoisJ.M. Valladares-AyerbesM. CampeloR.G. BolósM.V. PulidoE.G. Glucose transporter expression and the potential role of fructose in renal cell carcinoma: A correlation with pathological parameters.Mol. Med. Rep.20103457558010.3892/mmr_0000030021472282
    [Google Scholar]
  59. TomitaT. Immunocytochemical localization of glucose transporter-2 (GLUT-2) in pancreatic islets and islet cell tumors.Endocr. Pathol.199910321322110.1007/BF0273888212114701
    [Google Scholar]
  60. KimY.H. JeongD.C. PakK. HanM.E. KimJ.Y. LiangwenL. KimH.J. KimT.W. KimT.H. HyunD.W. OhS.O. SLC2A2 (GLUT2) as a novel prognostic factor for hepatocellular carcinoma.Oncotarget2017840683816839210.18632/oncotarget.2026628978124
    [Google Scholar]
  61. ShangR.Z. QuS.B. WangD.S. Reprogramming of glucose metabolism in hepatocellular carcinoma: Progress and prospects.World J. Gastroenterol.201622459933994310.3748/wjg.v22.i45.993328018100
    [Google Scholar]
  62. GrobholzR. HackerH.J. ThorensB. BannaschP. Reduction in the expression of glucose transporter protein GLUT 2 in preneoplastic and neoplastic hepatic lesions and reexpression of GLUT 1 in late stages of hepatocarcinogenesis.Cancer Res.19935318420442118364915
    [Google Scholar]
  63. LeviJ. ChengZ. GheysensO. PatelM. ChanC.T. WangY. NamavariM. GambhirS.S. Fluorescent fructose derivatives for imaging breast cancer cells.Bioconjug. Chem.200718362863410.1021/bc060184s17444608
    [Google Scholar]
  64. BrownR.S. WahlR.L. Overexpression of glut-1 glucose transporter in human breast cancer an immunohistochemical study.Cancer199372102979298510.1002/1097‑0142(19931115)72:10<2979::AID‑CNCR2820721020>3.0.CO;2‑X8221565
    [Google Scholar]
  65. LiuH. HuangD. McArthurD.L. BorosL.G. NissenN. HeaneyA.P. Fructose induces transketolase flux to promote pancreatic cancer growth.Cancer Res.201070156368637610.1158/0008‑5472.CAN‑09‑461520647326
    [Google Scholar]
  66. SeinoY. YamamotoT. InoueK. ImamuraM. KadowakiS. KojimaH. FujikawaJ. ImuraH. Abnormal facilitative glucose transporter gene expression in human islet cell tumors.J. Clin. Endocrinol. Metab.199376175788421107
    [Google Scholar]
  67. KnaackD. FioreD.M. SuranaM. LeiserM. LauranceM. Fusco-DeManeD. HegreO.D. FleischerN. EfratS. Clonal insulinoma cell line that stably maintains correct glucose responsiveness.Diabetes199443121413141710.2337/diab.43.12.14137958492
    [Google Scholar]
  68. NoguchiY. MaratD. SaitoA. YoshikawaT. DoiC. FukuzawaK. TsuburayaA. SatohS. ItoT. Expression of facilitative glucose transporters in gastric tumors.Hepatogastroenterology199946282683268910522065
    [Google Scholar]
  69. HaberR.S. WeinsteinS.P. O’BoyleE. MorgelloS. Tissue distribution of the human GLUT3 glucose transporter.Endocrinology199313262538254310.1210/endo.132.6.85047568504756
    [Google Scholar]
  70. MaratouE. DimitriadisG. KolliasA. BoutatiE. LambadiariV. MitrouP. RaptisS.A. Glucose transporter expression on the plasma membrane of resting and activated white blood cells.Eur. J. Clin. Invest.200737428229010.1111/j.1365‑2362.2007.01786.x17373964
    [Google Scholar]
  71. BoadoR.J. BlackK.L. PardridgeW.M. Gene expression of GLUT3 and GLUT1 glucose transporters in human brain tumors.Brain Res. Mol. Brain Res.1994271515710.1016/0169‑328X(94)90183‑X7877454
    [Google Scholar]
  72. YounesM. BrownR.W. StephensonM. GondoM. CagleP.T. Overexpression of glut1 and glut3 in stage I nonsmall cell lung carcinoma is Associated with poor survival.Cancer19978061046105110.1002/(SICI)1097‑0142(19970915)80:6<1046::AID‑CNCR6>3.0.CO;2‑79305704
    [Google Scholar]
  73. SuzawaN. ItoM. QiaoS. UchidaK. TakaoM. YamadaT. TakedaK. MurashimaS. Assessment of factors influencing FDG uptake in non-small cell lung cancer on PET/CT by investigating histological differences in expression of glucose transporters 1 and 3 and tumour size.Lung Cancer201172219119810.1016/j.lungcan.2010.08.01720884076
    [Google Scholar]
  74. SuganumaN. SegadeF. MatsuzuK. BowdenD.W. Differential expression of facilitative glucose transporters in normal and tumour kidney tissues.BJU Int.20079951143114910.1111/j.1464‑410X.2007.06765.x17437443
    [Google Scholar]
  75. de Geus-OeiL.F. KriekenJ.H.J.M. AliredjoR.P. KrabbeP.F.M. FrielinkC. VerhagenA.F.T. BoermanO.C. OyenW.J.G. Biological correlates of FDG uptake in non-small cell lung cancer.Lung Cancer2007551798710.1016/j.lungcan.2006.08.01817046099
    [Google Scholar]
  76. YounesM. LechagoL.V. SomoanoJ.R. MosharafM. LechagoJ. Immunohistochemical detection of Glut3 in human tumors and normal tissues.Anticancer Res.1997174A274727509252709
    [Google Scholar]
  77. TsaiT.H. YangC.C. KouT.C. YangC.E. DaiJ.Z. ChenC.L. LinC.W. Overexpression of GLUT3 promotes metastasis of triple-negative breast cancer by modulating the inflammatory tumor microenvironment.J. Cell. Physiol.202123664669468010.1002/jcp.3018933421130
    [Google Scholar]
  78. KuoM.H. ChangW.W. YehB.W. ChuY.S. LeeY.C. LeeH.T. Glucose Transporter 3 Is Essential for the Survival of Breast Cancer Cells in the Brain.Cells2019812156810.3390/cells812156831817208
    [Google Scholar]
  79. DaiW. XuY. MoS. LiQ. YuJ. WangR. MaY. NiY. XiangW. HanL. ZhangL. CaiS. QinJ. ChenW.L. JiaW. CaiG. GLUT3 induced by AMPK/CREB1 axis is key for withstanding energy stress and augments the efficacy of current colorectal cancer therapies.Signal Transduct. Target. Ther.20205117710.1038/s41392‑020‑00220‑932873793
    [Google Scholar]
  80. VazC.V. MarquesR. AlvesM.G. OliveiraP.F. CavacoJ.E. MaiaC.J. SocorroS. Androgens enhance the glycolytic metabolism and lactate export in prostate cancer cells by modulating the expression of GLUT1, GLUT3, PFK, LDH and MCT4 genes.J. Cancer Res. Clin. Oncol.2016142151610.1007/s00432‑015‑1992‑426048031
    [Google Scholar]
  81. StarskaK. FormaE. JóźwiakP. BryśM. Lewy-TrendaI. Brzezińska-BłaszczykE. KrześlakA. Gene and protein expression of glucose transporter 1 and glucose transporter 3 in human laryngeal cancer—the relationship with regulatory hypoxia-inducible factor-1α expression, tumor invasiveness, and patient prognosis.Tumour Biol.20153642309232110.1007/s13277‑014‑2838‑425412955
    [Google Scholar]
  82. CondeV.R. OliveiraP.F. NunesA.R. RochaC.S. RamalhosaE. PereiraJ.A. AlvesM.G. SilvaB.M. The progression from a lower to a higher invasive stage of bladder cancer is associated with severe alterations in glucose and pyruvate metabolism.Exp. Cell Res.20153351919810.1016/j.yexcr.2015.04.00725907297
