Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Nrf2, a crucial protein involved in defense mechanisms, particularly oxidative stress, plays a significant role in neurological diseases (NDs) by reducing oxidative stress and inflammation. NDs, including Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis, stroke, epilepsy, schizophrenia, depression, and autism, exhibit ferroptosis, iron-dependent regulated cell death resulting from lipid and iron-dependent reactive oxygen species (ROS) accumulation. Nrf2 has been shown to play a critical role in regulating ferroptosis in NDs. Age-related decline in Nrf2 expression and its target genes (HO-1, Nqo-1, and Trx) coincides with increased iron-mediated cell death, leading to ND onset. The modulation of iron-dependent cell death and ferroptosis by Nrf2 through various cellular and molecular mechanisms offers a potential therapeutic pathway for understanding the pathological processes underlying these NDs. This review emphasizes the mechanistic role of Nrf2 and ferroptosis in multiple NDs, providing valuable insights for future research and therapeutic approaches.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501320839240918110656
2024-09-27
2025-01-13
Loading full text...

Full text loading...

References

  1. SahaS. ButtariB. PanieriE. ProfumoE. SasoL. An overview of Nrf2 signaling pathway and its role in inflammation.Molecules20202522547410.3390/molecules2522547433238435
    [Google Scholar]
  2. JiangX. StockwellB.R. ConradM. Ferroptosis: Mechanisms, biology and role in disease.Nat. Rev. Mol. Cell Biol.202122426628210.1038/s41580‑020‑00324‑833495651
    [Google Scholar]
  3. KumarS. BehlT. SachdevaM. SehgalA. KumariS. KumarA. KaurG. YadavH.N. BungauS. Implicating the effect of ketogenic diet as a preventive measure to obesity and diabetes mellitus.Life Sci.202126411866110.1016/j.lfs.2020.11866133121986
    [Google Scholar]
  4. AroraA. BehlT. SehgalA. SinghS. SharmaN. BhatiaS. Sobarzo-SanchezE. BungauS. Unravelling the involvement of gut microbiota in type 2 diabetes mellitus.Life Sci.202127311931110.1016/j.lfs.2021.11931133662428
    [Google Scholar]
  5. BehlT. BungauS. KumarK. ZenginG. KhanF. KumarA. KaurR. VenkatachalamT. TitD.M. VesaC.M. BarsanG. MosteanuD.E. Pleotropic effects of polyphenols in cardiovascular system.Biomed. Pharmacother.202013011071410.1016/j.biopha.2020.11071434321158
    [Google Scholar]
  6. BehlT. KumarK. BriscC. RusM. Nistor-CseppentoD.C. BusteaC. AronR.A.C. PantisC. ZenginG. SehgalA. KaurR. KumarA. AroraS. SetiaD. ChandelD. BungauS. Exploring the multifocal role of phytochemicals as immunomodulators.Biomed. Pharmacother.202113311095910.1016/j.biopha.2020.11095933197758
    [Google Scholar]
  7. UlasovA.V. RosenkranzA.A. GeorgievG.P. SobolevA.S. Nrf2/Keap1/ARE signaling: Towards specific regulation.Life Sci.202229112011110.1016/j.lfs.2021.12011134732330
    [Google Scholar]
  8. SharmaV. KaurA. SinghT.G. Counteracting role of nuclear factor erythroid 2-related factor 2 pathway in Alzheimer’s disease.Biomed. Pharmacother.202012911037310.1016/j.biopha.2020.11037332603894
    [Google Scholar]
  9. MurakamiS. MotohashiH. Roles of Nrf2 in cell proliferation and differentiation.Free Radic. Biol. Med.201588Pt B16817810.1016/j.freeradbiomed.2015.06.030
    [Google Scholar]
  10. MotohashiH. YamamotoM. Nrf2–Keap1 defines a physiologically important stress response mechanism.Trends Mol. Med.2004101154955710.1016/j.molmed.2004.09.00315519281
    [Google Scholar]
  11. SivinskiJ. ZhangD.D. ChapmanE. Targeting NRF2 to treat cancer.Semin. Cancer Biol.202176617310.1016/j.semcancer.2021.06.00334102289
    [Google Scholar]
  12. HybertsonB.M. GaoB. BoseS.K. McCordJ.M. Oxidative stress in health and disease: The therapeutic potential of Nrf2 activation.Mol. Aspects Med.2011324-623424610.1016/j.mam.2011.10.00622020111
    [Google Scholar]
  13. WangX. HeY. TianJ. MuhammadI. LiuM. WuC. XuC. ZhangX. Ferulic acid prevents aflatoxin B1-induced liver injury in rats via inhibiting cytochrome P450 enzyme, activating Nrf2/GST pathway and regulating mitochondrial pathway.Ecotoxicol. Environ. Saf.202122411262410.1016/j.ecoenv.2021.11262434416636
    [Google Scholar]
  14. RyterS.W. Heme oxygenase-1: An anti-inflammatory effector in cardiovascular, lung, and related metabolic disorders.Antioxidants202211355510.3390/antiox1103055535326205
    [Google Scholar]
  15. GureevA.P. ShaforostovaE.A. PopovV.N. Regulation of mitochondrial biogenesis as a way for active longevity: Interaction between the Nrf2 and PGC-1α signaling pathways.Front. Genet.20191043510.3389/fgene.2019.0043531139208
    [Google Scholar]
  16. JoshiG. JohnsonJ.A. The Nrf2-ARE pathway: A valuable therapeutic target for the treatment of neurodegenerative diseases.Recent Pat. CNS Drug Discov.20127321822910.2174/15748891280325202322742419
    [Google Scholar]
  17. Villavicencio TejoF. QuintanillaR.A. Contribution of the Nrf2 pathway on oxidative damage and mitochondrial failure in parkinson and Alzheimer’s disease.Antioxidants2021107106910.3390/antiox1007106934356302
    [Google Scholar]
  18. BryanH.K. OlayanjuA. GoldringC.E. ParkB.K. The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation.Biochem. Pharmacol.201385670571710.1016/j.bcp.2012.11.01623219527
    [Google Scholar]
  19. BairdL. YamamotoM. The molecular mechanisms regulating the KEAP1-NRF2 pathway.Mol. Cell. Biol.20204013e00099-2010.1128/MCB.00099‑2032284348
    [Google Scholar]
  20. ZhangD.D. Mechanistic studies of the Nrf2-Keap1 signaling pathway.Drug Metab. Rev.200638476978910.1080/0360253060097197417145701
    [Google Scholar]
  21. SuzukiT. YamamotoM. Molecular basis of the Keap1–Nrf2 system.Free Radic. Biol. Med.201588Pt B9310010.1016/j.freeradbiomed.2015.06.006
