Skip to content
2000
Volume 26, Issue 2
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

The expression and release of cysteine proteases by spp. and their virulence factors significantly influence the modulation of host immune responses and metabolism, rendering cysteine proteases intriguing targets for drug development. This review article explores the substantial role of cysteine protease B (CPB) in medicinal chemistry from 2001 to 2024, particularly concerning combatting parasites. We delve into contemporary advancements and potential prospects associated with targeting cysteine proteases for therapeutic interventions against leishmaniasis, emphasizing drug discovery in this context. Computational analysis using the pkCSM tool assessed the physicochemical properties of compounds, providing valuable insights into their molecular characteristics and drug-like potential, enriching our understanding of the pharmacological profiles, and aiding rational inhibitor design. Our investigation highlights that while nonpeptidic compounds constitute the majority (69.2%, 36 compounds) of the dataset, peptidomimetic-based derivatives (30.8%, 16 compounds) also hold promise in medicinal chemistry. Evaluating the most promising compounds based on dissociation constant () and half maximal inhibitory concentration (IC) values revealed notable potency, with 41.7% and 80.0% of nonpeptidic compounds exhibiting values < 1 µM, respectively. On the other hand, all peptidic compounds evaluated for (43.8%) and IC (31.3%) obtained values < 1 µM, respectively. Further analysis identified specific compounds within both categories (nonpeptidic: , and ; peptidic: ) as particularly promising, warranting deeper investigation into their structure-activity relationships. These findings underscore the diverse landscape of inhibitors in medicinal chemistry and highlight the potential of both nonpeptidic and peptide-based compounds as valuable assets in therapeutic development against leishmaniasis.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501324437240919064715
2025-09-27
2025-01-18
Loading full text...

Full text loading...

References

  1. World Health Organization (WHO).Leishmaniasis.2023Available from:https://www.who.int/news-room/fact-sheets/detail/leishmaniasis(accessed on 9-9-2024)
  2. Centers for Disease Control and Prevention (CDC)2023Available from: https://www.cdc.gov/parasites/leishmaniasis/index. html(accessed on 9-9-2024)
  3. AlvarJ. VélezI.D. BernC. HerreroM. DesjeuxP. CanoJ. JanninJ. BoerM. WHO Leishmaniasis Control Team Leishmaniasis worldwide and global estimates of its incidence.PLoS One201275e3567110.1371/journal.pone.003567122693548
    [Google Scholar]
  4. MolyneuxD.H. SavioliL. EngelsD. Neglected tropical diseases: progress towards addressing the chronic pandemic.Lancet20173891006631232510.1016/S0140‑6736(16)30171‑427639954
    [Google Scholar]
  5. ReadyP.D. Biology of phlebotomine sand flies as vectors of disease agents.Annu. Rev. Entomol.201358122725010.1146/annurev‑ento‑120811‑15355723317043
    [Google Scholar]
  6. PigottD.M. BhattS. GoldingN. DudaK.A. BattleK.E. BradyO.J. MessinaJ.P. BalardY. BastienP. PratlongF. BrownsteinJ.S. FreifeldC.C. MekaruS.R. GethingP.W. GeorgeD.B. MyersM.F. ReithingerR. HayS.I. Global distribution maps of the leishmaniases.eLife20143e0285110.7554/eLife.0285124972829
    [Google Scholar]
  7. SainiI. JoshiJ. KaurS. Unwelcome prevalence of leishmaniasis with several other infectious diseases.Int. Immunopharmacol.202211010905910.1016/j.intimp.2022.10905935978509
    [Google Scholar]
  8. BravoF. SanchezM.R. New and re-emerging cutaneous infectious diseases in Latin America and other geographic areas.Dermatol. Clin.2003214655668, viii10.1016/S0733‑8635(03)00090‑114717406
    [Google Scholar]
  9. Torres-GuerreroE. Quintanilla-CedilloM.R. Ruiz-EsmenjaudJ. ArenasR. Leishmaniasis: a review.F1000 Res.2017675010.12688/f1000research.11120.128649370
    [Google Scholar]
  10. KarimkhaniC. WangaV. CoffengL.E. NaghaviP. DellavalleR.P. NaghaviM. Global burden of cutaneous leishmaniasis: a cross-sectional analysis from the Global Burden of Disease Study 2013.Lancet Infect. Dis.201616558459110.1016/S1473‑3099(16)00003‑726879176
    [Google Scholar]
  11. WamaiR.G. KahnJ. McGloinJ. ZiaggiG. Visceral leishmaniasis: a global overview.J. Glob. Health Sci.202021e310.35500/jghs.2020.2.e3
    [Google Scholar]
  12. Leishmaniasis in high-burden countries: an epidemiological update based on data reported in 2014.2016Available from: https://www.who.int/publications/i/item/who-wer9122(accessed on 9-9-2024)
  13. KyuH.H. AbateD. AbateK.H. AbayS.M. AbbafatiC. AbbasiN. AbbastabarH. Abd-AllahF. AbdelaJ. AbdelalimA. AbdollahpourI. AbdulkaderR.S. AbebeM. AbebeZ. AbilO.Z. AboyansV. AbrhamA.R. Abu-RaddadL.J. Abu-RmeilehN.M.E. AccrombessiM.M.K. AcharyaD. AcharyaP. AckermanI.N. AdamuA.A. AdebayoO.M. AdekanmbiV. AdemiZ. AdetokunbohO.O. AdibM.G. AdsuarJ.C. AfanviK.A. AfaridehM. AfshinA. AgarwalG. AgesaK.M. AggarwalR. AghayanS.A. AgrawalA. AhmadiA. AhmadiM. AhmadiehH. AhmedM.B. AhmedS. AichourA.N. AichourI. AichourM.T.E. AkinyemijuT. AkseerN. Al-AlyZ. Al-EyadhyA. Al-MekhlafiH.M. Al-RaddadiR.M. AlahdabF. AlamK. AlamT. AlashiA. AlavianS.M. AleneK.A. AlijanzadehM. Alizadeh-NavaeiR. AljunidS.M. AlkerwiA. AllaF. AllebeckP. AlonsoJ. AlsharifU. AltirkawiK. Alvis-GuzmanN. AmindeL.N. AminiE. AmiresmailiM. AmmarW. AmoakoY.A. AnberN.H. AndreiC.L. AndroudiS. AnimutM.D. AnjomshoaM. AnshaM.G. AntonioC.A.T. AnwariP. ArablooJ. AremuO. ÄrnlövJ. AroraA. AroraM. ArtamanA. AryalK.K. AsayeshH. AtaroZ. AusloosM. Avila-BurgosL. AvokpahoE.F.G.A. AwasthiA. Ayala QuintanillaB.P. AyerR. AzzopardiP.S. BabazadehA. BadaliH. BalakrishnanK. BaliA.G. BanachM. BanoubJ.A.M. BaracA. BarbozaM.A. Barker-ColloS.L. BärnighausenT.W. BarqueraS. BarreroL.H. Bazargan-HejaziS. BediN. BeghiE. BehzadifarM. BehzadifarM. BekeleB.B. BekruE.T. BelachewA.B. BelayY.A. BellM.L. BelloA.K. BennettD.A. BensenorI.M. BerhaneA. BernabeE. BernsteinR.S. BeuranM. BeyranvandT. BhalaN. BhattS. BhaumikS. BhuttaZ.A. BiadgoB. BiehlM.H. BijaniA. BikbovB. BilanoV. BililignN. Bin SayeedM.S. BisanzioD. BjørgeT. BleyerA. BobasaE.M. Bou-OrmI.R. BoufousS. BourneR. BradyO.J. BrantL.C. BrayneC. BrazinovaA. BreitbordeN.J.K. BrennerH. BriantP.S. BrikoA.N. BrittonG. BrughaT. BuchbinderR. BusseR. ButtZ.A. Cahuana-HurtadoL. Campuzano