    [Google Scholar]
  83. ReisserC. EichhornK. Herold-MendeC. BornA.I. BannaschP. Expression of facilitative glucose transport proteins during development of squamous cell carcinomas of the head and neck.Int. J. Cancer199980219419810.1002/(SICI)1097‑0215(19990118)80:2<194::AID‑IJC6>3.0.CO;2‑M9935199
    [Google Scholar]
  84. HeydarzadehS. MoshtaghieA.A. DaneshpoorM. HedayatiM. Regulators of glucose uptake in thyroid cancer cell lines.Cell Commun. Signal.20201818310.1186/s12964‑020‑00586‑x32493394
    [Google Scholar]
  85. AyalaF.R.R. RochaR.M. CarvalhoK.C. CarvalhoA.L. Da CunhaI.W. LourençoS.V. SoaresF.A. GLUT1 and GLUT3 as potential prognostic markers for Oral Squamous Cell Carcinoma.Molecules20101542374238710.3390/molecules1504237420428049
    [Google Scholar]
  86. KasaharaT. KasaharaM. Characterization of rat Glut4 glucose transporter expressed in the yeast Saccharomyces cerevisiae: Comparison with Glut1 glucose transporter.Biochim. Biophys. Acta Biomembr.19971324111111910.1016/S0005‑2736(96)00217‑99059504
    [Google Scholar]
  87. RumseyS.C. DaruwalaR. Al-HasaniH. ZarnowskiM.J. SimpsonI.A. LevineM. Dehydroascorbic acid transport by GLUT4 in Xenopus oocytes and isolated rat adipocytes.J. Biol. Chem.200027536282462825310.1074/jbc.M00098820010862609
    [Google Scholar]
  88. MatsuzuK. SegadeF. MatsuzuU. CarterA. BowdenD.W. PerrierN.D. Differential expression of glucose transporters in normal and pathologic thyroid tissue.Thyroid2004141080681210.1089/thy.2004.14.80615588375
    [Google Scholar]
  89. HigashiT. TamakiN. HondaT. TorizukaT. KimuraT. InokumaT. OhshioG. HosotaniR. ImamuraM. KonishiJ. Expression of glucose transporters in human pancreatic tumors compared with increased FDG accumulation in PET study.J. Nucl. Med.1997389133713449293783
    [Google Scholar]
  90. McBrayerS.K. ChengJ.C. SinghalS. KrettN.L. RosenS.T. ShanmugamM. Multiple myeloma exhibits novel dependence on GLUT4, GLUT8, and GLUT11: Implications for glucose transporter-directed therapy.Blood2012119204686469710.1182/blood‑2011‑09‑37784622452979
    [Google Scholar]
  91. BurantC.F. TakedaJ. Brot-LarocheE. BellG.I. DavidsonN.O. Fructose transporter in human spermatozoa and small intestine is GLUT5.J. Biol. Chem.199226721145231452610.1016/S0021‑9258(18)42067‑41634504
    [Google Scholar]
  92. RandE.B. DepaoliA.M. DavidsonN.O. BellG.I. BurantC.F. Sequence, tissue distribution, and functional characterization of the rat fructose transporter GLUT5.Am. J. Physiol.19932646 Pt 1G1169G11768333543
    [Google Scholar]
  93. ZwartsI. van ZutphenT. KruitJ.K. LiuW. OosterveerM.H. VerkadeH.J. UhlenhautN.H. JonkerJ.W. Identification of the fructose transporter GLUT5 (SLC2A5) as a novel target of nuclear receptor LXR.Sci. Rep.201991929910.1038/s41598‑019‑45803‑x31243309
    [Google Scholar]
  94. MantychG.J. JamesD.E. DevaskarS.U. Jejunal/kidney glucose transporter isoform (Glut-5) is expressed in the human blood-brain barrier.Endocrinology19931321354010.1210/endo.132.1.84191328419132
    [Google Scholar]
  95. CantleyL.C. Cancer, metabolism, fructose, artificial sweeteners, and going cold turkey on sugar.BMC Biol.2014121810.1186/1741‑7007‑12‑824484968
    [Google Scholar]
  96. NakagawaT. LanaspaM.A. MillanI.S. FiniM. RivardC.J. Sanchez-LozadaL.G. Andres-HernandoA. TolanD.R. JohnsonR.J. Fructose contributes to the Warburg effect for cancer growth.Cancer Metab.2020811610.1186/s40170‑020‑00222‑932670573
    [Google Scholar]
  97. WengY. FanX. BaiY. WangS. HuangH. YangH. ZhuJ. ZhangF. SLC2A5 promotes lung adenocarcinoma cell growth and metastasis by enhancing fructose utilization.Cell Death Discov.2018413810.1038/s41420‑018‑0038‑529531835
    [Google Scholar]
  98. ReinickeK. SotomayorP. CisternaP. DelgadoC. NualartF. GodoyA. Cellular distribution of Glut-1 and Glut-5 in benign and malignant human prostate tissue.J. Cell. Biochem.2012113255356210.1002/jcb.2337921938742
    [Google Scholar]
  99. WłodarczykJ. WłodarczykM. ZielińskaM. JędrzejczakB. DzikiŁ. FichnaJ. Blockade of fructose transporter protein GLUT5 inhibits proliferation of colon cancer cells: Proof of concept for a new class of anti-tumor therapeutics.Pharmacol. Rep.202173393994510.1007/s43440‑021‑00281‑934052986
    [Google Scholar]
  100. JinC. GongX. ShangY. GLUT5 increases fructose utilization in ovarian cancer.OncoTargets Ther.2019125425543610.2147/OTT.S20552231371983
    [Google Scholar]
  101. Zamora-LeónS.P. GoldeD.W. ConchaI.I. RivasC.I. Delgado-LópezF. BaselgaJ. NualartF. VeraJ.C. Expression of the fructose transporter GLUT5 in human breast cancer.Proc. Natl. Acad. Sci. USA19969351847185210.1073/pnas.93.5.18478700847
    [Google Scholar]
  102. JinX. LiangY. LiuD. LuoQ. CaiL. WuJ. JiaL. ChenW.L. An essential role for GLUT5-mediated fructose utilization in exacerbating the malignancy of clear cell renal cell carcinoma.Cell Biol. Toxicol.201935547148310.1007/s10565‑019‑09478‑431102011
    [Google Scholar]
  103. Medina VillaamilV. Aparicio GallegoG. Valbuena RubiraL. García CampeloR. Valladares-AyerbesM. Grande PulidoE. Victoria BolósM. Santamarina CaínzosI. Antón AparicioL.M. Fructose transporter Glut5 expression in clear renal cell carcinoma.Oncol. Rep.201125231532310.3892/or.2010.109621165569
    [Google Scholar]
  104. GowrishankarG. Zitzmann-KolbeS. JunutulaA. ReevesR. LeviJ. SrinivasanA. Bruus-JensenK. CyrJ. DinkelborgL. GambhirS.S. GLUT 5 is not over-expressed in breast cancer cells and patient breast cancer tissues.PLoS One2011611e2690210.1371/journal.pone.002690222073218
    [Google Scholar]
  105. LiQ. ManolescuA. RitzelM. YaoS. SlugoskiM. YoungJ.D. ChenX.Z. CheesemanC.I. Cloning and functional characterization of the human GLUT7 isoform SLC2A7 from the small intestine.Am. J. Physiol. Gastrointest. Liver Physiol.20042871G236G24210.1152/ajpgi.00396.200315033637
    [Google Scholar]
  106. DobladoM. MoleyK.H. Facilitative glucose transporter 9, a unique hexose and urate transporter.Am. J. Physiol. Endocrinol. Metab.20092974E831E83510.1152/ajpendo.00296.200919797240
    [Google Scholar]
  107. AugustinR. CarayannopoulosM.O. DowdL.O. PhayJ.E. MoleyJ.F. MoleyK.H. Identification and characterization of human glucose transporter-like protein-9 (GLUT9): Alternative splicing alters trafficking.J. Biol. Chem.200427916162291623610.1074/jbc.M31222620014739288
    [Google Scholar]