    [Google Scholar]
  22. PoornashreeM. KumarH. AjmeerR. JainR. JainV. Dual role of Nrf2 in cancer: molecular mechanisms, cellular functions and therapeutic interventions.Mol. Biol. Rep.20235021871188310.1007/s11033‑022‑08126‑136513865
    [Google Scholar]
  23. BhattiJ.S. SehrawatA. MishraJ. SidhuI.S. NavikU. KhullarN. KumarS. BhattiG.K. ReddyP.H. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives.Free Radic. Biol. Med.202218411413410.1016/j.freeradbiomed.2022.03.01935398495
    [Google Scholar]
  24. LeeD.Y. SongM.Y. KimE.H. Role of oxidative stress and Nrf2/KEAP1 signaling in colorectal cancer: Mechanisms and therapeutic perspectives with phytochemicals.Antioxidants202110574310.3390/antiox1005074334067204
    [Google Scholar]
  25. JuH.Q. LinJ.F. TianT. XieD. XuR.H. NADPH homeostasis in cancer: Functions, mechanisms and therapeutic implications.Signal Transduct. Target. Ther.20205123110.1038/s41392‑020‑00326‑033028807
    [Google Scholar]
  26. LeeJ.H. LimJ.Y. JoE.H. NohH.M. ParkS. ParkM.C. KimD.K. Chijabyukpi-tang inhibits pro-inflammatory cytokines and chemokines via the Nrf2/HO-1 signaling pathway in TNF-α/IFN-γ-Stimulated HaCaT cells and ameliorates 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in mice.Front. Pharmacol.202011101810.3389/fphar.2020.0101832733250
    [Google Scholar]
  27. LoweD.T. Cupping therapy: An analysis of the effects of suction on skin and the possible influence on human health.Complement. Ther. Clin. Pract.20172916216810.1016/j.ctcp.2017.09.00829122256
    [Google Scholar]
  28. DuanJ. HeL. DengW. LuM. ZhaiY. PeiF. LiuS. ZhangC. Natural swietenine attenuates diabetic nephropathy by regulating the NF-κB NLRP3 /Caspase-1 signaling pathways: in vivo and in vitro study.Environ. Toxicol.202237122977298910.1002/tox.2365336066211
    [Google Scholar]
  29. KhanH. GrewalA.K. kumarM. SinghT.G. Pharmacological postconditioning by protocatechuic acid attenuates brain injury in ischemia–reperfusion (I/R) mice model: Implications of nuclear factor erythroid-2-related factor pathway.Neuroscience2022491233110.1016/j.neuroscience.2022.03.01635314251
    [Google Scholar]
  30. ParkC. ChaH.J. LeeH. KimG.Y. ChoiY.H. The regulation of the TLR4/NF-κB and Nrf2/HO-1 signaling pathways is involved in the inhibition of lipopolysaccharide-induced inflammation and oxidative reactions by morroniside in RAW 264.7 macrophages.Arch. Biochem. Biophys.202170610892610.1016/j.abb.2021.10892634029560
    [Google Scholar]
  31. PiovanA. FilippiniR. CorbioliG. CostaV.D. GiuncoE.M.V. BurbelloG. PagettaA. GiustiP. ZussoM. Carotenoid extract derived from euglena gracilis overcomes lipopolysaccharide-induced neuroinflammation in microglia: Role of NF-κB and Nrf2 signaling pathways.Mol. Neurobiol.20215873515352810.1007/s12035‑021‑02353‑6
    [Google Scholar]
  32. RecaldeM.D. MiguelC.A. Noya-RiobóM.V. GonzálezS.L. VillarM.J. CoronelM.F. Resveratrol exerts anti-oxidant and anti-inflammatory actions and prevents oxaliplatin-induced mechanical and thermal allodynia.Brain Res.2020174814707910.1016/j.brainres.2020.14707932866545
    [Google Scholar]
  33. ZhangX. YuY. LeiH. CaiY. ShenJ. ZhuP. HeQ. ZhaoM. The Nrf-2/HO-1 signaling axis: A ray of hope in cardiovascular diseases.Cardiol. Res. Pract.202020201910.1155/2020/569572332411446
    [Google Scholar]
  34. YangS. ChuS. AiQ. ZhangZ. GaoY. LinM. LiuY. HuY. LiX. PengY. PanY. HeQ. ChenN. Anti-inflammatory effects of higenamine (Hig) on LPS-activated mouse microglia (BV2) through NF-κB and Nrf2/HO-1 signaling pathways.Int. Immunopharmacol.20208510662910.1016/j.intimp.2020.10662932535536
    [Google Scholar]
  35. El AliZ. OllivierA. ManinS. RivardM. MotterliniR. ForestiR. Therapeutic effects of CO-releaser/Nrf2 activator hybrids (HYCOs) in the treatment of skin wound, psoriasis and multiple sclerosis.Redox Biol.20203410152110.1016/j.redox.2020.10152132335359
    [Google Scholar]
  36. GongY. YangY. Activation of Nrf2/AREs-mediated antioxidant signalling, and suppression of profibrotic TGF-β1/Smad3 pathway: A promising therapeutic strategy for hepatic fibrosis — A review.Life Sci.202025611790910.1016/j.lfs.2020.11790932512009
    [Google Scholar]
  37. HeurtauxT. BouvierD.S. BenaniA. Helgueta RomeroS. FrauenknechtK.B.M. MittelbronnM. SinkkonenL. Normal and pathological NRF2 signalling in the central nervous system.Antioxidants2022118142610.3390/antiox1108142635892629
    [Google Scholar]
  38. YuC. XiaoJ.H. The Keap1-Nrf2 system: A mediator between oxidative stress and aging.Oxid. Med. Cell. Longev.202120211663546010.1155/2021/663546034012501
    [Google Scholar]
  39. ChunK.S. RautP.K. KimD.H. SurhY.J. Role of chemopreventive phytochemicals in NRF2-mediated redox homeostasis in humans.Free Radic. Biol. Med.202117269971510.1016/j.freeradbiomed.2021.06.03134214633
    [Google Scholar]
  40. DaiX. YanX. WintergerstK.A. CaiL. KellerB.B. TanY. Nrf2: Redox and metabolic regulator of stem cell state and function.Trends Mol. Med.202026218520010.1016/j.molmed.2019.09.00731679988
    [Google Scholar]
  41. PanieriE. SasoL. Inhibition of the NRF2/KEAP1 Axis: A promising therapeutic strategy to alter redox balance of cancer cells.Antioxid. Redox Signal.202134181428148310.1089/ars.2020.814633403898
    [Google Scholar]
  42. BloomD.A. JaiswalA.K. Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression.J. Biol. Chem.200327845446754468210.1074/jbc.M30763320012947090
    [Google Scholar]
  43. BiswasC. ShahN. MuthuM. LaP. FernandoA.P. SenguptaS. YangG. DenneryP.A. Nuclear heme oxygenase-1 (HO-1) modulates subcellular distribution and activation of Nrf2, impacting metabolic and anti-oxidant defenses.J. Biol. Chem.201428939268822689410.1074/jbc.M114.56768525107906