RinconJ.C. CanoJ. CárdenasR. CarreroJ.J. CarterA. CarvalhoF. Castañeda-OrjuelaC.A. Castillo RivasJ. CastroF. Catalá-LópezF. CercyK.M. CerinE. ChaiahY. ChangJ-C. CharlsonF.J. ChattuV.K. ChiangP.P-C. ChitheerA. ChoiJ-Y.J. ChristensenH. ChristopherD.J. ChungS-C. CicuttiniF.M. CirilloM. Collado-MateoD. CooperC. CortesiP.A. CortinovisM. CousinE. CriquiM.H. CromwellE.A. CrossM. CrumpJ.A. DabaA.K. DachewB.A. DadiA.F. DandonaL. DandonaR. DarganP.I. DaryaniA. Das GuptaR. Das NevesJ. DasaT.T. DavitoiuD.V. De La HozF.P. De LeoD. De NeveJ-W. De SteurH. DegefaM.G. DegenhardtL. DeiparineS. DemozG.T. Denova-GutiérrezE. DeribeK. DervenisN. Des JarlaisD.C. DeyS. DharmaratneS.D. DhimalM. DinberuM.T. DiracM.A. DjalaliniaS. DoanL. DokovaK. DokuD.T. DorseyE.R. DoyleK.E. DriscollT.R. DubeyM. DubljaninE. DukenE.E. DuncanB.B. DuraesA.R. EbrahimiH. EbrahimpourS. EchkoM.M. EdessaD. EdvardssonD. EffiongA. EggenA.E. EhrlichJ.R. El BcheraouiC. El-KhatibZ. ElyazarI.R.F. EnayatiA. EndaliferM.L. EndriesA.Y. ErB. ErskineH.E. EskandariehS. EsteghamatiA. EsteghamatiS. FakhimH. FaramarziM. FareedM. FarhadiF. FaridT.A. FarinhaC.S.E. FarioliA. FaroA. FarzadfarF. FazaeliA.A. FeiginV.L. FentahunN. FereshtehnejadS-M. FernandesE. FernandesJ.C. FerrariA.J. FerreiraM.L. FilipI. FischerF. FitzmauriceC. FoigtN.A. ForemanK.J. FrankT.D. FukumotoT. FullmanN. FürstT. FurtadoJ.M. GakidouE. GallS. GallusS. GanjiM. Garcia-BasteiroA.L. GardnerW.M. GebreA.K. GebremedhinA.T. GebremichaelT.G. GelanoT.F. GeleijnseJ.M. Genova-MalerasR. GeramoY.C.D. GethingP.W. GezaeK.E. GhadamiM.R. GhadiriK. Ghasemi-KasmanM. GhimireM. GhoshalA.G. GillP.S. GillT.K. GinawiI.A. GiussaniG. GnedovskayaE.V. GoldbergE.M. GoliS. Gómez-DantésH. GonaP.N. GopalaniS.V. GormanT.M. GoulartA.C. GoulartB.N.G. GradaA. GrossoG. GugnaniH.C. GuilleminF. GuoY. GuptaP.C. GuptaR. GuptaR. GuptaT. GutiérrezR.A. GyawaliB. HaagsmaJ.A. HachinskiV. Hafezi-NejadN. Haghparast BidgoliH. HagosT.B. HailegiyorgisT.T. Haj-MirzaianA. Haj-MirzaianA. HamadehR.R. HamidiS. HandalA.J. HankeyG.J. HaoY. HarbH.L. HarikrishnanS. HaririanH. HaroJ.M. HassankhaniH. HassenH.Y. HavmoellerR. HayR.J. HayS.I. Hedayatizadeh-OmranA. HeibatiB. HendrieD. HenokA. Heredia-PiI. HerteliuC. HeydarpourF. HeydarpourP. HibstuD.T. HoekH.W. HoffmanH.J. HoleM.K. Homaie RadE. HoogarP. HosgoodH.D. HosseiniS.M. HosseinzadehM. HostiucM. HostiucS. HotezP.J. HoyD.G. HsairiM. HtetA.S. HuangJ.J. IburgK.M. IkedaC.T. IlesanmiO.S. IrvaniS.S.N. IrvineC.M.S. IslamS.M.S. IslamiF. JacobsenK.H. JahangiryL. JahanmehrN. JainS.K. JakovljevicM. JamesS.L. JayatillekeA.U. JeemonP. JhaR.P. JhaV. JiJ.S. JohnsonC.O. JonasJ.B. JonnagaddalaJ. Jorjoran ShushtariZ. JoshiA. JozwiakJ.J. JungariS.B. JürissonM. KabirZ. KadelR. KahsayA. KalaniR. KanchanT. KarC. KaramiM. Karami MatinB. KarchA. KaremaC. KarimiN. KarimiS.M. KasaeianA. KassaD.H. KassaG.M. KassaT.D. KassebaumN.J. KatikireddiS.V. KaulA. KawakamiN. KazemiZ. KaryaniA.K. KeighobadiM.M. KeiyoroP.N. KemmerL. KempG.R. KengneA.P. KerenA. KhaderY.S. KhafaeiB. KhafaieM.A. KhajaviA. KhalidN. KhalilI.A. KhanE.A. KhanM.S. KhanM.A. KhangY-H. KhaterM.M. KhazaeiM. KhojaA.T. KhosraviA. KhosraviM.H. KiadaliriA.A. KidanemariamZ.T. KiirithioD.N. KimC-I. KimD. KimY-E. KimY.J. KimokotiR.W. KinfuY. KisaA. Kissimova-SkarbekK. KnudsenA.K.S. KocarnikJ.M. KochharS. KokuboY. KololaT. KopecJ.A. KosenS. KotsakisG.A. KoulP.A. KoyanagiA. KrishanK. KrishnaswamiS. KrohnK.J. Kuate DefoB. Kucuk BicerB. KumarG.A. KumarM. KuzinI. LadD.P. LadS.D. LafranconiA. LallooR. LallukkaT. LamiF.H. LangJ.J. LanganS.M. LansinghV.C. LatifiA. LauK.M-M. LazarusJ.V. LeasherJ.L. LedesmaJ.R. LeeP.H. LeighJ. LeiliM. LeshargieC.T. LeungJ. LeviM. LewyckaS. LiS. LiY. LiangX. LiaoY. LibenM.L. LimL-L. LimS.S. LimenihM.A. LinnS. LiuS. LookerK.J. LopezA.D. LorkowskiS. LotufoP.A. LozanoR. LucasT.C.D. LuneviciusR. LyonsR.A. MaS. MacarayanE.R.K. MackayM.T. MaddisonE.R. MadottoF. MaghavaniD.P. MaiH.T. MajdanM. MajdzadehR. MajeedA. MalekzadehR. MaltaD.C. MamunA.A. MandaA-L. ManguerraH. MansourniaM.A. Mantilla HerreraA.M. MantovaniL.G. MaravillaJ.C. MarcenesW. MarksA. Martins-MeloF.R. MartopulloI. MärzW. MarzanM.B. MassanoJ. MassenburgB.B. MathurM.R. MaulikP.K. MazidiM. McAlindenC. McGrathJ.J. McKeeM. McMahonB.J. MehataS. MehrotraR. MehtaK.M. MehtaV. Mejia-RodriguezF. MekonenT. MeleseA. MelkuM. MemiahP.T.N. MemishZ.A. MendozaW. MengistuG. MensahG.A. MeretaS.T. MeretojaA. MeretojaT.J. MestrovicT. MiazgowskiB. MiazgowskiT. MillearA.I. MillerT.R. MiniG.K. MirarefinM. MiricaA. MirrakhimovE.M. MisganawA.T. MitchellP.B. MitikuH. MoazenB. MohajerB. MohammadK.A. MohammadiM. MohammadifardN. Mohammadnia-AfrouziM. MohammedM.A. MohammedS. MohebiF. MokdadA.H. MolokhiaM. MonastaL. MontañezJ.C. MoosazadehM. MoradiG. MoradiM. Moradi-LakehM. MoradinazarM. MoragaP. MorawskaL. Moreno VelásquezI. Morgado-Da-CostaJ. MorrisonS.D. MoschosM.M. MousaviS.M. MrutsK.B. MucheA.A. MuchieK.F. MuellerU.O. MuhammedO.S. MukhopadhyayS. MullerK. MumfordJ.E. MurthyG.V.S. MusaK.I. MustafaG. NabhanA.F. NagataC. NagelG. NaghaviM. NaheedA. NahvijouA. NaikG. NajafiF. NamH.S. NangiaV. NansseuJ.R. NeamatiN. NegoiI. NegoiR.I. NeupaneS. NewtonC.R.J. NgunjiriJ.W. NguyenA.Q. NguyenG. NguyenH.T. NguyenH.L.T. NguyenH.T. NguyenL.H. NguyenM. NguyenN.B. NguyenS.H. NicholsE. NingrumD.N.A. NixonM.R. NomuraS. NorooziM. NorrvingB. NoubiapJ.J. NouriH.R. ShiadehM.N. NowrooziM.R. NsoesieE.O. NyasuluP.S. OdellC.M. Ofori-AsensoR. OgboF.A. OhI-H. OladimejiO. OlagunjuA.T. OlagunjuT.O. OlivaresP.R. OlsenH.E. OlusanyaB.O. OlusanyaJ.O. OngK.L. OngS.K. OrenE. OrtizA. OtaE. OtstavnovS.S. ØverlandS. OwolabiM.O. P AM. PacellaR. PakhareA.P. PakpourA.H. PanaA. Panda-JonasS. ParkE-K. ParkJ. ParryC.D.H. ParsianH. PasdarY. PatelS. PatilS.T. PatleA. PattonG.C. PaturiV.R. PaudelD. PaulsonK.R. PearceN. PereiraA. PereiraD.M. PericoN. PesudovsK. PetzoldM. PhamH.Q. PhillipsM.R. PigottD.M. PillayJ.D. PiradovM.A. PirsahebM. PishgarF. Plana-RipollO. PolinderS. PopovaS. PostmaM.J. PourshamsA. PoustchiH. PrabhakaranD. PrakashS. PrakashV. PrasadN. PurcellC.A. QorbaniM. QuistbergD.A. RadfarA. RafayA. RafieiA. RahimF. RahimiK. RahimiZ. Rahimi-MovagharA. Rahimi-MovagharV. RahmanM. RahmanM.H.U. RahmanM.A. RahmanS.U. RaiR.K. RajatiF. RanjanP. RaoP.C. RasellaD. RawafD.L. RawafS. ReddyK.S. ReinerR.C. ReitsmaM.B. RemuzziG. RenzahoA.M.N. ResnikoffS. RezaeiS. RezaiM.S. RibeiroA.L.P. RobertsN.L.S. RobinsonS.R. RoeverL. RonfaniL. RoshandelG. RostamiA. RothG.A. RothenbacherD. RubagottiE. SachdevP.S. SadatN. SadeghiE. Saeedi