  108. ItahanaY. HanR. BarbierS. LeiZ. RozenS. ItahanaK. The uric acid transporter SLC2A9 is a direct target gene of the tumor suppressor p53 contributing to antioxidant defense.Oncogene201534141799181010.1038/onc.2014.11924858040
    [Google Scholar]
  109. SzablewskiL. Glucose transporters as markers of diagnosis and prognosis in cancer diseases.Oncol. Rev.202216156110.4081/oncol.2022.56135340885
    [Google Scholar]
  110. WuX. LiW. SharmaV. GodzikA. FreezeH.H. Cloning and characterization of glucose transporter 11, a novel sugar transporter that is alternatively spliced in various tissues.Mol. Genet. Metab.2002761374510.1016/S1096‑7192(02)00018‑512175779
    [Google Scholar]
  111. ScheepersA. SchmidtS. ManolescuA. CheesemanC.I. BellA. ZahnC. JoostH.G. SchürmannA. Characterization of the human SLC2A11 (GLUT11) gene: Alternative promoter usage, function, expression, and subcellular distribution of three isoforms, and lack of mouse orthologue.Mol. Membr. Biol.200522433935110.1080/0968786050016614316154905
    [Google Scholar]
  112. SasakiT. MinoshimaS. ShiohamaA. ShintaniA. ShimizuA. AsakawaS. KawasakiK. ShimizuN. Molecular cloning of a member of the facilitative glucose transporter gene family GLUT11 (SLC2A11) and identification of transcription variants.Biochem. Biophys. Res. Commun.200128951218122410.1006/bbrc.2001.610111741323
    [Google Scholar]
  113. DoegeH. BocianskiA. JoostH.G. SchürmannA. Activity and genomic organization of human glucose transporter 9 (GLUT9), a novel member of the family of sugar-transport facilitators predominantly expressed in brain and leucocytes.Biochem. J.2000350377177610.1042/bj350077110970791
    [Google Scholar]
  114. ByrneF.L. PoonI.K.H. ModesittS.C. TomsigJ.L. ChowJ.D.Y. HealyM.E. BakerW.D. AtkinsK.A. LancasterJ.M. MarchionD.C. MoleyK.H. RavichandranK.S. Slack-DavisJ.K. HoehnK.L. Metabolic vulnerabilities in endometrial cancer.Cancer Res.201474205832584510.1158/0008‑5472.CAN‑14‑025425205105
    [Google Scholar]
  115. CaruanaB.T. ByrneF.L. The NF-κB signalling pathway regulates GLUT6 expression in endometrial cancer.Cell. Signal.20207310968810.1016/j.cellsig.2020.10968832512041
    [Google Scholar]
  116. IbbersonM. UldryM. ThorensB. GLUTX1, a novel mammalian glucose transporter expressed in the central nervous system and insulin-sensitive tissues.J. Biol. Chem.200027574607461210.1074/jbc.275.7.460710671487
    [Google Scholar]
  117. GómezO. Ballester-LurbeB. PochE. MesoneroJ.E. TerradoJ. Developmental regulation of glucose transporters GLUT3, GLUT4 and GLUT8 in the mouse cerebellar cortex.J. Anat.2010217561662310.1111/j.1469‑7580.2010.01291.x20819112
    [Google Scholar]
  118. NaG. EbK. AsG. RhW. JgJ.U.L. GLUT1 and GLUT8 in endometrium and endometrial adenocarcinomaModern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc20061911https://pubmed.ncbi.nlm.nih.gov/16892013/
    [Google Scholar]
  119. RogersS. ChandlerJ.D. ClarkeA.L. PetrouS. BestJ.D. Glucose transporter GLUT12-functional characterization in Xenopus laevis oocytes.Biochem. Biophys. Res. Commun.2003308342242610.1016/S0006‑291X(03)01417‑712914765
    [Google Scholar]
  120. RogersS. MachedaM.L. DochertyS.E. CartyM.D. HendersonM.A. SoellerW.C. GibbsE.M. JamesD.E. BestJ.D. Identification of a novel glucose transporter-like protein—GLUT-12.Am. J. Physiol. Endocrinol. Metab.20022823E733E73810.1152/ajpendo.2002.282.3.E73311832379
    [Google Scholar]
  121. RogersS. DochertyS.E. SlavinJ.L. HendersonM.A. BestJ.D. Differential expression of GLUT12 in breast cancer and normal breast tissue.Cancer Lett.2003193222523310.1016/S0304‑3835(03)00010‑712706881
    [Google Scholar]
  122. MatsuiC. Takatani-NakaseT. MaedaS. NakaseI. TakahashiK. Potential roles of GLUT12 for glucose sensing and cellular migration in MCF-7 human breast cancer cells under high glucose conditions.Anticancer Res.201737126715672229187448
    [Google Scholar]
  123. ShiY. ZhangY. RanF. LiuJ. LinJ. HaoX. DingL. YeQ. Let-7a-5p inhibits triple-negative breast tumor growth and metastasis through GLUT12-mediated warburg effect.Cancer Lett.2020495536510.1016/j.canlet.2020.09.01232946964
    [Google Scholar]
  124. ChandlerJ.D. WilliamsE.D. SlavinJ.L. BestJ.D. RogersS. Expression and localization of GLUT1 and GLUT12 in prostate carcinoma.Cancer20039782035204210.1002/cncr.1129312673735
    [Google Scholar]
  125. WhiteM.A. TsoukoE. LinC. RajapaksheK. SpencerJ.M. WilkenfeldS.R. VakiliS.S. PulliamT.L. AwadD. NikolosF. KatreddyR.R. KaipparettuB.A. SreekumarA. ZhangX. CheungE. CoarfaC. FrigoD.E. GLUT12 promotes prostate cancer cell growth and is regulated by androgens and CaMKK2 signaling.Endocr. Relat. Cancer201825445346910.1530/ERC‑17‑005129431615
    [Google Scholar]
  126. Pujol-GimenezJ. de HerediaF.P. IdoateM.A. AirleyR. LostaoM.P. EvansA.R. Could GLUT12 be a potential therapeutic target in cancer treatment? A preliminary report.J. Cancer20156213914310.7150/jca.1042925561978
    [Google Scholar]
  127. DawsonP.A. MychaleckyjJ.C. FosseyS.C. MihicS.J. CraddockA.L. BowdenD.W. Sequence and functional analysis of GLUT10: A glucose transporter in the Type 2 diabetes-linked region of chromosome 20q12-13.1.Mol. Genet. Metab.2001741-218619910.1006/mgme.2001.321211592815
    [Google Scholar]
  128. McVie-WylieA.J. LamsonD.R. ChenY.T. Molecular cloning of a novel member of the GLUT family of transporters, SLC2a10 (GLUT10), localized on chromosome 20q13.1: A candidate gene for NIDDM susceptibility.Genomics200172111311710.1006/geno.2000.645711247674
    [Google Scholar]
  129. UldryM. IbbersonM. HorisbergerJ.D. ChattonJ.Y. RiedererB.M. ThorensB. Identification of a mammalian H+-myo-inositol symporter expressed predominantly in the brain.EMBO J.200120164467447710.1093/emboj/20.16.446711500374
    [Google Scholar]
  130. SanoR. ShinozakiY. OhtaT. Sodium–glucose cotransporters: Functional properties and pharmaceutical potential.J. Diabetes Investig.202011477078210.1111/jdi.1325532196987
    [Google Scholar]
  131. NavaleA.M. ParanjapeA.N. Glucose transporters: physiological and pathological roles.Biophys. Rev.2016815910.1007/s12551‑015‑0186‑228510148
    [Google Scholar]
  132. WrightE.M. TurkE. The sodium/glucose cotransport family SLC5.Pflugers Arch.2004447581381510.1007/s00424‑003‑1202‑012748858
    [Google Scholar]
  133. WrightE.M. LooD.D.F. HirayamaB.A. Biology of human sodium glucose transporters.Physiol. Rev.201191273379410.1152/physrev.00055.200921527736