    [Google Scholar]
  44. LiM. ChiuJ.F. KelsenA. LuS.C. FukagawaN.K. Identification and characterization of an Nrf2-mediated ARE upstream of the rat glutamate cysteine ligase catalytic subunit gene ( GCLC ).J. Cell. Biochem.2009107594495410.1002/jcb.2219719459163
    [Google Scholar]
  45. DinićS. GrdovićN. UskokovićA. ĐorđevićM. MihailovićM. JovanovićJ.A. PoznanovićG. VidakovićM. CXCL12 protects pancreatic β-cells from oxidative stress by a Nrf2-induced increase in catalase expression and activity.Proc. Jpn. Acad., Ser. B: Phys. Biol. Sci.201692943645410.2183/pjab.92.43627840391
    [Google Scholar]
  46. SinghA. RangasamyT. ThimmulappaR.K. LeeH. OsburnW.O. Brigelius-FlohéR. KenslerT.W. YamamotoM. BiswalS. Glutathione peroxidase 2, the major cigarette smoke-inducible isoform of GPX in lungs, is regulated by Nrf2.Am. J. Respir. Cell Mol. Biol.200635663965010.1165/rcmb.2005‑0325OC16794261
    [Google Scholar]
  47. SinghA. WuH. ZhangP. HappelC. MaJ. BiswalS. Expression of ABCG2 (BCRP) is regulated by Nrf2 in cancer cells that confers side population and chemoresistance phenotype.Mol. Cancer Ther.2010982365237610.1158/1535‑7163.MCT‑10‑010820682644
    [Google Scholar]
  48. PattersonA.D. CarlsonB.A. LiF. BonzoJ.A. YooM.H. KrauszK.W. ConradM. ChenC. GonzalezF.J. HatfieldD.L. Disruption of thioredoxin reductase 1 protects mice from acute acetaminophen-induced hepatotoxicity through enhanced NRF2 activity.Chem. Res. Toxicol.20132671088109610.1021/tx400101323697945
    [Google Scholar]
  49. NishinakaT. MiuraT. OkumuraM. NakaoF. NakamuraH. TeradaT. Regulation of aldo–keto reductase AKR1B10 gene expression: Involvement of transcription factor Nrf2.Chem. Biol. Interact.20111911-318519110.1016/j.cbi.2011.01.02621277289
    [Google Scholar]
  50. FengL. ZhaoK. SunL. YinX. ZhangJ. LiuC. LiB. SLC7A11 regulated by NRF2 modulates esophageal squamous cell carcinoma radiosensitivity by inhibiting ferroptosis.J. Transl. Med.202119136710.1186/s12967‑021‑03042‑734446045
    [Google Scholar]
  51. ThapaK. SinghT.G. KaurA. Targeting ferroptosis in ischemia/reperfusion renal injury.Naunyn Schmiedebergs Arch. Pharmacol.2022395111331134110.1007/s00210‑022‑02277‑535920897
    [Google Scholar]
  52. RodriguezR. CañequeT. BaronL. Activation of lysosomal iron triggers ferroptosis in cancer.Res. Sq.202410.21203/rs.3.rs‑4165774/v1
    [Google Scholar]
  53. TangD. ChenX. KangR. KroemerG. Ferroptosis: Molecular mechanisms and health implications.Cell Res.202131210712510.1038/s41422‑020‑00441‑133268902
    [Google Scholar]
  54. LiJ. CaoF. YinH. HuangZ. LinZ. MaoN. SunB. WangG. Ferroptosis: Past, present and future.Cell Death Dis.20201128810.1038/s41419‑020‑2298‑232015325
    [Google Scholar]
  55. TangD. KroemerG. Ferroptosis.Curr. Biol.20203021R1292R129710.1016/j.cub.2020.09.06833142092
    [Google Scholar]
  56. YanH. ZouT. TuoQ. XuS. LiH. BelaidiA.A. LeiP. Ferroptosis: Mechanisms and links with diseases.Signal Transduct. Target. Ther.2021614910.1038/s41392‑020‑00428‑933536413
    [Google Scholar]
  57. ReichertC.O. de FreitasF.A. Sampaio-SilvaJ. Rokita-RosaL. BarrosP.L. LevyD. BydlowskiS.P. Ferroptosis mechanisms involved in neurodegenerative diseases.Int. J. Mol. Sci.20202122876510.3390/ijms2122876533233496
    [Google Scholar]
  58. StockwellB.R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications.Cell2022185142401242110.1016/j.cell.2022.06.00335803244
    [Google Scholar]
  59. RiegmanM. SagieL. GaledC. LevinT. SteinbergN. DixonS.J. WiesnerU. BradburyM.S. NiethammerP. ZaritskyA. OverholtzerM. Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture.Nat. Cell Biol.20202291042104810.1038/s41556‑020‑0565‑132868903
    [Google Scholar]
  60. LiuY. LuS. WuL. YangL. YangL. WangJ. The diversified role of mitochondria in ferroptosis in cancer.Cell Death Dis.202314851910.1038/s41419‑023‑06045‑y
    [Google Scholar]
  61. AdemowoO.S. DiasH.K.I. BurtonD.G.A. GriffithsH.R. Lipid (per) oxidation in mitochondria: An emerging target in the ageing process?Biogerontology201718685987910.1007/s10522‑017‑9710‑z28540446
    [Google Scholar]
  62. LiuJ. KuangF. KroemerG. KlionskyD.J. KangR. TangD. Autophagy-dependent ferroptosis: Machinery and regulation.Cell Chem. Biol.202027442043510.1016/j.chembiol.2020.02.00532160513
    [Google Scholar]
  63. BehlT. KaurG. SehgalA. BhardwajS. SinghS. BuhasC. Judea-PustaC. UivarosanD. MunteanuM.A. BungauS. Multifaceted role of matrix metalloproteinases in neurodegenerative diseases: Pathophysiological and therapeutic perspectives.Int. J. Mol. Sci.2021223141310.3390/ijms2203141333573368
    [Google Scholar]
  64. YuY. YanY. NiuF. WangY. ChenX. SuG. LiuY. ZhaoX. QianL. LiuP. XiongY. Ferroptosis: A cell death connecting oxidative stress, inflammation and cardiovascular diseases.Cell Death Discov.20217119310.1038/s41420‑021‑00579‑w34312370
    [Google Scholar]
  65. RenJ.X. LiC. YanX.L. QuY. YangY. GuoZ.N. Crosstalk between oxidative stress and ferroptosis/oxytosis in ischemic stroke: Possible targets and molecular mechanisms.Oxid. Med. Cell. Longev.202120211664338210.1155/2021/664338234055196
    [Google Scholar]
  66. ForcinaG.C. DixonS.J. GPX4 at the crossroads of lipid homeostasis and ferroptosis.Proteomics20191918180031110.1002/pmic.20180031130888116
    [Google Scholar]
  67. MaiorinoM. ConradM. UrsiniF. GPx4, lipid peroxidation, and cell death: Discoveries, rediscoveries, and open issues.Antioxid. Redox Signal.2018291617410.1089/ars.2017.711528462584
    [Google Scholar]
  68. ChenY. FangZ.M. YiX. WeiX. JiangD.S. The interaction between ferroptosis and inflammatory signaling pathways.Cell Death Dis.202314320510.1038/s41419‑023‑05716‑036944609
    [Google Scholar]