MoghaddamS. SafariH. SafariY. Safari-FaramaniR. SafdarianM. SafiS. SafiriS. SagarR. SahebkarA. SahraianM.A. SajadiH.S. SalamN. SalamaJ.S. SalamatiP. SaleemZ. SalimiY. SalimzadehH. SalomonJ.A. SalviS.S. SalzI. SamyA.M. SanabriaJ. Sanchez-NiñoM.D. SantomauroD.F. SantosI.S. SantosJ.V. Santric MilicevicM.M. Sao JoseB.P. SardanaM. SarkerA.R. Sarmiento-SuárezR. SarrafzadeganN. SartoriusB. SarviS. SathianB. SatpathyM. SawantA.R. SawhneyM. SaxenaS. SchaeffnerE. SchmidtM.I. SchneiderI.J.C. SchutteA.E. SchwebelD.C. SchwendickeF. ScottJ.G. SekerijaM. SepanlouS.G. Serván-MoriE. SeyedmousaviS. ShabaninejadH. ShafieesabetA. ShahbaziM. ShaheenA.A. ShaikhM.A. Shams-BeyranvandM. ShamsiM. SharafiH. SharafiK. SharifM. Sharif-AlhoseiniM. SharmaJ. SharmaR. SheJ. SheikhA. ShiP. ShibuyaK. ShiferawM.S. ShigematsuM. ShiriR. ShirkoohiR. ShiueI. ShokoohiniaY. ShokranehF. ShomanH. ShrimeM.G. SiS. SiabaniS. SibaiA.M. SiddiqiT.J. SigfusdottirI.D. SigurvinsdottirR. SilvaD.A.S. SilvaJ.P. SilveiraD.G.A. SingamN.S.V. SinghJ.A. SinghN.P. SinghV. SinhaD.N. SkiadaresiE. SkirbekkV. SliwaK. SmithD.L. SmithM. Soares FilhoA.M. SobaihB.H. SobhaniS. SoofiM. SorensenR.J.D. SorianoJ.B. SoyiriI.N. SposatoL.A. SreeramareddyC.T. SrinivasanV. StanawayJ.D. StarodubovV.I. SteinD.J. SteinerC. SteinerT.J. StokesM.A. StovnerL.J. SubartM.L. SudaryantoA. SufiyanM.B. SuloG. SunguyaB.F. SurP.J. SykesB.L. SylajaP.N. SylteD.O. SzoekeC.E.I. Tabarés-SeisdedosR. TabuchiT. TadakamadlaS.K. TandonN. TassewS.G. TavakkoliM. TaveiraN. TaylorH.R. Tehrani-BanihashemiA. TekalignT.G. TekelemedhinS.W. TekleM.G. TemsahM-H. TemsahO. TerkawiA.S. TessemaB. TeweldemedhinM. ThankappanK.R. TheisA. ThirunavukkarasuS. ThomasN. TilahunB. ToQ.G. TonelliM. Topor-MadryR. TorreA.E. Tortajada-GirbésM. TouvierM. Tovani-PaloneM.R. TowbinJ.A. TranB.X. TranK.B. TroegerC.E. TsadikA.G. TsoiD. Tudor CarL. TyrovolasS. UkwajaK.N. UllahI. UndurragaE.A. UpdikeR.L. UsmanM.S. UthmanO.A. VaduganathanM. VaeziA. ValdezP.R. VaravikovaE. VarugheseS. VasankariT.J. VenketasubramanianN. VillafainaS. ViolanteF.S. VladimirovS.K. VlassovV. VollsetS.E. VosT. VosoughiK. VujcicI.S. WagnewF.S. WaheedY. WangY. WangY-P. WeiderpassE. WeintraubR.G. WeissD.J. WeldegebrealF. WeldegwergsK.G. WerdeckerA. WestT.E. WestermanR. WhitefordH.A. WideckaJ. WijeratneT. WilliamsH.C. WilnerL.B. WilsonS. WinklerA.S. WiyehA.B. WiysongeC.S. WolfeC.D.A. WoolfA.D. WyperG.M.A. XavierD. XuG. YadgirS. Yahyazadeh JabbariS.H. YamadaT. YanL.L. YanoY. YaseriM. YasinY.J. YeshanehA. YimerE.M. YipP. YismaE. YonemotoN. YoonS-J. YotebiengM. YounisM.Z. YousefifardM. YuC. ZadnikV. ZaidiZ. ZamanS.B. ZamaniM. ZandianH. ZarH.J. ZenebeZ.M. ZhouM. ZipkinB. ZodpeyS. ZuckerI. ZuhlkeL.J. MurrayC.J.L. GBD 2017 DALYs and HALE Collaborators Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017.Lancet2018392101591859192210.1016/S0140‑6736(18)32335‑330415748
    [Google Scholar]
  14. BezerraJ.M.T. de AraújoV.E.M. BarbosaD.S. Martins-MeloF.R. WerneckG.L. CarneiroM. Burden of leishmaniasis in Brazil and federated units, 1990-2016: Findings from Global Burden of Disease Study 2016.PLoS Negl. Trop. Dis.2018129e000669710.1371/journal.pntd.000669730188898
    [Google Scholar]
  15. PortellaT.P. KraenkelR.A. Spatial–temporal pattern of cutaneous leishmaniasis in Brazil.Infect. Dis. Poverty20211018610.1186/s40249‑021‑00872‑x34134749
    [Google Scholar]
  16. WerneckG.L. Expansão geográfica da leishmaniose visceral no Brasil.Cad. Saude Publica201026464464510.1590/S0102‑311X201000040000120512199
    [Google Scholar]
  17. BarretoM.L. TeixeiraM.G. BastosF.I. XimenesR.A.A. BarataR.B. RodriguesL.C. Successes and failures in the control of infectious diseases in Brazil: social and environmental context, policies, interventions, and research needs.Lancet201137797801877188910.1016/S0140‑6736(11)60202‑X21561657
    [Google Scholar]
  18. RabaanA.A. BakhrebahM.A. MohapatraR.K. FarahatR.A. DhawanM. AlwarthanS. AljeldahM. Al ShammariB.R. Al-NajjarA.H. AlhusayyenM.A. Al-AbsiG.H. AldawoodY. AlsalehA.A. AlshamraniS.A. AlmuthreeS.A. AlawfiA. AlshengetiA. AlwashmiA.S.S. HajissaK. NassarM.S. Omics Approaches in Drug Development against Leishmaniasis: Current Scenario and Future Prospects.Pathogens20221213910.3390/pathogens1201003936678387
    [Google Scholar]
  19. GriffertyG. ShirleyH. McGloinJ. KahnJ. OrriolsA. WamaiR. Vulnerabilities to and the Socioeconomic and Psychosocial Impacts of the Leishmaniases: A Review.Res. Rep. Trop. Med.20211213515110.2147/RRTM.S27813834188584
    [Google Scholar]
  20. KantzanouM. KaralexiM.A. TheodoridouK. KostaresE. KostareG. LokaT. VrioniG. TsakrisA. Prevalence of visceral leishmaniasis among people with HIV: a systematic review and meta-analysis.Eur. J. Clin. Microbiol. Infect. Dis.202342111210.1007/s10096‑022‑04530‑436427170
    [Google Scholar]
  21. ValeroN.N.H. UriarteM. Environmental and socioeconomic risk factors associated with visceral and cutaneous leishmaniasis: a systematic review.Parasitol. Res.2020119236538410.1007/s00436‑019‑06575‑531897789
    [Google Scholar]
  22. BorgesM.S. NieroL.B. da RosaL.D.S. Citadini-ZanetteV. EliasG.A. AmaralP.A. Factors associated with the expansion of leishmaniasis in urban areas: a systematic and bibliometric review (1959–2021).J. Public Health Res.202211310.1177/2279903622111577536062236
    [Google Scholar]
  23. van GriensvenJ. ZijlstraE.E. HailuA. Visceral leishmaniasis and HIV coinfection: time for concerted action.PLoS Negl. Trop. Dis.201488e302310.1371/journal.pntd.000302325166269
    [Google Scholar]
  24. HailuT. YimerM. MuluW. AberaB. Challenges in visceral leishmaniasis control and elimination in the developing countries: A review.J. Vector Borne Dis.201653319319810.4103/0972‑9062.19133527681541
    [Google Scholar]
  25. ClosJ. GrünebastJ. HolmM. Promastigote-to-Amastigote Conversion in Leishmania spp.—A Molecular View.Pathogens2022119105210.3390/pathogens1109105236145483
    [Google Scholar]
  26. SunterJ. GullK. Shape, form, function and Leishmania pathogenicity: from textbook descriptions to biological understanding.Open Biol.20177917016510.1098/rsob.17016528903998
    [Google Scholar]