    [Google Scholar]
  134. NishimuraM. NaitoS. Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies.Drug Metab. Pharmacokinet.200520645247710.2133/dmpk.20.45216415531
    [Google Scholar]
  135. MartínM.G. TurkE. LostaoM.P. KernerC. WrightE.M. Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose-galactose malabsorption.Nat. Genet.199612221622010.1038/ng0296‑2168563765
    [Google Scholar]
  136. LamJ.T. MartínM.G. TurkE. HirayamaB.A. BosshardN.U. SteinmannB. WrightE.M. Missense mutations in SGLT1 cause glucose–galactose malabsorption by trafficking defects.Biochim. Biophys. Acta Mol. Basis Dis.19991453229730310.1016/S0925‑4439(98)00109‑410036327
    [Google Scholar]
  137. IshikawaN. OguriT. IsobeT. FujitakaK. KohnoN. SGLT gene expression in primary lung cancers and their metastatic lesions.Jpn. J. Cancer Res.200192887487910.1111/j.1349‑7006.2001.tb01175.x11509120
    [Google Scholar]
  138. CasneufV.F. FonteyneP. Van DammeN. DemetterP. PauwelsP. de HemptinneB. De VosM. Van de WieleC. PeetersM. Expression of SGLT1, Bcl-2 and p53 in primary pancreatic cancer related to survival.Cancer Invest.200826885285910.1080/0735790080195636318853313
    [Google Scholar]
  139. HelmkeB.M. ReisserC. IdzkoeM. DyckhoffG. Herold-MendeC. IdzkoeM. Expression of SGLT-1 in preneoplastic and neoplastic lesions of the head and neck.Oral Oncol.2004401283510.1016/S1368‑8375(03)00129‑514662412
    [Google Scholar]
  140. HanabataY. NakajimaY. MoritaK. KayamoriK. OmuraK. Coexpression of SGLT1 and EGFR is associated with tumor differentiation in oral squamous cell carcinoma.Odontology2012100215616310.1007/s10266‑011‑0033‑221607591
    [Google Scholar]
  141. GuoG.F. CaiY.C. ZhangB. XuR.H. QiuH.J. XiaL.P. JiangW.Q. HuP.L. ChenX.X. ZhouF.F. WangF. Overexpression of SGLT1 and EGFR in colorectal cancer showing a correlation with the prognosis.Med. Oncol.201128S1Suppl. 119720310.1007/s12032‑010‑9696‑821080109
    [Google Scholar]
  142. LaiB. XiaoY. PuH. CaoQ. JingH. LiuX. Overexpression of SGLT1 is correlated with tumor development and poor prognosis of ovarian carcinoma.Arch. Gynecol. Obstet.201228551455146110.1007/s00404‑011‑2166‑522159627
    [Google Scholar]
  143. LiuH. ErtayA. PengP. LiJ. LiuD. XiongH. ZouY. QiuH. HancockD. YuanX. HuangW.C. EwingR.M. DownwardJ. WangY. SGLT1 is required for the survival of triple-negative breast cancer cells via potentiation of EGFR activity.Mol. Oncol.20191391874188610.1002/1878‑0261.1253031199048
    [Google Scholar]
  144. WeihuaZ. TsanR. HuangW.C. WuQ. ChiuC.H. FidlerI.J. HungM.C. Survival of cancer cells is maintained by EGFR independent of its kinase activity.Cancer Cell200813538539310.1016/j.ccr.2008.03.01518455122
    [Google Scholar]
  145. DuJ. GuJ. DengJ. KongL. GuoY. JinC. BaoY. FuD. LiJ. The expression and survival significance of sodium glucose transporters in pancreatic cancer.BMC Cancer202222111610.1186/s12885‑021‑09060‑435090421
    [Google Scholar]
  146. SalkerM.S. SinghY. ZengN. ChenH. ZhangS. UmbachA.T. FakhriH. KohlhoferU. Quintanilla-MartinezL. DurairajR.R.P. BarrosF.S.V. VrljicakP. OttS. BruckerS.Y. WallwienerD. Vrhovac MadunićI. BreljakD. SabolićI. KoepsellH. BrosensJ.J. LangF. Loss of endometrial sodium glucose cotransporter SGLT1 is detrimental to embryo survival and fetal growth in pregnancy.Sci. Rep.2017711261210.1038/s41598‑017‑11674‑328974690
    [Google Scholar]
  147. BlessingA. XuL. GaoG. BolluL.R. RenJ. LiH. Sodium/glucose co-transporter 1 expression increases in human diseased prostate.J. Cancer Sci. Ther.2012491710.4172/1948‑5956.1000159
    [Google Scholar]
  148. ShiM. WangC. JiJ. CaiQ. ZhaoQ. XiW. ZhangJ. CRISPR/Cas9-mediated knockout of SGLT1 inhibits proliferation and alters metabolism of gastric cancer cells.Cell. Signal.20229011019210.1016/j.cellsig.2021.11019234774990
    [Google Scholar]
  149. ScafoglioC. HirayamaB.A. KepeV. LiuJ. GhezziC. SatyamurthyN. MoatamedN.A. HuangJ. KoepsellH. BarrioJ.R. WrightE.M. Functional expression of sodium-glucose transporters in cancer.Proc. Natl. Acad. Sci. USA201511230E4111E411910.1073/pnas.151169811226170283
    [Google Scholar]
  150. KajiK. NishimuraN. SekiK. SatoS. SaikawaS. NakanishiK. FurukawaM. KawarataniH. KitadeM. MoriyaK. NamisakiT. YoshijiH. Sodium glucose cotransporter 2 inhibitor canagliflozin attenuates liver cancer cell growth and angiogenic activity by inhibiting glucose uptake.Int. J. Cancer201814281712172210.1002/ijc.3119329205334
    [Google Scholar]
  151. KuangH. LiaoL. ChenH. KangQ. ShuX. WangY. Therapeutic effect of sodium glucose co-transporter 2 inhibitor dapagliflozin on renal cell carcinoma.Med. Sci. Monit.2017233737374510.12659/MSM.90253028763435
    [Google Scholar]
  152. KomatsuS. NomiyamaT. NumataT. KawanamiT. HamaguchiY. IwayaC. HorikawaT. Fujimura-TanakaY. HamanoueN. MotonagaR. TanabeM. InoueR. YanaseT. KawanamiD. SGLT2 inhibitor ipragliflozin attenuates breast cancer cell proliferation.Endocr. J.20206719910610.1507/endocrj.EJ19‑042831776304
    [Google Scholar]
  153. ShodaK. TsujiS. NakamuraS. EgashiraY. EnomotoY. NakayamaN. ShimazawaM. IwamaT. HaraH. Canagliflozin inhibits glioblastoma growth and proliferation by activating AMPK.Cell. Mol. Neurobiol.202343287989210.1007/s10571‑022‑01221‑835435536
    [Google Scholar]
  154. Díez-SampedroA. HirayamaB.A. OsswaldC. GorboulevV. BaumgartenK. VolkC. WrightE.M. KoepsellH. A glucose sensor hiding in a family of transporters.Proc. Natl. Acad. Sci. USA200310020117531175810.1073/pnas.173302710013130073
    [Google Scholar]
  155. WrightE.M. Glucose transport families SLC5 and SLC50.Mol. Aspects Med.2013342-318319610.1016/j.mam.2012.11.00223506865
    [Google Scholar]
  156. ChenJ. WilliamsS. HoS. LoraineH. HaganD. WhaleyJ.M. FederJ.N. Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members.Diabetes Ther.201012579210.1007/s13300‑010‑0006‑422127746
    [Google Scholar]
  157. KothintiR.K. BlodgettA.B. NorthP.E. RomanR.J. TabatabaiN.M. A novel SGLT is expressed in the human kidney.Eur. J. Pharmacol.20126901-3778310.1016/j.ejphar.2012.06.03322766068
    [Google Scholar]
  158. TazawaS. YamatoT. FujikuraH. HiratochiM. ItohF. TomaeM. TakemuraY. MaruyamaH. SugiyamaT. WakamatsuA. IsogaiT. IsajiM. SLC5A9/SGLT4, a new Na+-dependent glucose transporter, is an essential transporter for mannose, 1,5-anhydro-D-glucitol, and fructose.Life Sci.20057691039105010.1016/j.lfs.2004.10.01615607332
    [Google Scholar]