  69. BhattacharyaT. SoaresG.A.B. ChopraH. RahmanM.M. HasanZ. SwainS.S. CavaluS. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders.Materials (Basel)202215380410.3390/ma1503080435160749
    [Google Scholar]
  70. ChengY. SongY. ChenH. LiQ. GaoY. LuG. LuoC. Ferroptosis mediated by lipid reactive oxygen species: A possible causal link of neuroinflammation to neurological disorders.Oxid. Med. Cell. Longev.202120211500513610.1155/2021/500513634725564
    [Google Scholar]
  71. GaoW. WangX. ZhouY. WangX. YuY. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy.Signal Transduct. Target. Ther.20227119610.1038/s41392‑022‑01046‑335725836
    [Google Scholar]
  72. WangX. LiuJ. DaiZ. SuiY. Andrographolide improves PCP-induced schizophrenia-like behaviors through blocking interaction between NRF2 and KEAP1.J. Pharmacol. Sci.2021147191710.1016/j.jphs.2021.05.00734294378
    [Google Scholar]
  73. JohnsonJ. Mercado-AyonE. Mercado-AyonY. DongY.N. HalawaniS. NgabaL. LynchD.R. Mitochondrial dysfunction in the development and progression of neurodegenerative diseases.Arch. Biochem. Biophys.202170210869810.1016/j.abb.2020.10869833259796
    [Google Scholar]
  74. MikiK. YagiM. YoshimotoK. KangD. UchiumiT. Mitochondrial dysfunction and impaired growth of glioblastoma cell lines caused by antimicrobial agents inducing ferroptosis under glucose starvation.Oncogenesis20221115910.1038/s41389‑022‑00437‑z36195584
    [Google Scholar]
  75. SumneangN. Siri-AngkulN. KumfuS. ChattipakornS.C. ChattipakornN. The effects of iron overload on mitochondrial function, mitochondrial dynamics, and ferroptosis in cardiomyocytes.Arch. Biochem. Biophys.202068010824110.1016/j.abb.2019.10824131891670
    [Google Scholar]
  76. MohanM. MannanA. SinghT.G. Therapeutic implication of Sonic Hedgehog as a potential modulator in ischemic injury.Pharmacol. Rep.202375483886010.1007/s43440‑023‑00505‑037347388
    [Google Scholar]
  77. CuiC. YangF. LiQ. Post-translational modification of GPX4 is a promising target for treating ferroptosis-related diseases.Front. Mol. Biosci.2022990156510.3389/fmolb.2022.90156535647032
    [Google Scholar]
  78. KapurM. AckermanS.L. mRNA translation gone awry: Translation fidelity and neurological disease.Trends Genet.201834321823110.1016/j.tig.2017.12.00729352613
    [Google Scholar]
  79. UrsiniF. MaiorinoM. Lipid peroxidation and ferroptosis: The role of GSH and GPx4.Free Radic. Biol. Med.202015217518510.1016/j.freeradbiomed.2020.02.02732165281
    [Google Scholar]
  80. BaoW.D. PangP. ZhouX.T. HuF. XiongW. ChenK. WangJ. WangF. XieD. HuY.Z. HanZ.T. ZhangH.H. WangW.X. NelsonP.T. ChenJ.G. LuY. ManH.Y. LiuD. ZhuL.Q. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease.Cell Death Differ.20212851548156210.1038/s41418‑020‑00685‑933398092
    [Google Scholar]
  81. LiuQ. WangK. The induction of ferroptosis by impairing STAT3/Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin.Cell Biol. Int.201943111245125610.1002/cbin.1112130811078
    [Google Scholar]
  82. DollS. FreitasF.P. ShahR. AldrovandiM. da SilvaM.C. IngoldI. Goya GrocinA. Xavier da SilvaT.N. PanziliusE. ScheelC.H. MourãoA. BudayK. SatoM. WanningerJ. VignaneT. MohanaV. RehbergM. FlatleyA. SchepersA. KurzA. WhiteD. SauerM. SattlerM. TateE.W. SchmitzW. SchulzeA. O’DonnellV. PronethB. PopowiczG.M. PrattD.A. AngeliJ.P.F. ConradM. FSP1 is a glutathione-independent ferroptosis suppressor.Nature2019575778469369810.1038/s41586‑019‑1707‑031634899
    [Google Scholar]
  83. YangW.S. SriRamaratnamR. WelschM.E. ShimadaK. SkoutaR. ViswanathanV.S. CheahJ.H. ClemonsP.A. ShamjiA.F. ClishC.B. BrownL.M. GirottiA.W. CornishV.W. SchreiberS.L. StockwellB.R. Regulation of ferroptotic cancer cell death by GPX4.Cell20141561-231733110.1016/j.cell.2013.12.01024439385
    [Google Scholar]
  84. KweiderN. WruckC. RathW. New insights into the pathogenesis of preeclampsia – The role of Nrf2 activators and their potential therapeutic impact.Geburtshilfe Frauenheilkd.201373121236124010.1055/s‑0033‑136013324771904
    [Google Scholar]
  85. ChangL.C. ChiangS.K. ChenS.E. YuY.L. ChouR.H. ChangW.C. Heme oxygenase-1 mediates BAY 11–7085 induced ferroptosis.Cancer Lett.201841612413710.1016/j.canlet.2017.12.02529274359
    [Google Scholar]
  86. LiH. ChoesangT. BaoW. ChenH. FeolaM. Garcia-SantosD. LiJ. SunS. FollenziA. PhamP. LiuJ. ZhangJ. PonkaP. AnX. MohandasN. FlemingR.E. RivellaS. LiG. GinzburgY.Z. Decreasing TfR1 expression reverses anemia and hepcidin suppression in β-thalassemic mice.Blood2017129111514152610.1182/blood‑2016‑09‑74238728151426
    [Google Scholar]
  87. AndrewsN.C. SchmidtP.J. Iron Homeostasis.Annu. Rev. Physiol.2007691698510.1146/annurev.physiol.69.031905.16433717014365
    [Google Scholar]
  88. TheurlI. HilgendorfI. NairzM. TymoszukP. HaschkaD. AsshoffM. HeS. GerhardtL.M.S. HolderriedT.A.W. SeifertM. SopperS. FennA.M. AnzaiA. RattikS. McAlpineC. TheurlM. WieghoferP. IwamotoY. WeberG.F. HarderN.K. ChoustermanB.G. ArvedsonT.L. McKeeM. WangF. LutzO.M.D. RezoagliE. BabittJ.L. BerraL. PrinzM. NahrendorfM. WeissG. WeisslederR. LinH.Y. SwirskiF.K. On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver.Nat. Med.201622894595110.1038/nm.414627428900
    [Google Scholar]
  89. BrissotP. PietrangeloA. AdamsP.C. de GraaffB. McLarenC.E. LoréalO. Haemochromatosis.Nat. Rev. Dis. Primers2018411801610.1038/nrdp.2018.1629620054
    [Google Scholar]
  90. BasavarajappaH.D. SulaimanR.S. QiX. ShettyT. Sheik Pran BabuS. SishtlaK.L. LeeB. QuigleyJ. AlkhairyS. BriggsC.M. GuptaK. TangB. ShadmandM. GrantM.B. BoultonM.E. SeoS.Y. CorsonT.W. Ferrochelatase is a therapeutic target for ocular neovascularization.EMBO Mol. Med.20179678680110.15252/emmm.20160656128377496
    [Google Scholar]