  27. OmondiZ.N. ArserimS.K. TözS. ÖzbelY. Host–Parasite Interactions: Regulation of Leishmania Infection in Sand Fly.Acta Parasitol.202267260661810.1007/s11686‑022‑00519‑335107776
    [Google Scholar]
  28. TomA. KumarN.P. KumarA. SainiP. Interactions between Leishmania parasite and sandfly: a review.Parasitol. Res.20241231610.1007/s00436‑023‑08043‑738052752
    [Google Scholar]
  29. FieldM.C. HornD. FairlambA.H. FergusonM.A.J. GrayD.W. ReadK.D. De RyckerM. TorrieL.S. WyattP.G. WyllieS. GilbertI.H. Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need.Nat. Rev. Microbiol.201715421723110.1038/nrmicro.2016.19328239154
    [Google Scholar]
  30. ClabornD. The biology and control of leishmaniasis vectors.J. Glob. Infect. Dis.20102212713410.4103/0974‑777X.6286620606968
    [Google Scholar]
  31. HarrusS. BanethG. Drivers for the emergence and re-emergence of vector-borne protozoal and bacterial diseases.Int. J. Parasitol.20053511-121309131810.1016/j.ijpara.2005.06.00516126213
    [Google Scholar]
  32. TeixeiraD.E. BenchimolM. RodriguesJ.C.F. CrepaldiP.H. PimentaP.F.P. de SouzaW. The cell biology of Leishmania: how to teach using animations.PLoS Pathog.2013910e100359410.1371/journal.ppat.100359424130476
    [Google Scholar]
  33. Manual of procedures for leishmaniases surveillance and control in the Americas.2019Available from:https://iris.paho.org/handle/10665.2/59237(accessed on 9-9-2024)
  34. MannS. FrascaK. ScherrerS. Henao-MartínezA.F. NewmanS. RamananP. SuarezJ.A. A Review of Leishmaniasis: Current Knowledge and Future Directions.Curr. Trop. Med. Rep.20218212113210.1007/s40475‑021‑00232‑733747716
    [Google Scholar]
  35. VolpedoG. Pacheco-FernandezT. HolcombE.A. CiprianoN. CoxB. SatoskarA.R. Mechanisms of Immunopathogenesis in Cutaneous Leishmaniasis And Post Kala-azar Dermal Leishmaniasis (PKDL).Front. Cell. Infect. Microbiol.20211168529610.3389/fcimb.2021.68529634169006
    [Google Scholar]
  36. ChoiC.M. LernerE.A. Leishmaniasis.Am. J. Clin. Dermatol.2002329110510.2165/00128071‑200203020‑0000311893221
    [Google Scholar]
  37. AntinoriS. GiacomelliA. Leishmaniasis.Encyclopedia of Infection and Immunity.Elsevier202262264310.1016/B978‑0‑12‑818731‑9.00178‑6
    [Google Scholar]
  38. PoulakiA. PiperakiE.T. VoulgarelisM. Effects of Visceralising Leishmania on the Spleen, Liver, and Bone Marrow: A Pathophysiological Perspective.Microorganisms20219475910.3390/microorganisms904075933916346
    [Google Scholar]
  39. CostaC.H.N. ChangK.P. CostaD.L. CunhaF.V.M. From Infection to Death: An Overview of the Pathogenesis of Visceral Leishmaniasis.Pathogens202312796910.3390/pathogens1207096937513817
    [Google Scholar]
  40. MondalD. BernC. GhoshD. RashidM. MolinaR. ChowdhuryR. NathR. GhoshP. ChapmanL.A.C. AlimA. BilbeG. AlvarJ. Quantifying the Infectiousness of Post-Kala-Azar Dermal Leishmaniasis Toward Sand Flies.Clin. Infect. Dis.201969225125810.1093/cid/ciy89130357373
    [Google Scholar]
  41. Maia-ElkhouryA.N.S. Sierra RomeroG.A. O B ValadasS.Y. L Sousa-GomesM. Lauletta LindosoJ.A. CupolilloE. Ruiz-PostigoJ.A. ArgawD. Sanchez-VazquezM.J. Premature deaths by visceral leishmaniasis in Brazil investigated through a cohort study: A challenging opportunity?PLoS Negl. Trop. Dis.20191312e000784110.1371/journal.pntd.000784131856199
    [Google Scholar]
  42. CotaG. ErberA.C. SchernhammerE. SimõesT.C. Inequalities of visceral leishmaniasis case-fatality in Brazil: A multilevel modeling considering space, time, individual and contextual factors.PLoS Negl. Trop. Dis.2021157e000956710.1371/journal.pntd.000956734197454
    [Google Scholar]
  43. MitropoulosP. KonidasP. Durkin-KonidasM. New World cutaneous leishmaniasis: Updated review of current and future diagnosis and treatment.J. Am. Acad. Dermatol.201063230932210.1016/j.jaad.2009.06.08820303613
    [Google Scholar]
  44. ShmueliM. Ben-ShimolS. Review of Leishmaniasis Treatment: Can We See the Forest through the Trees?Pharmacy (Basel)20241213010.3390/pharmacy1201003038392937
    [Google Scholar]
  45. BurzaS. CroftS.L. BoelaertM. Leishmaniasis.Lancet20183921015195197010.1016/S0140‑6736(18)31204‑230126638
    [Google Scholar]
  46. Ponte-SucreA. GamarroF. DujardinJ.C. BarrettM.P. López-VélezR. García-HernándezR. PountainA.W. MwenechanyaR. PapadopoulouB. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge.PLoS Negl. Trop. Dis.20171112e000605210.1371/journal.pntd.000605229240765
    [Google Scholar]
  47. van GriensvenJ. DorloT.P.C. DiroE. CostaC. BurzaS. The status of combination therapy for visceral leishmaniasis: an updated review.Lancet Infect. Dis.2024241e36e4610.1016/S1473‑3099(23)00353‑537640031
    [Google Scholar]
  48. ShakyaN. BajpaiP. GuptaS. Therapeutic switching in leishmania chemotherapy: a distinct approach towards unsatisfied treatment needs.J. Parasit. Dis.201135210411210.1007/s12639‑011‑0040‑923024489
    [Google Scholar]
  49. DomagalskaM.A. BarrettM.P. DujardinJ.C. Drug resistance in Leishmania: does it really matter?Trends Parasitol.202339425125910.1016/j.pt.2023.01.01236803859
    [Google Scholar]
  50. HaldarA.K. SenP. RoyS. Use of antimony in the treatment of leishmaniasis: current status and future directions.Mol. Biol. Int.2011201112310.4061/2011/57124222091408
    [Google Scholar]
  51. JonesC.M. WelburnS.C. JonesJ.D. Treatment failure of pentavalent antimonial therapy for human visceral leishmaniasis: A meta-analysis.J. Glob. Health Rep.2019e20190483
    [Google Scholar]
  52. JeddiF. PiarrouxR. MaryC. Antimony resistance in leishmania, focusing on experimental research.J. Trop. Med.2011201111510.1155/2011/69538222174724
    [Google Scholar]
  53. FrézardF. DemicheliC. Da SilvaS.M. AzevedoE.G. RibeiroR.R. Nanostructures for Improved Antimonial Therapy of Leishmaniasis.Nano- and Microscale Drug Delivery Systems.Elsevier201741943710.1016/B978‑0‑323‑52727‑9.00022‑4
    [Google Scholar]
  54. HerwaldtB.L. BermanJ.D. Recommendations for treating leishmaniasis with sodium stibogluconate (Pentostam) and review of pertinent clinical studies.Am. J. Trop. Med. Hyg.199246329630610.4269/ajtmh.1992.46.2961313656
    [Google Scholar]
  55. ChappuisF. SundarS. HailuA. GhalibH. RijalS. PeelingR.W. AlvarJ. BoelaertM. Visceral leishmaniasis: what are the needs for diagnosis, treatment and control?Nat. Rev. Microbiol.200751187388210.1038/nrmicro174817938629
    [Google Scholar]