  159. GattoF. FerreiraR. NielsenJ. Pan-cancer analysis of the metabolic reaction network.Metab. Eng.202057516210.1016/j.ymben.2019.09.00631526853
    [Google Scholar]
  160. Fernandez-RozadillaC. CazierJ.B. TomlinsonI.P. Carvajal-CarmonaL.G. PallesC. LamasM.J. BaigetM. López-FernándezL.A. Brea-FernándezA. AbulíA. BujandaL. ClofentJ. GonzalezD. XicolaR. AndreuM. BessaX. JoverR. LlorX. MorenoV. CastellsA. CarracedoÁ. Castellvi-BelS. Ruiz-PonteC. EPICOLON Consortium A colorectal cancer genome-wide association study in a Spanish cohort identifies two variants associated with colorectal cancer risk at 1p33 and 8p12.BMC Genomics20131415510.1186/1471‑2164‑14‑5523350875
    [Google Scholar]
  161. PortA.M. RuthM.R. IstfanN.W. Fructose consumption and cancer.Curr. Opin. Endocrinol. Diabetes Obes.201219536737410.1097/MED.0b013e328357f0cb22922366
    [Google Scholar]
  162. GremplerR. AugustinR. FroehnerS. HildebrandtT. SimonE. MarkM. EickelmannP. Functional characterisation of human SGLT-5 as a novel kidney-specific sodium-dependent sugar transporter.FEBS Lett.2012586324825310.1016/j.febslet.2011.12.02722212718
    [Google Scholar]
  163. FukuzawaT. FukazawaM. UedaO. ShimadaH. KitoA. KakefudaM. KawaseY. WadaN.A. GotoC. FukushimaN. JishageK. HondaK. KingG.L. KawabeY. SGLT5 reabsorbs fructose in the kidney but its deficiency paradoxically exacerbates hepatic steatosis induced by fructose.PLoS One201382e5668110.1371/journal.pone.005668123451068
    [Google Scholar]
  164. Baader-PaglerT. EckhardtM. HimmelsbachF. SauerA. StierstorferB.E. HamiltonB.S. SGLT6 - A pharmacological target for the treatment of obesity?Adipocyte20187427728410.1080/21623945.2018.151609830161013
    [Google Scholar]
  165. BerryG.T. MalleeJ.J. KwonH.M. RimJ.S. MullaW.R. MuenkeM. SpinnerN.B. The human osmoregulatory Na+/myo-inositol cotransporter gene (SLC5A3): Molecular cloning and localization to chromosome 21.Genomics199525250751310.1016/0888‑7543(95)80052‑N7789985
    [Google Scholar]
  166. DaiZ. ChungS.K. MiaoD. LauK.S. ChanA.W.H. KungA.W.C. Sodium/ myo -inositol cotransporter 1 and myo -inositol are essential for osteogenesis and bone formation.J. Bone Miner. Res.201126358259010.1002/jbmr.24020818642
    [Google Scholar]
  167. VawterM.P. HamzehA.R. MuradyanE. CivelliO. AbbottG.W. AlachkarA. Association of myoinositol transporters with schizophrenia and bipolar disorder: Evidence from human and animal studies.Mol. Neuropsychiatry20195420021131768373
    [Google Scholar]
  168. CuiZ. MuC. WuZ. PanS. ChengZ. ZhangZ. ZhaoJ. XuC. The sodium/myo-inositol co-transporter SLC5A3 promotes non-small cell lung cancer cell growth.Cell Death Dis.202213656910.1038/s41419‑022‑05017‑y35760803
    [Google Scholar]
  169. RaveraS. Reyna-NeyraA. FerrandinoG. AmzelL.M. CarrascoN. The sodium/iodide symporter (NIS): Molecular physiology and preclinical and clinical applications.Annu. Rev. Physiol.201779126128910.1146/annurev‑physiol‑022516‑03412528192058
    [Google Scholar]
  170. SpitzwegC. JobaW. EisenmengerW. HeufelderA.E. Analysis of human sodium iodide symporter gene expression in extrathyroidal tissues and cloning of its complementary deoxyribonucleic acids from salivary gland, mammary gland, and gastric mucosa.J. Clin. Endocrinol. Metab.19988351746175110.1210/jcem.83.5.48399589686
    [Google Scholar]
  171. WapnirI.L. van de RijnM. NowelsK. AmentaP.S. WaltonK. MontgomeryK. GrecoR.S. DohánO. CarrascoN. Immunohistochemical profile of the sodium/iodide symporter in thyroid, breast, and other carcinomas using high density tissue microarrays and conventional sections.J. Clin. Endocrinol. Metab.20038841880188810.1210/jc.2002‑02154412679487
    [Google Scholar]
  172. ZhangW. LiuY. ChenX. BergmeierS.C. Novel inhibitors of basal glucose transport as potential anticancer agents.Bioorg. Med. Chem. Lett.20102072191219410.1016/j.bmcl.2010.02.02720194024
    [Google Scholar]
  173. TemreM.K. KumarA. SinghS.M. An appraisal of the current status of inhibition of glucose transporters as an emerging antineoplastic approach: Promising potential of new pan-GLUT inhibitors.Front. Pharmacol.202213103551010.3389/fphar.2022.103551036386187
    [Google Scholar]
  174. Gonzalez-MenendezP. HeviaD. Rodriguez-GarciaA. MayoJ.C. SainzR.M. Regulation of GLUT transporters by flavonoids in androgen-sensitive and -insensitive prostate cancer cells.Endocrinology201415593238325010.1210/en.2014‑126024932809
    [Google Scholar]
  175. UifăleanA. SchneiderS. GierokP. IonescuC. IugaC. LalkM. The impact of soy isoflavones on MCF-7 and MDA-MB-231 breast cancer cells using a global metabolomic approach.Int. J. Mol. Sci.2016179144310.3390/ijms1709144327589739
    [Google Scholar]
  176. MelstromL.G. SalabatM.R. DingX.Z. MilamB.M. StrouchM. PellingJ.C. BentremD.J. Apigenin inhibits the GLUT-1 glucose transporter and the phosphoinositide 3-kinase/Akt pathway in human pancreatic cancer cells.Pancreas200837442643110.1097/MPA.0b013e3181735ccb18953257
    [Google Scholar]
  177. WoodT.E. DaliliS. SimpsonC.D. HurrenR. MaoX. SaizF.S. GrondaM. EberhardY. MindenM.D. BilanP.J. KlipA. BateyR.A. SchimmerA.D. A novel inhibitor of glucose uptake sensitizes cells to FAS-induced cell death.Mol. Cancer Ther.20087113546355510.1158/1535‑7163.MCT‑08‑056919001437
    [Google Scholar]
  178. ZhanT. DigelM. KüchE.M. StremmelW. FüllekrugJ. Silybin and dehydrosilybin decrease glucose uptake by inhibiting GLUT proteins.J. Cell. Biochem.2011112384985910.1002/jcb.2298421328458
    [Google Scholar]
  179. AzevedoC. Correia-BrancoA. AraújoJ.R. GuimarãesJ.T. KeatingE. MartelF. The chemopreventive effect of the dietary compound kaempferol on the MCF-7 human breast cancer cell line is dependent on inhibition of glucose cellular uptake.Nutr. Cancer201567350451310.1080/01635581.2015.100262525719685
    [Google Scholar]
  180. BrockmuellerA. SameriS. LiskovaA. ZhaiK. VargheseE. SamuelS.M. BüsselbergD. KubatkaP. ShakibaeiM. Resveratrol’s anti- cancer effects through the modulation of tumor glucose metabolism.Cancers (Basel)202113218810.3390/cancers1302018833430318
    [Google Scholar]
  181. GunninkL.K. AlabiO.D. KuiperB.D. GunninkS.M. SchuitemanS.J. StrohbehnL.E. HamiltonK.E. WrobelK.E. LoutersL.L. Curcumin directly inhibits the transport activity of GLUT1.Biochimie201612517918510.1016/j.biochi.2016.03.01427039889
    [Google Scholar]