  91. PriggeJ.R. CoppoL. MartinS.S. OgataF. MillerC.G. BruschweinM.D. OrlickyD.J. ShearnC.T. KundertJ.A. LytchierJ. HerrA.E. MattssonÅ. TaylorM.P. GustafssonT.N. ArnérE.S.J. HolmgrenA. SchmidtE.E. Hepatocyte hyperproliferation upon liver-specific co-disruption of thioredoxin-1, thioredoxin reductase-1, and glutathione reductase.Cell Rep.201719132771278110.1016/j.celrep.2017.06.01928658624
    [Google Scholar]
  92. NjålssonR. Glutathione synthetase deficiency.Cell. Mol. Life Sci.200562171938194510.1007/s00018‑005‑5163‑715990954
    [Google Scholar]
  93. MannanA. SinghT.G. SinghV. GargN. KaurA. SinghM. Insights into the mechanism of the therapeutic potential of herbal monoamine oxidase inhibitors in neurological diseases.Curr. Drug Targets202223328631010.2174/138945012266621070712025634238153
    [Google Scholar]
  94. SharmaV.K. SinghT.G. PrabhakarN.K. MannanA. Kynurenine metabolism and alzheimer’s disease: The potential targets and approaches.Neurochem. Res.20224761459147610.1007/s11064‑022‑03546‑835133568
    [Google Scholar]
  95. Soria LopezJ.A. GonzálezH.M. LégerG.C. Alzheimer’s disease.Handb. Clin. Neurol.201916723125510.1016/B978‑0‑12‑804766‑8.00013‑331753135
    [Google Scholar]
  96. BehlT. KaurD. SehgalA. SinghS. SharmaN. ZenginG. Andronie-CioaraF.L. TomaM.M. BungauS. BumbuA.G. Role of monoamine oxidase activity in Alzheimer’s disease: An insight into the therapeutic potential of inhibitors.Molecules20212612372410.3390/molecules2612372434207264
    [Google Scholar]
  97. SharmaV. SinghT. GargN. DhimanS. GuptaS. RahmanM. NajdaA. Walasek-JanuszM. KamelM. AlbadraniG. AkhtarM. SaleemA. AltyarA. Abdel-DaimM. Dysbiosis and Alzheimer’s disease: A role for chronic stress?Biomolecules202111567810.3390/biom1105067833946488
    [Google Scholar]
  98. DuboisB. VillainN. FrisoniG.B. RabinoviciG.D. SabbaghM. CappaS. BejaninA. BomboisS. EpelbaumS. TeichmannM. HabertM.O. NordbergA. BlennowK. GalaskoD. SternY. RoweC.C. SallowayS. SchneiderL.S. CummingsJ.L. FeldmanH.H. Clinical diagnosis of Alzheimer’s disease: Recommendations of the International Working Group.Lancet Neurol.202120648449610.1016/S1474‑4422(21)00066‑133933186
    [Google Scholar]
  99. ScheltensP. De StrooperB. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. CummingsJ. van der FlierW.M. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑433667416
    [Google Scholar]
  100. OsamaA. ZhangJ. YaoJ. YaoX. FangJ. Nrf2: a dark horse in Alzheimer’s disease treatment.Ageing Res. Rev.20206410120610.1016/j.arr.2020.10120633144124
    [Google Scholar]
  101. RenP. ChenJ. LiB. ZhangM. YangB. GuoX. ChenZ. ChengH. WangP. WangS. WangN. ZhangG. WuX. MaD. GuanD. ZhaoR. Nrf2 ablation promotes Alzheimer’s disease-like pathology in APP/PS1 transgenic mice: The role of neuroinflammation and oxidative stress.Oxid. Med. Cell. Longev.2020202011310.1155/2020/305097132454936
    [Google Scholar]
  102. MachhiJ. YeapuriP. LuY. FosterE. ChikhaleR. HerskovitzJ. NammingaK.L. OlsonK.E. AbdelmoatyM.M. GaoJ. QuadrosR.M. KiyotaT. JingjingL. KevadiyaB.D. WangX. LiuY. PoluektovaL.Y. GurumurthyC.B. MosleyR.L. GendelmanH.E. CD4+ effector T cells accelerate Alzheimer’s disease in mice.J. Neuroinflammation202118127210.1186/s12974‑021‑02308‑734798897
    [Google Scholar]
  103. LeeM.K. SluntH.H. MartinL.J. ThinakaranG. KimG. GandyS.E. SeegerM. KooE. PriceD.L. SisodiaS.S. Expression of presenilin 1 and 2 (PS1 and PS2) in human and murine tissues.J. Neurosci.199616237513752510.1523/JNEUROSCI.16‑23‑07513.19968922407
    [Google Scholar]
  104. ZhangS. ZhangM. CaiF. SongW. Biological function of Presenilin and its role in AD pathogenesis.Transl. Neurodegener.2013211510.1186/2047‑9158‑2‑1523866842
    [Google Scholar]
  105. SharmaV.K. SinghT.G. SinghS. GargN. DhimanS. Apoptotic pathways and Alzheimer’s Disease: Probing therapeutic potential.Neurochem. Res.202146123103312210.1007/s11064‑021‑03418‑734386919
    [Google Scholar]
  106. YangS. XieZ. PeiT. Salidroside attenuates neuronal ferroptosis by activating the Nrf2/HO1 signaling pathway in Aβ1-42-induced Alzheimer's disease mice and glutamate-injured HT22 cells.Chin. Med.20221718210.1186/s13020‑022‑00634‑3
    [Google Scholar]
  107. LiL. LiW.J. ZhengX.R. LiuQ.L. DuQ. LaiY.J. LiuS.Q. Eriodictyol ameliorates cognitive dysfunction in APP/PS1 mice by inhibiting ferroptosis via vitamin D receptor-mediated Nrf2 activation.Mol. Med.20222811110.1186/s10020‑022‑00442‑335093024
    [Google Scholar]
  108. WangC. ChenS. GuoH. JiangH. LiuH. FuH. WangD. ForsythosideA. Forsythoside a mitigates alzheimer’s-like pathology by inhibiting ferroptosis-mediated neuroinflammation via Nrf2/GPX4 axis activation.Int. J. Biol. Sci.20221852075209010.7150/ijbs.6971435342364
    [Google Scholar]
  109. SharmaV. BediO. GuptaM. DeshmukhR. A review: traditional herbs and remedies impacting pathogenesis of Parkinson’s disease.Naunyn Schmiedebergs Arch. Pharmacol.2022395549551310.1007/s00210‑022‑02223‑535258640
    [Google Scholar]
  110. BloemB.R. OkunM.S. KleinC. Parkinson’s disease.Lancet2021397102912284230310.1016/S0140‑6736(21)00218‑X33848468
    [Google Scholar]
  111. TolosaE. GarridoA. ScholzS.W. PoeweW. Challenges in the diagnosis of Parkinson’s disease.Lancet Neurol.202120538539710.1016/S1474‑4422(21)00030‑233894193
    [Google Scholar]
  112. ArmstrongM.J. OkunM.S. Diagnosis and treatment of parkinson disease.JAMA2020323654856010.1001/jama.2019.2236032044947
    [Google Scholar]
  113. YangW. HamiltonJ.L. KopilC. BeckJ.C. TannerC.M. AlbinR.L. Ray DorseyE. DahodwalaN. CintinaI. HoganP. ThompsonT. Current and projected future economic burden of Parkinson’s disease in the U.S.NPJ Parkinsons Dis.2020611510.1038/s41531‑020‑0117‑132665974
    [Google Scholar]