  56. FrézardF. AguiarM.M.G. FerreiraL.A.M. RamosG.S. SantosT.T. BorgesG.S.M. VallejosV.M.R. De MoraisH.L.O. Liposomal Amphotericin B for Treatment of Leishmaniasis: From the Identification of Critical Physicochemical Attributes to the Design of Effective Topical and Oral Formulations.Pharmaceutics20221519910.3390/pharmaceutics1501009936678729
    [Google Scholar]
  57. LanzaJ.S. PomelS. LoiseauP.M. FrézardF. Recent advances in amphotericin B delivery strategies for the treatment of leishmaniases.Expert Opin. Drug Deliv.201916101063107910.1080/17425247.2019.165924331433678
    [Google Scholar]
  58. Monge-MailloB. López-VélezR. Miltefosine for visceral and cutaneous leishmaniasis: drug characteristics and evidence-based treatment recommendations.Clin. Infect. Dis.20156091398140410.1093/cid/civ00425601455
    [Google Scholar]
  59. DorloT.P.C. BalasegaramM. BeijnenJ.H. de VriesP.J. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis.J. Antimicrob. Chemother.201267112576259710.1093/jac/dks27522833634
    [Google Scholar]
  60. PokharelP. GhimireR. LamichhaneP. Efficacy and Safety of Paromomycin for Visceral Leishmaniasis: A Systematic Review.J. Trop. Med.202120211910.1155/2021/862903934349806
    [Google Scholar]
  61. DavidsonR.N. den BoerM. RitmeijerK. Paromomycin.Trans. R. Soc. Trop. Med. Hyg.2009103765366010.1016/j.trstmh.2008.09.00818947845
    [Google Scholar]
  62. KitaK. YamadaH. HirabayashiF. CroftS.L. Development of Portfolios and Pipelines of Drugs for the Treatment, Prevention and Control of Neglected Tropical Diseases.Ethical Innovation for Global Health.SingaporeSpringer Nature Singapore202328329610.1007/978‑981‑99‑6163‑4_15
    [Google Scholar]
  63. Equity at the heart of medical innovation.Available from:https://dndi.org/(accessed on 9-9-2024)
  64. FerreiraL.L.G. AndricopuloA.D. Drugs and vaccines in the 21st century for neglected diseases.Lancet Infect. Dis.201919212512710.1016/S1473‑3099(19)30005‑230712832
    [Google Scholar]
  65. da Silva-JúniorE.F. ZhanP. Recent advances in medicinal chemistry of Neglected Tropical Diseases (NTDs).Eur. J. Med. Chem.202325911571410.1016/j.ejmech.2023.11571437563036
    [Google Scholar]
  66. FerreiraL.L.G. de MoraesJ. AndricopuloA.D. Approaches to advance drug discovery for neglected tropical diseases.Drug Discov. Today20222782278228710.1016/j.drudis.2022.04.00435398562
    [Google Scholar]
  67. Siqueira-NetoJ.L. DebnathA. McCallL.I. BernatchezJ.A. NdaoM. ReedS.L. RosenthalP.J. Cysteine proteases in protozoan parasites.PLoS Negl. Trop. Dis.2018128e000651210.1371/journal.pntd.000651230138453
    [Google Scholar]
  68. SantosR. UrsuO. GaultonA. BentoA.P. DonadiR.S. BologaC.G. KarlssonA. Al-LazikaniB. HerseyA. OpreaT.I. OveringtonJ.P. A comprehensive map of molecular drug targets.Nat. Rev. Drug Discov.2017161193410.1038/nrd.2016.23027910877
    [Google Scholar]
  69. ĆwilichowskaN. ŚwiderskaK.W. DobrzyńA. DrągM. PorębaM. Diagnostic and therapeutic potential of protease inhibition.Mol. Aspects Med.20228810114410.1016/j.mam.2022.10114436174281
    [Google Scholar]
  70. RoyM. RawatA. KaushikS. JyotiA. SrivastavaV.K. Endogenous cysteine protease inhibitors in upmost pathogenic parasitic protozoa.Microbiol. Res.202226112706110.1016/j.micres.2022.12706135605309
    [Google Scholar]
  71. VermaS. DixitR. PandeyK.C. Cysteine Proteases: Modes of Activation and Future Prospects as Pharmacological Targets.Front. Pharmacol.2016710710.3389/fphar.2016.0010727199750
    [Google Scholar]
  72. SiklosM. BenAissaM. ThatcherG.R.J. Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors.Acta Pharm. Sin. B20155650651910.1016/j.apsb.2015.08.00126713267
    [Google Scholar]
  73. YangN. MatthewM.A. YaoC. Roles of Cysteine Proteases in Biology and Pathogenesis of Parasites.Microorganisms2023116139710.3390/microorganisms1106139737374899
    [Google Scholar]
  74. CastroH.C. AbreuP.A. GeraldoR.B. MartinsR.C.A. dos SantosR. LoureiroN.I.V. CabralL.M. RodriguesC.R. Looking at the proteases from a simple perspective.J. Mol. Recognit.201124216518110.1002/jmr.109121360607
    [Google Scholar]
  75. TurkB. TurkD. TurkV. Lysosomal cysteine proteases: more than scavengers.Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.200014771-29811110.1016/S0167‑4838(99)00263‑0
    [Google Scholar]
  76. TurkV. StokaV. VasiljevaO. RenkoM. SunT. TurkB. TurkD. Cysteine cathepsins: From structure, function and regulation to new frontiers.Biochim. Biophys. Acta. Proteins Proteomics201218241688810.1016/j.bbapap.2011.10.00222024571
    [Google Scholar]
  77. ObermajerN. RepnikU. JevnikarZ. TurkB. KreftM. KosJ. Cysteine protease cathepsin X modulates immune response via activation of β 2 integrins.Immunology20081241768810.1111/j.1365‑2567.2007.02740.x18194276
    [Google Scholar]
  78. HasanbasicS. JahicA. KarahmetE. SejranicA. Prnjavorac The Role of Cysteine Protease in Alzheimer Disease.Mater. Sociomed.201628323523810.5455/msm.2016.28.235‑23827482169
    [Google Scholar]
  79. OlsonO.C. JoyceJ.A. Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response.Nat. Rev. Cancer2015151271272910.1038/nrc402726597527
    [Google Scholar]
  80. CianniL. FeldmannC.W. GilbergE. GütschowM. JulianoL. LeitãoA. BajorathJ. MontanariC.A. Can Cysteine Protease Cross-Class Inhibitors Achieve Selectivity?J. Med. Chem.20196223104971052510.1021/acs.jmedchem.9b0068331361135
    [Google Scholar]
  81. BrömmeD. KaletaJ. Thiol-dependent cathepsins: pathophysiological implications and recent advances in inhibitor design.Curr. Pharm. Des.20028181639165810.2174/138161202339417912132996
    [Google Scholar]
  82. PetushkovaA.I. SavvateevaL.V. ZamyatninA.A.Jr Structure determinants defining the specificity of papain-like cysteine proteases.Comput. Struct. Biotechnol. J.2022206552656910.1016/j.csbj.2022.11.04036467578
    [Google Scholar]
  83. SchechterI. BergerA. On the size of the active site in proteases. I. Papain. 1967.Biochem. Biophys. Res. Commun.2012425349750210.1016/j.bbrc.2012.08.01522925665
    [Google Scholar]
  84. LecailleF. KaletaJ. BrömmeD. Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design.Chem. Rev.2002102124459448810.1021/cr010165612475197
    [Google Scholar]
  85. TurkD. PodobnikM. KuheljR. DolinarM. TurkV. Crystal structures of human procathepsin B at 3.2 and 3.3 Å resolution reveal an interaction motif between a papain-like cysteine protease and its propeptide.FEBS Lett.1996384321121410.1016/0014‑5793(96)00309‑28617355