  182. MoreiraL. AraújoI. CostaT. Correia-BrancoA. FariaA. MartelF. KeatingE. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism.Exp. Cell Res.2013319121784179510.1016/j.yexcr.2013.05.00123664836
    [Google Scholar]
  183. KoboriM. IwashitaK. ShinmotoH. TsushidaT. Phloretin-induced apoptosis in B16 melanoma 4A5 cells and HL60 human leukemia cells.Biosci. Biotechnol. Biochem.199963471972510.1271/bbb.63.71910361685
    [Google Scholar]
  184. ParkS.Y. KimE.J. ShinH.K. KwonD.Y. KimM.S. SurhY.J. ParkJ.H.Y. Induction of apoptosis in HT-29 colon cancer cells by phloretin.J. Med. Food200710458158610.1089/jmf.2007.11618158826
    [Google Scholar]
  185. YangJ. JinX. YanY. ShaoY. PanY. RobertsL.R. ZhangJ. HuangH. JiangJ. Inhibiting histone deacetylases suppresses glucose metabolism and hepatocellular carcinoma growth by restoring FBP1 expression.Sci. Rep.2017714386410.1038/srep4386428262837
    [Google Scholar]
  186. WardellS.E. IlkayevaO.R. WiemanH.L. FrigoD.E. RathmellJ.C. NewgardC.B. McDonnellD.P. Glucose metabolism as a target of histone deacetylase inhibitors.Mol. Endocrinol.200923338840110.1210/me.2008‑017919106193
    [Google Scholar]
  187. MishraR.K. WeiC. HreskoR.C. BajpaiR. HeitmeierM. MatulisS.M. NookaA.K. RosenS.T. HruzP.W. SchiltzG.E. ShanmugamM. in silico modeling-based identification of glucose transporter 4 (GLUT4)-selective inhibitors for cancer therapy.J. Biol. Chem.201529023144411445310.1074/jbc.M114.62882625847249
    [Google Scholar]
  188. ChengJ.C. McBrayerS.K. CoarfaC. Dalva-AydemirS. GunaratneP.H. CarptenJ.D. KeatsJ.K. RosenS.T. ShanmugamM. Expression and phosphorylation of the AS160_v2 splice variant supports GLUT4 activation and the Warburg effect in multiple myeloma.Cancer Metab.2013111410.1186/2049‑3002‑1‑1424280290
    [Google Scholar]
  189. Dalva-AydemirS. BajpaiR. MartinezM. AdekolaK.U.A. KandelaI. WeiC. SinghalS. KoblinskiJ.E. RajeN.S. RosenS.T. ShanmugamM. Targeting the metabolic plasticity of multiple myeloma with FDA-approved ritonavir and metformin.Clin. Cancer Res.20152151161117110.1158/1078‑0432.CCR‑14‑108825542900
    [Google Scholar]
  190. ChanD.A. SutphinP.D. NguyenP. TurcotteS. LaiE.W. BanhA. ReynoldsG.E. ChiJ.T. WuJ. Solow-CorderoD.E. BonnetM. FlanaganJ.U. BouleyD.M. GravesE.E. DennyW.A. HayM.P. GiacciaA.J. Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality.Sci. Transl. Med.201139494ra7010.1126/scitranslmed.300239421813754
    [Google Scholar]
  191. LiuY. ZhangW. CaoY. LiuY. BergmeierS. ChenX. Small compound inhibitors of basal glucose transport inhibit cell proliferation and induce apoptosis in cancer cells via glucose-deprivation- like mechanisms.Cancer Lett.2010298217618510.1016/j.canlet.2010.07.00220678861
    [Google Scholar]
  192. YoungC.D. LewisA.S. RudolphM.C. RuehleM.D. JackmanM.R. YunU.J. IlkunO. PereiraR. AbelE.D. AndersonS.M. Modulation of glucose transporter 1 (GLUT1) expression levels alters mouse mammary tumor cell growth in vitro and in vivo .PLoS One201168e2320510.1371/journal.pone.002320521826239
    [Google Scholar]
  193. RastogiS. BanerjeeS. ChellappanS. SimonG.R. Glut-1 antibodies induce growth arrest and apoptosis in human cancer cell lines.Cancer Lett.2007257224425110.1016/j.canlet.2007.07.02117910902
    [Google Scholar]
  194. MsS.V. PothabathulaS.V. Onco-Immunoinformatics: Homology Modeling, Molecular Docking of Monoclonal Antibodies with Their Receptors and Chemoinformatics of Novel Drug Design of Anti-Glut Drug Compound Conjugated Monoclonal Antibodies as a Novel Drug Discovery ApproachRochester, NY2020https://papers.ssrn.com/abstract=3530963
    [Google Scholar]
  195. ChanK.K. ChanJ.Y.W. ChungK.K.W. FungK.P. Inhibition of cell proliferation in human breast tumor cells by antisense oligonucleotides against facilitative glucose transporter 5.J. Cell. Biochem.20049361134114210.1002/jcb.2027015449313
    [Google Scholar]
  196. LiuT.Q. FanJ. ZhouL. ZhengS.S. Effects of suppressing glucose transporter-1 by an antisense oligodeoxynucleotide on the growth of human hepatocellular carcinoma cells.Hepatobiliary Pancreat. Dis. Int.2011101727710.1016/S1499‑3872(11)60010‑621269938
    [Google Scholar]
  197. FeiX. QiM. WuB. SongY. WangY. LiT. MicroRNA-195-5p suppresses glucose uptake and proliferation of human bladder cancer T24 cells by regulating GLUT3 expression.FEBS Lett.2012586439239710.1016/j.febslet.2012.01.00622265971
    [Google Scholar]
  198. WatanabeM. AbeN. OshikiriY. StanbridgeE.J. KitagawaT. Selective growth inhibition by glycogen synthase kinase-3 inhibitors in tumorigenic HeLa hybrid cells is mediated through NF-κB-dependent GLUT3 expression.Oncogenesis201217e2110.1038/oncsis.2012.2123552737
    [Google Scholar]
  199. ZhouR. Vander HeidenM.G. RudinC.M. Genotoxic exposure is associated with alterations in glucose uptake and metabolism.Cancer Res.200262123515352012067998
    [Google Scholar]
  200. RoosW.P. KainaB. DNA damage-induced cell death by apoptosis.Trends Mol. Med.200612944045010.1016/j.molmed.2006.07.00716899408
    [Google Scholar]
  201. WrightE.M. SGLT2 and cancer.Pflugers Arch.202047291407141410.1007/s00424‑020‑02448‑432820343
    [Google Scholar]
  202. BasakD. GamezD. DebS. SGLT2 inhibitors as potential anticancer agents.Biomedicines2023117186710.3390/biomedicines1107186737509506
    [Google Scholar]
  203. HsiaD.S. GroveO. CefaluW.T. An update on SGLT2 inhibitors for the treatment of diabetes mellitus.Curr. Opin. Endocrinol. Diabetes Obes.2017241737910.1097/MED.000000000000031127898586
    [Google Scholar]
  204. Fonseca-CorreaJ.I. Correa-RotterR. Sodium-glucose cotransporter 2 inhibitors mechanisms of action: A review.Front. Med. (Lausanne)2021877786110.3389/fmed.2021.77786134988095
    [Google Scholar]
  205. AliA. MekhaeilB. BiziotisO.D. TsakiridisE.E. AhmadiE. WuJ. WangS. SinghK. MenjolianG. FarrellT. MesciA. LiuS. BergT. BramsonJ.L. SteinbergG.R. TsakiridisT. The SGLT2 inhibitor canagliflozin suppresses growth and enhances prostate cancer response to radiotherapy.Commun. Biol.20236191910.1038/s42003‑023‑05289‑w37684337
    [Google Scholar]
  206. PapadopoliD. UchenunuO. PaliaR. ChekkalN. HuleaL. TopisirovicI. PollakM. St-PierreJ. Perturbations of cancer cell metabolism by the antidiabetic drug canagliflozin.Neoplasia202123439139910.1016/j.neo.2021.02.00333784591
    [Google Scholar]
  207. MolejonM.I. WeizG. BrecciaJ.D. VaccaroM.I. Glycoconjugation: An approach to cancer therapeutics.World J. Clin. Oncol.202011311012010.5306/wjco.v11.i3.11032257842
    [Google Scholar]