  114. KimS. Indu ViswanathA.N. ParkJ.H. LeeH.E. ParkA.Y. ChoiJ.W. KimH.J. LondheA.M. JangB.K. LeeJ. HwangH. LimS.M. PaeA.N. ParkK.D. Nrf2 activator via interference of Nrf2-Keap1 interaction has antioxidant and anti-inflammatory properties in Parkinson’s disease animal model.Neuropharmacology202016710798910.1016/j.neuropharm.2020.10798932032607
    [Google Scholar]
  115. BaroneM.C. SykiotisG.P. BohmannD. Genetic activation of Nrf2 signaling is sufficient to ameliorate neurodegenerative phenotypes in a Drosophila model of Parkinson’s disease.Dis. Model. Mech.20114570170710.1242/dmm.00757521719443
    [Google Scholar]
  116. HanJ.M. LeeY.J. LeeS.Y. KimE.M. MoonY. KimH.W. HwangO. Protective effect of sulforaphane against dopaminergic cell death.J. Pharmacol. Exp. Ther.2007321124925610.1124/jpet.106.11086617259450
    [Google Scholar]
  117. SunY. HeL. WangT. HuaW. QinH. WangJ. WangL. GuW. LiT. LiN. LiuX. ChenF. TangL. Activation of p62-Keap1-Nrf2 pathway protects 6-hydroxydopamine-induced ferroptosis in dopaminergic cells.Mol. Neurobiol.202057114628464110.1007/s12035‑020‑02049‑332770451
    [Google Scholar]
  118. LuJ. LiuX. TianY. LiH. RenZ. LiangS. ZhangG. ZhaoC. LiX. WangT. ChenD. KuangW. ZhuM. Moxibustion exerts a neuroprotective effect through antiferroptosis in Parkinson’s disease.Evid. Based Complement. Alternat. Med.2019201911010.1155/2019/273549231467572
    [Google Scholar]
  119. CaiB. ZhongL. LiuY. XuQ. ChenT. δ -Opioid receptor activation inhibits ferroptosis by activating the Nrf2 pathway in mptp-induced parkinson disease models.Evid. Based Complement. Alternat. Med.202320231413093710.1155/2023/413093736818224
    [Google Scholar]
  120. LiuL. YangS. WangH. α-Lipoic acid alleviates ferroptosis in the MPP + -induced PC12 cells via activating the PI3K/Akt/Nrf2 pathway.Cell Biol. Int.202145242243110.1002/cbin.1150533241887
    [Google Scholar]
  121. TabriziS.J. FlowerM.D. RossC.A. WildE.J. Huntington disease: New insights into molecular pathogenesis and therapeutic opportunities.Nat. Rev. Neurol.2020161052954610.1038/s41582‑020‑0389‑432796930
    [Google Scholar]
  122. BarnatM. CapizziM. AparicioE. BoludaS. WennagelD. KacherR. KassemR. LenoirS. AgasseF. BrazB.Y. LiuJ.P. IghilJ. TessierA. ZeitlinS.O. DuyckaertsC. DommerguesM. DurrA. HumbertS. Huntington’s disease alters human neurodevelopment.Science2020369650578779310.1126/science.aax333832675289
    [Google Scholar]
  123. AjitkumarA. De JesusO. Huntington Disease.StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  124. LiuM. ZhaoJ. XueC. YangJ. YingL. Uncovering the ferroptosis related mechanism of laduviglusib in the cell-type-specific targets of the striatum in Huntington’s disease.BMC Genomics202425163310.1186/s12864‑024‑10534‑538918688
    [Google Scholar]
  125. SongS. SuZ. KonN. ChuB. LiH. JiangX. LuoJ. StockwellB.R. GuW. ALOX5-mediated ferroptosis acts as a distinct cell death pathway upon oxidative stress in Huntington’s disease.Genes Dev.2023375-620421710.1101/gad.350211.12236921996
    [Google Scholar]
  126. ZhangC. LiuX. JinS. ChenY. GuoR. Ferroptosis in cancer therapy: a novel approach to reversing drug resistance.Mol. Cancer20222114710.1186/s12943‑022‑01530‑y35151318
    [Google Scholar]
  127. Bachoud-LéviA.C. FerreiraJ. MassartR. YoussovK. RosserA. BusseM. CraufurdD. ReilmannR. De MicheleG. RaeD. SquitieriF. SeppiK. PerrineC. Scherer-GagouC. AudreyO. VernyC. BurgunderJ.M. International guidelines for the treatment of huntington’s disease.Front. Neurol.20191071010.3389/fneur.2019.0071031333565
    [Google Scholar]
  128. TucciP. LattanziR. SeveriniC. SasoL. Nrf2 pathway in Huntington’s Disease (HD): What is its role?Int. J. Mol. Sci.202223231527210.3390/ijms23231527236499596
    [Google Scholar]
  129. KeillorJ.W. JohnsonG.V.W. Transglutaminase 2 as a therapeutic target for neurological conditions.Expert Opin. Ther. Targets202125972173110.1080/14728222.2021.198941034607527
    [Google Scholar]
  130. ChenJ. MarksE. LaiB. ZhangZ. DuceJ.A. LamL.Q. VolitakisI. BushA.I. HerschS. FoxJ.H. Iron accumulates in Huntington’s disease neurons: Protection by deferoxamine.PLoS One2013810e7702310.1371/journal.pone.007702324146952
    [Google Scholar]
  131. EllrichmannG. Petrasch-ParwezE. LeeD.H. ReickC. ArningL. SaftC. GoldR. LinkerR.A. Efficacy of fumaric acid esters in the R6/2 and YAC128 models of Huntington’s disease.PLoS One201161e1617210.1371/journal.pone.001617221297955
    [Google Scholar]
  132. MiY. GaoX. XuH. CuiY. ZhangY. GouX. The emerging roles of ferroptosis in Huntington’s disease.Neuromolecular Med.201921211011910.1007/s12017‑018‑8518‑630600476
    [Google Scholar]
  133. LiY. SunM. CaoF. ChenY. ZhangL. LiH. CaoJ. SongJ. MaY. MiW. ZhangX. The ferroptosis inhibitor liproxstatin-1 ameliorates LPS-induced cognitive impairment in mice.Nutrients20221421459910.3390/nu1421459936364859
    [Google Scholar]
  134. PrasadK.N. BondyS.C. Inhibition of early biochemical defects in prodromal Huntington’s disease by simultaneous activation of Nrf2 and elevation of multiple micronutrients.Curr. Aging Sci.201691617010.2174/187460980966615112423112726601664
    [Google Scholar]
  135. MasroriP. Van DammeP. Amyotrophic lateral sclerosis: A clinical review.Eur. J. Neurol.202027101918192910.1111/ene.1439332526057
    [Google Scholar]
  136. LonginettiE. FangF. Epidemiology of amyotrophic lateral sclerosis: An update of recent literature.Curr. Opin. Neurol.201932577177610.1097/WCO.000000000000073031361627
    [Google Scholar]
  137. GoutmanS.A. HardimanO. Al-ChalabiA. ChióA. SavelieffM.G. KiernanM.C. FeldmanE.L. Recent advances in the diagnosis and prognosis of amyotrophic lateral sclerosis.Lancet Neurol.202221548049310.1016/S1474‑4422(21)00465‑835334233
    [Google Scholar]
  138. SharmaV.K. SinghT.G. MehtaV. MannanA. Biomarkers: Role and scope in neurological disorders.Neurochem. Res.20234872029205810.1007/s11064‑023‑03873‑436795184