    [Google Scholar]
  86. RawlingsN.D. BarrettA.J. BatemanA. MEROPS: the peptidase database.Nucleic Acids Res.201038Database issueSuppl. 1D227D23310.1093/nar/gkp97119892822
    [Google Scholar]
  87. Yamile Vargas-MéndezL. KouznetsovV.V. Cruzain Inhibitors as Prominent Molecules with The Potential to become Drug Candidates against Chagas Disease.J. Pharmacol. Pharm. Res.2019231710.31038/JPPR.2019233
    [Google Scholar]
  88. MottramJ.C. CoombsG.H. AlexanderJ. Cysteine peptidases as virulence factors of Leishmania.Curr. Opin. Microbiol.20047437538110.1016/j.mib.2004.06.01015358255
    [Google Scholar]
  89. Silva-AlmeidaM. PereiraB.A.S. Ribeiro-GuimarãesM.L. AlvesC.R. Proteinases as virulence factors in Leishmania spp. infection in mammals.Parasit. Vectors20125116010.1186/1756‑3305‑5‑16022871236
    [Google Scholar]
  90. FolquittoL.R.S. NogueiraP.F. EspuriP.F. GontijoV.S. de SouzaT.B. MarquesM.J. CarvalhoD.T. JúdiceW.A.S. DiasD.F. Synthesis, protease inhibition, and antileishmanial activity of new benzoxazoles derived from acetophenone or benzophenone and synthetic precursors.Med. Chem. Res.20172661149115910.1007/s00044‑017‑1824‑y
    [Google Scholar]
  91. SandersonS.J. PollockK.G.J. HilleyJ.D. MeldalM. St HilaireP. JulianoM.A. JulianoL. MottramJ.C. CoombsG.H. Expression and characterization of a recombinant cysteine proteinase of Leishmania mexicana.Biochem. J.2000347238338810.1042/bj347038310749667
    [Google Scholar]
  92. CaffreyC.R. LimaA.P. SteverdingD. Cysteine peptidases of kinetoplastid parasites.Adv Exp Med Biol.2011712849910.1007/978‑1‑4419‑8414‑2_6
    [Google Scholar]
  93. DubieT. MohammedY. Review on the Role of Host Immune Response in Protection and Immunopathogenesis during Cutaneous Leishmaniasis Infection.J. Immunol. Res.2020202011210.1155/2020/249671332656269
    [Google Scholar]
  94. CaffreyC.R. HansellE. LucasK.D. BrinenL.S. Alvarez HernandezA. ChengJ. GwaltneyS.L.II RoushW.R. StierhofY.D. BogyoM. SteverdingD. McKerrowJ.H. Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense.Mol. Biochem. Parasitol.20011181617310.1016/S0166‑6851(01)00368‑111704274
    [Google Scholar]
  95. TuleyA. FastW. The Taxonomy of Covalent Inhibitors.Biochemistry201857243326333710.1021/acs.biochem.8b0031529689165
    [Google Scholar]
  96. OttoH.H. SchirmeisterT. Cysteine Proteases and Their Inhibitors.Chem. Rev.199797113317210.1021/cr950025u11848867
    [Google Scholar]
  97. SawyerT.K. Peptidomimetic and Nonpeptide Drug Discovery: Receptor, Protease, and Signal Transduction Therapeutic Targets.Comprehensive Medicinal Chemistry II.Elsevier200760364710.1016/B0‑08‑045044‑X/00052‑3
    [Google Scholar]
  98. SilvaD.G. RibeiroJ.F.R. De VitaD. CianniL. FrancoC.H. Freitas-JuniorL.H. MoraesC.B. RochaJ.R. BurtolosoA.C.B. KennyP.W. LeitãoA. MontanariC.A. A comparative study of warheads for design of cysteine protease inhibitors.Bioorg. Med. Chem. Lett.201727225031503510.1016/j.bmcl.2017.10.00229054358
    [Google Scholar]
  99. KosJ. MitrovićA. MirkovićB. The current stage of cathepsin B inhibitors as potential anticancer agents.Future Med. Chem.20146111355137110.4155/fmc.14.7325163003
    [Google Scholar]
  100. BurtolosoA.C.B. de AlbuquerqueS. FurberM. GomesJ.C. GonçalezC. KennyP.W. LeitãoA. MontanariC.A. QuillesJ.C. RibeiroJ.F.R. RochaJ.R. Anti-trypanosomal activity of non-peptidic nitrile-based cysteine protease inhibitors.PLoS Negl. Trop. Dis.2017112e000534310.1371/journal.pntd.000534328222138
    [Google Scholar]
  101. AvelarL.A.A. CamiloC.D. de AlbuquerqueS. FernandesW.B. GonçalezC. KennyP.W. LeitãoA. McKerrowJ.H. MontanariC.A. OrozcoE.V.M. RibeiroJ.F.R. RochaJ.R. RosiniF. SaidelM.E. Molecular Design, Synthesis and Trypanocidal Activity of Dipeptidyl Nitriles as Cruzain Inhibitors.PLoS Negl. Trop. Dis.201597e000391610.1371/journal.pntd.000391626173110
    [Google Scholar]
  102. FerreiraR.S. DessoyM.A. PauliI. SouzaM.L. KroghR. SalesA.I.L. OlivaG. DiasL.C. AndricopuloA.D. Synthesis, biological evaluation, and structure-activity relationships of potent noncovalent and nonpeptidic cruzain inhibitors as anti-Trypanosoma cruzi agents.J. Med. Chem.20145762380239210.1021/jm401709b24533839
    [Google Scholar]
  103. PratesJ.L.B. LopesJ.R. ChinC.M. FerreiraE.I. dos SantosJ.L. ScarimC.B. Discovery of Novel Inhibitors of Cruzain Cysteine Protease of Trypanosoma cruzi. Curr. Med. Chem.2024311622852308https://pubmed.ncbi.nlm.nih.gov/37888814/10.2174/010929867325486423092109051937888814
    [Google Scholar]
  104. EttariR. PrevitiS. TamboriniL. CulliaG. GrassoS. ZappalàM. The Inhibition of Cysteine Proteases Rhodesain and TbCatB: A Valuable Approach to Treat Human African Trypanosomiasis.Mini Rev. Med. Chem.201616171374139110.2174/138955751566616050912524327156518
    [Google Scholar]
  105. JohéP. JaenickeE. NeuweilerH. SchirmeisterT. KerstenC. HellmichU.A. Structure, interdomain dynamics, and pH-dependent autoactivation of pro-rhodesain, the main lysosomal cysteine protease from African trypanosomes.J. Biol. Chem.202129610056510.1016/j.jbc.2021.10056533745969
    [Google Scholar]
  106. BucknerF.S. BuchynskyyA. NagendarP. PatrickD.A. GillespieJ.R. HerbstZ. TidwellR.R. GelbM.H. Phenotypic Drug Discovery for Human African Trypanosomiasis: A Powerful Approach.Trop. Med. Infect. Dis.2020512310.3390/tropicalmed501002332033395
    [Google Scholar]
  107. ChibaD.E. dos Santos FernandesG.F. dos SantosJ.L. ScarimC.B. Exploring the latest breakthroughs in rhodesain inhibitors for African trypanosomiasis.Med. Chem. Res.202433335436910.1007/s00044‑024‑03189‑0
    [Google Scholar]
  108. ManeU.R. GuptaR.C. NadkarniS.S. GiridharR.R. NaikP.P. YadavM.R. Falcipain inhibitors as potential therapeutics for resistant strains of malaria: a patent review.Expert Opin. Ther. Pat.201323216518710.1517/13543776.2013.743992
    [Google Scholar]
  109. PandeyK.C. DixitR. Structure-function of falcipains: malarial cysteine proteases.J. Trop. Med.2012201211110.1155/2012/34519522529862
    [Google Scholar]
  110. RosenthalP.J. Falcipain cysteine proteases of malaria parasites: An update.Biochim. Biophys. Acta. Proteins Proteomics20201868314036210.1016/j.bbapap.2020.14036231927030
    [Google Scholar]