  208. CalvaresiE.C. HergenrotherP.J. Glucose conjugation for the specific targeting and treatment of cancer.Chem. Sci. 2013462319233310.1039/c3sc22205e24077675
    [Google Scholar]
  209. PohlJ. BertramB. HilgardP. NowrousianM.R. StübenJ. WießlerM. D-19575—a sugar-linked isophosphoramide mustard derivative exploiting transmembrane glucose transport.Cancer Chemother. Pharmacol.199535536437010.1007/s0028000502487850916
    [Google Scholar]
  210. ShimizuT. OkamotoI. TamuraK. SatohT. MiyazakiM. AkashiY. OzakiT. FukuokaM. NakagawaK. Phase I clinical and pharmacokinetic study of the glucose-conjugated cytotoxic agent d-19575 (glufosfamide) in patients with solid tumors.Cancer Chemother. Pharmacol.201065224325010.1007/s00280‑009‑1028‑319479254
    [Google Scholar]
  211. BriasoulisE. JudsonI. PavlidisN. BealeP. WandersJ. GrootY. VeermanG. SchuesslerM. NiebchG. SiamopoulosK. TzamakouE. RammouD. WolfL. WalkerR. HanauskeA. Phase I trial of 6-hour infusion of glufosfamide, a new alkylating agent with potentially enhanced selectivity for tumors that overexpress transmembrane glucose transporters: A study of the European Organization for Research and Treatment of Cancer Early Clinical Studies Group.J. Clin. Oncol.200018203535354410.1200/JCO.2000.18.20.353511032596
    [Google Scholar]
  212. CiuleanuT.E. PavlovskyA.V. BodokyG. GarinA.M. LangmuirV.K. KrollS. TidmarshG.T. A randomised Phase III trial of glufosfamide compared with best supportive care in metastatic pancreatic adenocarcinoma previously treated with gemcitabine.Eur. J. Cancer20094591589159610.1016/j.ejca.2008.12.02219188061
    [Google Scholar]
  213. HalmosT. SantarromanaM. AntonakisK. SchermanD. Synthesis of glucose-chlorambucil derivatives and their recognition by the human GLUT1 glucose transporter.Eur. J. Pharmacol.19963182-347748410.1016/S0014‑2999(96)00796‑09016941
    [Google Scholar]
  214. HalmosT. SantarromanaM. AntonakisK. SchermanD. Synthesis of O-methylsulfonyl derivatives of d-glucose as potential alkylating agents for targeted drug delivery to the brain. Evaluation of their interaction with the human erythrocyte GLUT1 hexose transporter.Carbohydr. Res.19972991-2152110.1016/S0008‑6215(96)00328‑X9129293
    [Google Scholar]
  215. MandaiT. OkumotoH. OshitariT. NakanishiK. MikuniK. HaraK. HaraK. IwataniW. AmanoT. NakamuraK. TsuchiyaY. Synthesis and biological evaluation of water soluble taxoids bearing sugar moieties.Heterocycles200154256110.3987/COM‑00‑S(I)34
    [Google Scholar]
  216. MikuniK. NakanishiK. HaraK. HaraK. IwataniW. AmanoT. NakamuraK. TsuchiyaY. OkumotoH. MandaiT. in vivo antitumor activity of novel water-soluble taxoids.Biol. Pharm. Bull.20083161155115810.1248/bpb.31.115518520047
    [Google Scholar]
  217. LinY.S. TungpraditR. SinchaikulS. AnF.M. LiuD.Z. PhutrakulS. ChenS.T. Targeting the delivery of glycan-based paclitaxel prodrugs to cancer cells via glucose transporters.J. Med. Chem.200851237428744110.1021/jm800625719053781
    [Google Scholar]
  218. LiuR. FuZ. ZhaoM. GaoX. LiH. MiQ. LiuP. YangJ. YaoZ. GaoQ. GLUT1-mediated selective tumor targeting with fluorine containing platinum(II) glycoconjugates.Oncotarget2017824394763949610.18632/oncotarget.1707328467806
    [Google Scholar]
  219. CaoJ. CuiS. LiS. DuC. TianJ. WanS. QianZ. GuY. ChenW.R. WangG. Targeted cancer therapy with a 2-deoxyglucose-based adriamycin complex.Cancer Res.20137341362137310.1158/0008‑5472.CAN‑12‑207223396585
    [Google Scholar]
  220. MundekkadD. ChoW.C. Nanoparticles in clinical translation for cancer therapy.Int. J. Mol. Sci.2022233168510.3390/ijms2303168535163607
    [Google Scholar]
  221. ChehelgerdiM. ChehelgerdiM. AllelaO.Q.B. PechoR.D.C. JayasankarN. RaoD.P. ThamaraikaniT. VasanthanM. ViktorP. LakshmaiyaN. SaadhM.J. AmajdA. Abo-ZaidM.A. Castillo-AcoboR.Y. IsmailA.H. AminA.H. Akhavan-SigariR. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation.Mol. Cancer202322116910.1186/s12943‑023‑01865‑037814270
    [Google Scholar]
  222. JiangX. XinH. RenQ. GuJ. ZhuL. DuF. FengC. XieY. ShaX. FangX. Nanoparticles of 2-deoxy-d-glucose functionalized poly(ethylene glycol)-co-poly(trimethylene carbonate) for dual-targeted drug delivery in glioma treatment.Biomaterials201435151852910.1016/j.biomaterials.2013.09.09424125772
    [Google Scholar]
  223. JiangX. XinH. GuJ. DuF. FengC. XieY. FangX. Enhanced antitumor efficacy by d-glucosamine-functionalized and paclitaxel-loaded poly(ethylene glycol)-co-poly(trimethylene carbonate) polymer nanoparticles.J. Pharm. Sci.201410351487149610.1002/jps.2392824619482
    [Google Scholar]
  224. HanahanD. CoussensL.M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment.Cancer Cell201221330932210.1016/j.ccr.2012.02.02222439926
    [Google Scholar]
  225. LyssiotisC.A. KimmelmanA.C. Metabolic interactions in the tumor microenvironment.Trends Cell Biol.2017271186387510.1016/j.tcb.2017.06.00328734735
    [Google Scholar]
  226. ShiR TangY MiaoH Metabolism in tumor microenvironment: Implications for cancer immunotherapyMed. Comm2020114768
    [Google Scholar]
  227. de la Cruz-LópezK.G. Castro-MuñozL.J. Reyes-HernándezD.O. García-CarrancáA. Manzo-MerinoJ. Lactate in the regulation of tumor microenvironment and therapeutic approaches.Front. Oncol.20199114310.3389/fonc.2019.0114331737570
    [Google Scholar]
  228. XingY. ZhaoS. ZhouB.P. MiJ. Metabolic reprogramming of the tumour microenvironment.FEBS J.2015282203892389810.1111/febs.1340226255648
    [Google Scholar]
  229. ZhangC. FeiY. WangH. HuS. LiuC. HuR. DuQ. CAFs orchestrates tumor immune microenvironment—A new target in cancer therapy?Front. Pharmacol.202314111337810.3389/fphar.2023.111337837007004
    [Google Scholar]
  230. PingQ. YanR. ChengX. WangW. ZhongY. HouZ. ShiY. WangC. LiR. Cancer-associated fibroblasts: Overview, progress, challenges, and directions.Cancer Gene Ther.202128998499910.1038/s41417‑021‑00318‑433712707
    [Google Scholar]
  231. KartaJ. BossicardY. KotzamanisK. DolznigH. LetellierE. Mapping the metabolic networks of tumor cells and cancer-associated fibroblasts.Cells202110230410.3390/cells1002030433540679
    [Google Scholar]
  232. KogureA. NaitoY. YamamotoY. YashiroM. KiyonoT. YanagiharaK. HirakawaK. OchiyaT. Cancer cells with high-metastatic potential promote a glycolytic shift in activated fibroblasts.PLoS One2020156e023461310.1371/journal.pone.023461332555715
    [Google Scholar]