    [Google Scholar]
  139. ChenL. NaR. Danae McLaneK. ThompsonC.S. GaoJ. WangX. RanQ. Overexpression of ferroptosis defense enzyme Gpx4 retards motor neuron disease of SOD1G93A mice.Sci. Rep.20211111289010.1038/s41598‑021‑92369‑834145375
    [Google Scholar]
  140. MeadR.J. ShanN. ReiserH.J. MarshallF. ShawP.J. Amyotrophic lateral sclerosis: A neurodegenerative disorder poised for successful therapeutic translation.Nat. Rev. Drug Discov.202322318521210.1038/s41573‑022‑00612‑236543887
    [Google Scholar]
  141. CasaresL. MorenoR. AliK.X. HigginsM. Dayalan NaiduS. NeillG. CassinL. KiibA.E. SvenningsenE.B. MinassiA. HondaT. PoulsenT.B. WielC. SayinV.I. Dinkova-KostovaA.T. OlagnierD. de la VegaL. The synthetic triterpenoids CDDO-TFEA and CDDO-Me, but not CDDO, promote nuclear exclusion of BACH1 impairing its activity.Redox Biol.20225110229110.1016/j.redox.2022.10229135313207
    [Google Scholar]
  142. ReynoldsW.F. MalleE. MakiR.A. Thiocyanate reduces motor impairment in the hMPO-A53T PD mouse model while reducing MPO-oxidation of alpha synuclein in enlarged LYVE1/AQP4 positive periventricular glymphatic vessels.Antioxidants20221112234210.3390/antiox1112234236552550
    [Google Scholar]
  143. WangD. LiangW. HuoD. WangH. WangY. CongC. ZhangC. YanS. GaoM. SuX. TanX. ZhangW. HanL. ZhangD. FengH. SPY1 inhibits neuronal ferroptosis in amyotrophic lateral sclerosis by reducing lipid peroxidation through regulation of GCH1 and TFR1.Cell Death Differ.202330236938210.1038/s41418‑022‑01089‑736443440
    [Google Scholar]
  144. CostaI. BarbosaD.J. BenfeitoS. SilvaV. ChavarriaD. BorgesF. RemiãoF. SilvaR. Molecular mechanisms of ferroptosis and their involvement in brain diseases.Pharmacol. Ther.202324410837310.1016/j.pharmthera.2023.10837336894028
    [Google Scholar]
  145. KuriakoseD. XiaoZ. Pathophysiology and treatment of stroke: Present status and future perspectives.Int. J. Mol. Sci.20202120760910.3390/ijms2120760933076218
    [Google Scholar]
  146. BassettiC.L.A. RanderathW. VignatelliL. Ferini-StrambiL. BrillA.K. BonsignoreM.R. GroteL. JennumP. LeysD. MinnerupJ. NobiliL. ToniaT. MorganR. KerryJ. RihaR. McNicholasW.T. PapavasileiouV. EAN/ERS/ESO/ESRS statement on the impact of sleep disorders on risk and outcome of stroke.Eur. J. Neurol.20202771117113610.1111/ene.1420132314498
    [Google Scholar]
  147. FrankD. ZlotnikA. BoykoM. GruenbaumB.F. The Development of novel drug treatments for stroke patients: A review.Int. J. Mol. Sci.20222310579610.3390/ijms2310579635628606
    [Google Scholar]
  148. MannanA. GargN. SinghT.G. KangH.K. Peroxisome proliferator-activated receptor-gamma (PPAR-ɣ): Molecular effects and its importance as a novel therapeutic target for cerebral ischemic injury.Neurochem. Res.202146112800283110.1007/s11064‑021‑03402‑134282491
    [Google Scholar]
  149. YangQ. PuW. HuK. HuY. FengZ. CaiJ. LiC. LiL. ZhouZ. ZhangJ. Reactive oxygen species-responsive transformable and triple-targeting butylphthalide nanotherapy for precision treatment of ischemic stroke by normalizing the pathological microenvironment.ACS Nano20231754813483310.1021/acsnano.2c1136336802489
    [Google Scholar]
  150. XuJ. ZhangW. DongJ. CaoL. HuangZ. A new potential strategy for treatment of ischemic stroke: Targeting TRPM2–NMDAR association.Neurosci. Bull.202339470370610.1007/s12264‑022‑00971‑136342656
    [Google Scholar]
  151. ProshkinaE. ShaposhnikovM. MoskalevA. Genome-protecting compounds as potential geroprotectors.Int. J. Mol. Sci.20202112448410.3390/ijms2112448432599754
    [Google Scholar]
  152. SpronkE. SykesG. FalcioneS. MunstermanD. JoyT. Kamtchum-TatueneJ. JicklingG.C. Hemorrhagic transformation in ischemic stroke and the role of inflammation.Front. Neurol.20211266195510.3389/fneur.2021.66195534054705
    [Google Scholar]
  153. MurphyT.H. MiyamotoM. SastreA. SchnaarR.L. CoyleJ.T. Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress.Neuron1989261547155810.1016/0896‑6273(89)90043‑32576375
    [Google Scholar]
  154. LuoY. ZhangS. WangJ. ZhaoH. Effects of three flavonoids from an ancient traditional Chinese medicine Radix puerariae on geriatric diseases.Brain Circ.20184417418410.4103/bc.bc_13_1830693344
    [Google Scholar]
  155. TuoQ. LiuY. XiangZ. YanH.F. ZouT. ShuY. DingX. ZouJ. XuS. TangF. GongY. LiX. GuoY. ZhengZ. DengA. YangZ. LiW. ZhangS. AytonS. BushA.I. XuH. DaiL. DongB. LeiP. Thrombin induces ACSL4-dependent ferroptosis during cerebral ischemia/reperfusion.Signal Transduct. Target. Ther.2022715910.1038/s41392‑022‑00917‑z35197442
    [Google Scholar]
  156. DingC. DingX. ZhengJ. WangB. LiY. XiangH. DouM. QiaoY. TianP. XueW. miR-182-5p and miR-378a-3p regulate ferroptosis in I/R-induced renal injury.Cell Death Dis.2020111092910.1038/s41419‑020‑03135‑z33116120
    [Google Scholar]
  157. MaesM. Major neurocognitive psychosis: A novel schizophrenia endophenotype class that is based on machine learning and resembles Kraepelin’s and Bleuler’s conceptions.Acta Neuropsychiatr.202335312313710.1017/neu.2022.3236373497
    [Google Scholar]
  158. BuckS.A. Quincy Erickson-ObergM. LoganR.W. FreybergZ. Relevance of interactions between dopamine and glutamate neurotransmission in schizophrenia.Mol. Psychiatry20222793583359110.1038/s41380‑022‑01649‑w35681081
    [Google Scholar]
  159. KikuchiT. Is memantine effective as an NMDA receptor antagonist in adjunctive therapy for schizophrenia?Biomolecules2020108113410.3390/biom1008113432751985
    [Google Scholar]
  160. PatronoE. SvobodaJ. StuchlíkA. Schizophrenia, the gut microbiota, and new opportunities from optogenetic manipulations of the gut-brain axis.Behav. Brain Funct.2021171710.1186/s12993‑021‑00180‑234158061