  111. SteertK. BergM. MottramJ.C. WestropG.D. CoombsG.H. CosP. MaesL. JoossensJ. Van der VekenP. HaemersA. AugustynsK. α-ketoheterocycles as inhibitors of Leishmania mexicana cysteine protease CPB.ChemMedChem20105101734174810.1002/cmdc.20100026520799311
    [Google Scholar]
  112. SchröderJ. NoackS. MarhöferR.J. MottramJ.C. CoombsG.H. SelzerP.M. Identification of semicarbazones, thiosemicarbazones and triazine nitriles as inhibitors of Leishmania mexicana cysteine protease CPB.PLoS One2013810e7746010.1371/journal.pone.007746024146999
    [Google Scholar]
  113. SączewskiF. BalewskiŁ. Biological activities of guanidine compounds, 2008 – 2012 update.Expert Opin. Ther. Pat.2013238965995
    [Google Scholar]
  114. BrogiS. IbbaR. RossiS. ButiniS. CalderoneV. GemmaS. CampianiG. Covalent Reversible Inhibitors of Cysteine Proteases Containing the Nitrile Warhead: Recent Advancement in the Field of Viral and Parasitic Diseases.Molecules2022278256110.3390/molecules2708256135458759
    [Google Scholar]
  115. FonsecaN.C. da CruzL.F. da Silva VillelaF. do Nascimento PereiraG.A. de Siqueira-NetoJ.L. KellarD. SuzukiB.M. RayD. de SouzaT.B. AlvesR.J. JúniorP.A.S. RomanhaA.J. MurtaS.M.F. McKerrowJ.H. CaffreyC.R. de OliveiraR.B. FerreiraR.S. Synthesis of a sugar-based thiosemicarbazone series and structure-activity relationship versus the parasite cysteine proteases rhodesain, cruzain, and Schistosoma mansoni cathepsin B1.Antimicrob. Agents Chemother.20155952666267710.1128/AAC.04601‑1425712353
    [Google Scholar]
  116. DuX. GuoC. HansellE. DoyleP.S. CaffreyC.R. HollerT.P. McKerrowJ.H. CohenF.E. Synthesis and structure-activity relationship study of potent trypanocidal thio semicarbazone inhibitors of the trypanosomal cysteine protease cruzain.J. Med. Chem.200245132695270710.1021/jm010459j12061873
    [Google Scholar]
  117. DhabaleR.H. ShahS. TiwariN. PataniP. Review of Semicarbazone, Thiosemicarbazone, and Their Transition Metal Complexes, And Their Biological Activities.J. Pharm. Negat. Results202213
    [Google Scholar]
  118. WangX. WangY. LiX. YuZ. SongC. DuY. Nitrile-containing pharmaceuticals: target, mechanism of action, and their SAR studies.RSC Med. Chem.202112101650167110.1039/D1MD00131K34778767
    [Google Scholar]
  119. RaufM.K. Imtiaz-ud-Din BadshahA. Novel approaches to screening guanidine derivatives.Expert Opin. Drug Discov.201491395310.1517/17460441.2013.85730824261559
    [Google Scholar]
  120. ChenY.T. BrinenL.S. KerrI.D. HansellE. DoyleP.S. McKerrowJ.H. RoushW.R. in vitro and in vivo studies of the trypanocidal properties of WRR-483 against Trypanosoma cruzi.PLoS Negl. Trop. Dis.201049e82510.1371/journal.pntd.000082520856868
    [Google Scholar]
  121. do Espírito SantoR.D. VelásquezÁ.M.A. PassianotoL.V.G. SepulvedaA.A.L. da Costa ClementinoL. AssisR.P. BavieraA.M. KalabaP. dos SantosF.N. ÉberlinM.N. da SilvaG.V.J. ZehlM. LubecG. GraminhaM.A.S. GonzálezE.R.P. N, N′, N″-trisubstituted guanidines: Synthesis, characterization and evaluation of their leishmanicidal activity.Eur. J. Med. Chem.201917111612810.1016/j.ejmech.2019.03.03230913526
    [Google Scholar]
  122. MoreiraV.P. da Silva MelaM.F. AnjosL.R. SaraivaL.F. Arenas VelásquezA.M. KalabaP. FabisikováA. ClementinoL.C. AufyM. StudenikC. GajicN. Prado-RollerA. MagalhãesA. ZehlM. FigueiredoI.D. BavieraA.M. CilliE.M. GraminhaM.A.S. LubecG. GonzalezE.R.P. Novel Selective and Low-Toxic Inhibitor of LmCPB2.8ΔCTE (CPB) One Important Cysteine Protease for Leishmania Virulence.Biomolecules20221212190310.3390/biom1212190336551331
    [Google Scholar]
  123. de AlmeidaL. AlvesK.F. Maciel-RezendeC.M. JesusL.O.P. PiresF.R. JuniorC.V. IzidoroM.A. JúdiceW.A.S. dos SantosM.H. MarquesM.J. Benzophenone derivatives as cysteine protease inhibitors and biological activity against Leishmania(L.) amazonensis amastigotes.Biomed. Pharmacother.201575939910.1016/j.biopha.2015.08.03026463637
    [Google Scholar]
  124. ScalaA. MicaleN. PipernoA. RescifinaA. SchirmeisterT. KesselringJ. GrassiG. Targeting of the Leishmania mexicana cysteine protease CPB2.8ΔCTE by decorated fused benzo[b]thiophene scaffold.RSC Advances2016636306283063510.1039/C6RA05557E
    [Google Scholar]
  125. NguyenW. DansM.G. NgoA. GanchevaM.R. RomeoO. DuffyS. de Koning-WardT.F. LowesK.N. SabrouxH.J. AveryV.M. WilsonD.W. GilsonP.R. SleebsB.E. Structure activity refinement of phenylsulfonyl piperazines as antimalarials that block erythrocytic invasion.Eur. J. Med. Chem.202121411325310.1016/j.ejmech.2021.11325333610028
    [Google Scholar]
  126. SuranaK. ChaudharyB. DiwakerM. SharmaS. Benzophenone: a ubiquitous scaffold in medicinal chemistry.MedChemComm20189111803181710.1039/C8MD00300A30542530
    [Google Scholar]
  127. EbenezerO. Oyetunde-JoshuaF. OmotosoO.D. ShapiM. Benzimidazole and its derivatives: Recent Advances (2020–2022).Results Chem.2023510092510.1016/j.rechem.2023.100925
    [Google Scholar]
  128. AscenziP. BocediA. GentileM. ViscaP. GradoniL. Inactivation of parasite cysteine proteinases by the NO-donor 4-(phenylsulfonyl)-3-((2-(dimethylamino)ethyl)thio)-furoxan oxalate.Biochim. Biophys. Acta. Proteins Proteomics200417031697710.1016/j.bbapap.2004.09.02715588704
    [Google Scholar]
  129. ScalaA. RescifinaA. MicaleN. PipernoA. SchirmeisterT. MaesL. GrassiG. Ensemble-based ADME–Tox profiling and virtual screening for the discovery of new inhibitors of the Leishmania mexicana cysteine protease CPB2.8ΔCTE.Chem. Biol. Drug Des.201891259760410.1111/cbdd.1312429045053
    [Google Scholar]
  130. De LucaL. FerroS. BuemiM.R. MonforteA.M. GittoR. SchirmeisterT. MaesL. RescifinaA. MicaleN. Discovery of benzimidazole-based Leishmania mexicana cysteine protease CPB 2.8Δ CTE inhibitors as potential therapeutics for leishmaniasis.Chem. Biol. Drug Des.20189231585159610.1111/cbdd.1332629729080
    [Google Scholar]
  131. de AlmeidaL. PassalacquaT.G. DutraL.A. FonsecaJ.N.V. NascimentoR.F.Q. ImamuraK.B. de AndradeC.R. dos SantosJ.L. GraminhaM.A.S. in vivo antileishmanial activity and histopathological evaluation in Leishmania infantum infected hamsters after treatment with a furoxan derivative.Biomed. Pharmacother.20179553654710.1016/j.biopha.2017.08.09628866421
    [Google Scholar]