  233. ChiarugiP. CirriP. Metabolic exchanges within tumor microenvironment.Cancer Lett.2016380127228010.1016/j.canlet.2015.10.02726546872
    [Google Scholar]
  234. FiaschiT. MariniA. GiannoniE. TaddeiM.L. GandelliniP. De DonatisA. LanciottiM. SerniS. CirriP. ChiarugiP. Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay.Cancer Res.201272195130514010.1158/0008‑5472.CAN‑12‑194922850421
    [Google Scholar]
  235. ShimH. DoldeC. LewisB.C. WuC.S. DangG. JungmannR.A. Dalla-FaveraR. DangC.V. c-Myc transactivation of LDH-A : Implications for tumor metabolism and growth.Proc. Natl. Acad. Sci. USA199794136658666310.1073/pnas.94.13.66589192621
    [Google Scholar]
  236. PeppicelliS. BianchiniF. CaloriniL. Extracellular acidity, a “reappreciated” trait of tumor environment driving malignancy: Perspectives in diagnosis and therapy.Cancer Metastasis Rev.2014332-382383210.1007/s10555‑014‑9506‑424984804
    [Google Scholar]
  237. Whitaker-MenezesD. Martinez-OutschoornU.E. LinZ. ErtelA. FlomenbergN. WitkiewiczA.K. BirbeR. HowellA. PavlidesS. GandaraR. PestellR.G. SotgiaF. PhilpN.J. LisantiM.P. Evidence for a stromal-epithelial “lactate shuttle” in human tumors.Cell Cycle201110111772178310.4161/cc.10.11.1565921558814
    [Google Scholar]
  238. PatelB.B. AckerstaffE. SerganovaI.S. KerriganJ.E. BlasbergR.G. KoutcherJ.A. BanerjeeD. Tumor stroma interaction is mediated by monocarboxylate metabolism.Exp. Cell Res.20173521203310.1016/j.yexcr.2017.01.01328132882
    [Google Scholar]
  239. BrozM.T. KoE.Y. IshayaK. XiaoJ. De SimoneM. HoiX.P. PirasR. GalaB. TessaroF.H.G. KarlstaedtA. OrsulicS. LundA.W. ChanK.S. GuarnerioJ. Metabolic targeting of cancer associated fibroblasts overcomes T-cell exclusion and chemoresistance in soft-tissue sarcomas.Nat. Commun.2024151249810.1038/s41467‑024‑46504‑438509063
    [Google Scholar]
  240. CrezeeT. RaboldK. de JongL. JaegerM. Netea-MaierR.T. Metabolic programming of tumor associated macrophages in the context of cancer treatment.Ann. Transl. Med.20208161028102810.21037/atm‑20‑111432953828
    [Google Scholar]
  241. VitaleI. ManicG. CoussensL.M. KroemerG. GalluzziL. Macrophages and metabolism in the tumor microenvironment.Cell Metab.2019301365010.1016/j.cmet.2019.06.00131269428
    [Google Scholar]
  242. MillsC. M1 and M2 macrophages: Oracles of health and disease.Crit. Rev. Immunol.201232646348810.1615/CritRevImmunol.v32.i6.1023428224
    [Google Scholar]
  243. KhanS.U. KhanM.U. Azhar Ud DinM. KhanI.M. KhanM.I. BungauS. HassanS.S. Reprogramming tumor-associated macrophages as a unique approach to target tumor immunotherapy.Front. Immunol.202314116648710.3389/fimmu.2023.116648737138860
    [Google Scholar]
  244. RaboldK. NeteaM.G. AdemaG.J. Netea-MaierR.T. Cellular metabolism of tumor-associated macrophages – functional impact and consequences.FEBS Lett.2017591193022304110.1002/1873‑3468.1277128771701
    [Google Scholar]
  245. Netea-MaierR.T. SmitJ.W.A. NeteaM.G. Metabolic changes in tumor cells and tumor-associated macrophages: A mutual relationship.Cancer Lett.201841310210910.1016/j.canlet.2017.10.03729111350
    [Google Scholar]
  246. PennyH.L. SieowJ.L. AdrianiG. YeapW.H. See Chi EeP. San LuisB. LeeB. LeeT. MakS.Y. HoY.S. LamK.P. OngC.K. HuangR.Y.J. GinhouxF. RotzschkeO. KammR.D. WongS.C. Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma.OncoImmunology201658e119173110.1080/2162402X.2016.119173127622062
    [Google Scholar]
  247. LiuD. ChangC. LuN. WangX. LuQ. RenX. RenP. ZhaoD. WangL. ZhuY. HeF. TangL. Comprehensive proteomics analysis reveals metabolic reprogramming of tumor-associated macrophages stimulated by the tumor microenvironment.J. Proteome Res.201716128829710.1021/acs.jproteome.6b0060427809537
    [Google Scholar]
  248. CaoJ. ZengF. LiaoS. CaoL. ZhouY. Effects of glycolysis on the polarization and function of tumor-associated macrophages (Review).Int. J. Oncol.20236267010.3892/ijo.2023.551837144503
    [Google Scholar]
  249. YuY. LiangY. LiD. WangL. LiangZ. ChenY. MaG. WuH. JiaoW. NiuH. Glucose metabolism involved in PD-L1-mediated immune escape in the malignant kidney tumour microenvironment.Cell Death Discov.2021711510.1038/s41420‑021‑00401‑733462221
    [Google Scholar]
  250. McCartyM.F. WhitakerJ. Manipulating tumor acidification as a cancer treatment strategy.Altern. Med. Rev.201015326427221155627
    [Google Scholar]
  251. MaG. LiC. ZhangZ. LiangY. LiangZ. ChenY. WangL. LiD. ZengM. ShanW. NiuH. Targeted glucose or glutamine metabolic therapy combined with PD-1/PD-L1 checkpoint blockade immunotherapy for the treatment of tumors - Mechanisms and strategies.Front. Oncol.20211169789410.3389/fonc.2021.69789434327138
    [Google Scholar]
  252. Palsson-McDermottE.M. DyckL. ZasłonaZ. MenonD. McGettrickA.F. MillsK.H.G. O’NeillL.A. Pyruvate kinase M2 is required for the expression of the immune checkpoint PD-L1 in immune cells and tumors.Front. Immunol.201781300https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2017.01300/full10.3389/fimmu.2017.0130029081778
    [Google Scholar]
  253. DeWaalD. NogueiraV. TerryA.R. PatraK.C. JeonS.M. GuzmanG. AuJ. LongC.P. AntoniewiczM.R. HayN. Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin.Nat. Commun.20189144610.1038/s41467‑017‑02733‑429386513
    [Google Scholar]
  254. BrookeD.G. van DamE.M. WattsC.K.W. KhouryA. DziadekM.A. BrooksH. GrahamL.J.K. FlanaganJ.U. DennyW.A. Targeting the Warburg Effect in cancer; relationships for 2-arylpyridazinones as inhibitors of the key glycolytic enzyme 6-phosphofructo-2-kinase/2,6-bisphosphatase 3 (PFKFB3).Bioorg. Med. Chem.20142231029103910.1016/j.bmc.2013.12.04124398380
    [Google Scholar]
  255. BaderJ.E. VossK. RathmellJ.C. Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy.Mol. Cell20207861019103310.1016/j.molcel.2020.05.03432559423
    [Google Scholar]
  256. ZouW. WolchokJ.D. ChenL. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations.Sci. Transl. Med.20168328328rv410.1126/scitranslmed.aad711826936508
    [Google Scholar]
  257. ChoS. KimW. YooD. HanY. HwangH. KimS. KimJ. ParkS. ParkY. JoH. PyunJ. LeeM. Impact of glucose metabolism on PD-L1 expression in sorafenib-resistant hepatocellular carcinoma cells.Sci. Rep.2024141175110.1038/s41598‑024‑52160‑x38243049
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501335877240926101134
Loading
/content/journals/cdt/10.2174/0113894501335877240926101134
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test