  132. ClementinoL.C. FernandesG.F.S. ProkopczykI.M. LaurindoW.C. ToyamaD. MottaB.P. BavieraA.M. Henrique-SilvaF. SantosJ.L. GraminhaM.A.S. Design, synthesis and biological evaluation of N-oxide derivatives with potent in vivo antileishmanial activity.PLoS One20211611e025900810.1371/journal.pone.025900834723989
    [Google Scholar]
  133. GontijoV.S. EspuriP.F. AlvesR.B. de CamargosL.F. SantosF.V. de Souza JudiceW.A. MarquesM.J. FreitasR.P. Leishmanicidal, antiproteolytic, and mutagenic evaluation of alkyltriazoles and alkylphosphocholines.Eur. J. Med. Chem.2015101243310.1016/j.ejmech.2015.06.00526112378
    [Google Scholar]
  134. SalvatiL. MattuM. ColasantiM. ScaloneA. VenturiniG. GradoniL. AscenziP. NO donors inhibit Leishmania infantum cysteine proteinase activity.Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.200115451-235736610.1016/S0167‑4838(00)00297‑111342060
    [Google Scholar]
  135. MassaiL. MessoriL. MicaleN. SchirmeisterT. MaesL. FregonaD. CinelluM.A. GabbianiC. Gold compounds as cysteine protease inhibitors: perspectives for pharmaceutical application as antiparasitic agents.Biometals201730231332010.1007/s10534‑017‑0007‑028283781
    [Google Scholar]
  136. LourençoE.M.G. Di IórioJ.F. da SilvaF. FialhoF.L.B. MonteiroM.M. BeatrizA. PerdomoR.T. BarbosaE.G. OsesJ.P. de ArrudaC.C.P. de Souza JúdiceW.A. RafiqueJ. de LimaD.P. Flavonoid Derivatives as New Potent Inhibitors of Cysteine Proteases: An Important Step toward the Design of New Compounds for the Treatment of Leishmaniasis.Microorganisms202311122510.3390/microorganisms1101022536677517
    [Google Scholar]
  137. FrizlerM. StirnbergM. SisayM. GütschowM. Development of nitrile-based peptidic inhibitors of cysteine cathepsins.Curr. Top. Med. Chem.201010329432210.2174/15680261079072545220166952
    [Google Scholar]
  138. WangL. WangN. ZhangW. ChengX. YanZ. ShaoG. WangX. WangR. FuC. Therapeutic peptides: current applications and future directions.Signal Transduct. Target. Ther.2022714810.1038/s41392‑022‑00904‑435165272
    [Google Scholar]
  139. RossinoG. MarcheseE. GalliG. VerdeF. FinizioM. SerraM. LincianoP. CollinaS. Peptides as Therapeutic Agents: Challenges and Opportunities in the Green Transition Era.Molecules20232820716510.3390/molecules2820716537894644
    [Google Scholar]
  140. QuillesJ.C.Jr TezukaD.Y. LopesC.D. RibeiroF.L. LaughtonC.A. de AlbuquerqueS. MontanariC.A. LeitãoA. Dipeptidyl nitrile derivatives have cytostatic effects against Leishmania spp. promastigotes.Exp. Parasitol.2019200849110.1016/j.exppara.2019.04.00130954455
    [Google Scholar]
  141. Fonseca LameiroR. ShamimA. RosiniF. CendronR. Jatai BatistaP.H. MontanariC.A. Synthesis, biochemical evaluation and molecular modeling studies of nonpeptidic nitrile-based fluorinated compounds.Future Med. Chem.2021131254310.4155/fmc‑2020‑005733289603
    [Google Scholar]
  142. MatosT.K.B. BatistaP.H.J. dos Reis RochoF. de VitaD. PearceN. KellamB. MontanariC.A. LeitãoA. Synthesis and matched molecular pair analysis of covalent reversible inhibitors of the cysteine protease CPB.Bioorg. Med. Chem. Lett.2020301812743910.1016/j.bmcl.2020.12743932717373
    [Google Scholar]
  143. RibeiroJ.F.R. CianniL. LiC. WarwickT.G. de VitaD. RosiniF. dos Reis RochoF. MartinsF.C.P. KennyP.W. LameiraJ. LeitãoA. EmsleyJ. MontanariC.A. Crystal structure of Leishmania mexicana cysteine protease B in complex with a high-affinity azadipeptide nitrile inhibitor.Bioorg. Med. Chem.2020282211574310.1016/j.bmc.2020.11574333038787
    [Google Scholar]
  144. CianniL. LemkeC. GilbergE. FeldmannC. RosiniF. RochoF.R. RibeiroJ.F.R. TezukaD.Y. LopesC.D. de AlbuquerqueS. BajorathJ. LauferS. LeitãoA. GütschowM. MontanariC.A. Mapping the S1 and S1′ subsites of cysteine proteases with new dipeptidyl nitrile inhibitors as trypanocidal agents.PLoS Negl. Trop. Dis.2020143e000775510.1371/journal.pntd.000775532163418
    [Google Scholar]
  145. VicikR. BusemannM. GelhausC. StieflN. ScheiberJ. SchmitzW. SchulzF. MladenovicM. EngelsB. LeippeM. BaumannK. SchirmeisterT. Aziridide-based inhibitors of cathepsin L: synthesis, inhibition activity, and docking studies.ChemMedChem20061101126114110.1002/cmdc.20060010616933358
    [Google Scholar]
  146. SteertK. El-SayedI. Van der VekenP. KrishtalA. Van AlsenoyC. WestropG.D. MottramJ.C. CoombsG.H. AugustynsK. HaemersA. Dipeptidyl α-fluorovinyl Michael acceptors: Synthesis and activity against cysteine proteases.Bioorg. Med. Chem. Lett.200717236563656610.1016/j.bmcl.2007.09.07517936625
    [Google Scholar]
  147. FeyP. ChartomatsidouR. KieferW. MottramJ.C. KerstenC. SchirmeisterT. New aziridine-based inhibitors of cathepsin L-like cysteine proteases with selectivity for the Leishmania cysteine protease LmCPB2.8.Eur. J. Med. Chem.201815658759710.1016/j.ejmech.2018.07.01230029081
    [Google Scholar]
  148. AlvesL.C. St HilaireP.M. MeldalM. SandersonS.J. MottramJ.C. CoombsG.H. JulianoL. JulianoM.A. Identification of peptides inhibitory to recombinant cysteine proteinase, CPB, of Leishmania mexicana.Mol. Biochem. Parasitol.20011141818810.1016/S0166‑6851(01)00239‑011356516
    [Google Scholar]
  149. St HilaireP.M. AlvesL.C. HerreraF. RenilM. SandersonS.J. MottramJ.C. CoombsG.H. JulianoM.A. JulianoL. ArevaloJ. MeldalM. Solid-phase library synthesis, screening, and selection of tight-binding reduced peptide bond inhibitors of a recombinant Leishmania mexicana cysteine protease B.J. Med. Chem.200245101971198210.1021/jm011090111985465
    [Google Scholar]
  150. PiresD.E.V. BlundellT.L. AscherD.B. pkCSM: Predicting Small- Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures.J. Med. Chem.20155894066407210.1021/acs.jmedchem.5b0010425860834
    [Google Scholar]
  151. Bethencourt-EstrellaC.J. López-ArencibiaA. Lorenzo-MoralesJ. PiñeroJ.E. Global health priority box: discovering flucofuron as a promising antikinetoplastid compound.Pharmaceuticals.202417555410.3390/ph17050554
    [Google Scholar]
  152. TakeleY. MulawT. AdemE. ShawC.J. FranssenS.U. WomersleyR. Immunological factors, but not clinical features, predict visceral leishmaniasis relapse in patients co-infected with HIV.Cell Rep Med.20223110048710.1016/j.xcrm.2021.100487
    [Google Scholar]
  153. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑011259830
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501324437240919064715
Loading
/content/journals/cdt/10.2174/0113894501324437240919064715
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test