    [Google Scholar]
  161. RossJ.M. ÖbergJ. BrenéS. CoppotelliG. TerziogluM. PernoldK. GoinyM. SitnikovR. KehrJ. TrifunovicA. LarssonN.G. HofferB.J. OlsonL. High brain lactate is a hallmark of aging and caused by a shift in the lactate dehydrogenase A/B ratio.Proc. Natl. Acad. Sci. USA201010746200872009210.1073/pnas.100818910721041631
    [Google Scholar]
  162. HuL. LiH. ZiM. LiW. LiuJ. YangY. ZhouD. KongQ.P. ZhangY. HeY. Why senescent cells are resistant to apoptosis: An insight for senolytic development.Front. Cell Dev. Biol.20221082281610.3389/fcell.2022.82281635252191
    [Google Scholar]
  163. DavinelliS. MedoroA. IntrieriM. SasoL. ScapagniniG. KangJ.X. Targeting NRF2–KEAP1 axis by Omega-3 fatty acids and their derivatives: Emerging opportunities against aging and diseases.Free Radic. Biol. Med.2022193Pt 273675010.1016/j.freeradbiomed.2022.11.01736402440
    [Google Scholar]
  164. Tendilla-BeltránH. Sanchez-IslasN.C. Marina-RamosM. LezaJ.C. FloresG. The prefrontal cortex as a target for atypical antipsychotics in schizophrenia, lessons of neurodevelopmental animal models.Prog. Neurobiol.202119910196710.1016/j.pneurobio.2020.10196733271238
    [Google Scholar]
  165. FengS. ChenJ. QuC. YangL. WuX. WangS. YangT. LiuH. FangY. SunP. Identification of ferroptosis-related genes in schizophrenia based on bioinformatic analysis.Genes (Basel)20221311216810.3390/genes1311216836421842
    [Google Scholar]
  166. HirataY. OkaK. YamamotoS. WatanabeH. Oh-hashiK. HirayamaT. NagasawaH. TakemoriH. FurutaK. Haloperidol prevents oxytosis/ferroptosis by targeting lysosomal ferrous ions in a manner independent of dopamine D2 and sigma-1 receptors.ACS Chem. Neurosci.202213182719272710.1021/acschemneuro.2c0039836050287
    [Google Scholar]
  167. FerroJ.M. PintoF. Poststroke epilepsy.Drugs Aging2004211063965310.2165/00002512‑200421100‑0000315287823
    [Google Scholar]
  168. WeltyT.E. Juvenile myoclonic epilepsy: Epidemiology, pathophysiology, and management.Paediatr. Drugs20068530331010.2165/00148581‑200608050‑0000317037947
    [Google Scholar]
  169. Falco-WalterJ. Epilepsy — Definition, classification, pathophysiology, and epidemiology.Semin. Neurol.202040661762310.1055/s‑0040‑171871933155183
    [Google Scholar]
  170. CaiY. YangZ. Ferroptosis and its role in epilepsy.Front. Cell. Neurosci.20211569688910.3389/fncel.2021.69688934335189
    [Google Scholar]
  171. ChenS. ChenY. ZhangY. KuangX. LiuY. GuoM. MaL. ZhangD. LiQ. Iron metabolism and ferroptosis in epilepsy.Front. Neurosci.20201460119310.3389/fnins.2020.60119333424539
    [Google Scholar]
  172. MazzuferiM. KumarG. van EyllJ. DanisB. FoerchP. KaminskiR.M. Nrf2 defense pathway: Experimental evidence for its protective role in epilepsy.Ann. Neurol.201374456056810.1002/ana.2394023686862
    [Google Scholar]
  173. SandoukaS. Shekh-AhmadT. Induction of the Nrf2 pathway by sulforaphane is neuroprotective in a rat temporal lobe epilepsy model.Antioxidants20211011170210.3390/antiox1011170234829573
    [Google Scholar]
  174. Carmona-AparicioL. Pérez-CruzC. Zavala-TecuapetlaC. Granados-RojasL. Rivera-EspinosaL. Montesinos-CorreaH. Hernández-DamiánJ. Pedraza-ChaverriJ. SampieriA.III Coballase-UrrutiaE. Cárdenas-RodríguezN. Overview of Nrf2 as therapeutic target in epilepsy.Int. J. Mol. Sci.2015168183481836710.3390/ijms16081834826262608
    [Google Scholar]
  175. Kahn-KirbyA.H. AmagataA. MaederC.I. MeiJ.J. SiderisS. KosakaY. HinmanA. MaloneS.A. BrueggerJ.J. WangL. KimV. ShraderW.D. HoffK.G. LathamJ.C. AshleyE.A. WheelerM.T. BertiniE. CarrozzoR. MartinelliD. Dionisi-ViciC. ChapmanK.A. EnnsG.M. GahlW. WolfeL. SanetoR.P. JohnsonS.C. TrimmerJ.K. KleinM.B. HolstC.R. Targeting ferroptosis: A novel therapeutic strategy for the treatment of mitochondrial disease-related epilepsy.PLoS One2019143e021425010.1371/journal.pone.021425030921410
    [Google Scholar]
  176. JinY. RenL. JingX. WangH. Targeting ferroptosis as novel therapeutic approaches for epilepsy.Front. Pharmacol.202314118507110.3389/fphar.2023.118507137124220
    [Google Scholar]
  177. SandoukaS. SaadiA. SinghP.K. OloweR. Shekh-AhmadT. Nrf2 is predominantly expressed in hippocampal neurons in a rat model of temporal lobe epilepsy.Cell Biosci.2023131310.1186/s13578‑022‑00951‑y36600279
    [Google Scholar]
  178. MaoX. WangX. JinM. LiQ. JiaJ. LiM. ZhouH. LiuZ. JinW. ZhaoY. LuoZ. Critical involvement of lysyl oxidase in seizure-induced neuronal damage through ERK-Alox5-dependent ferroptosis and its therapeutic implications.Acta Pharm. Sin. B20221293513352810.1016/j.apsb.2022.04.01736176900
    [Google Scholar]
  179. XieR. ZhaoW. LoweS. BentleyR. HuG. MeiH. JiangX. SunC. WuY. Yueying liu Quercetin alleviates kainic acid-induced seizure by inhibiting the Nrf2-mediated ferroptosis pathway.Free Radic. Biol. Med.202219121222610.1016/j.freeradbiomed.2022.09.00136087883
    [Google Scholar]
  180. ZuoC. CaoH. SongY. GuZ. HuangY. YangY. MiaoJ. ZhuL. ChenJ. JiangY. WangF. Nrf2: An all-rounder in depression.Redox Biol.20225810252210.1016/j.redox.2022.10252236335763
    [Google Scholar]
  181. JiaoH. YangH. YanZ. ChenJ. XuM. JiangY. LiuY. XueZ. MaQ. LiX. ChenJ. Traditional Chinese formula xiaoyaosan alleviates depressive-like behavior in CUMS mice by regulating PEBP1-GPX4-mediated ferroptosis in the hippocampus.Neuropsychiatr. Dis. Treat.2021171001101910.2147/NDT.S30244333854318
    [Google Scholar]
  182. HuW. LiangK. ZhuH. ZhaoC. HuH. YinS. Ferroptosis and its role in chronic diseases.Cells20221113204010.3390/cells1113204035805124
    [Google Scholar]
  183. WaltersD.M. ChoH.Y. KleebergerS.R. Oxidative stress and antioxidants in the pathogenesis of pulmonary fibrosis: A potential role for Nrf2.Antioxid. Redox Signal.200810232133210.1089/ars.2007.190117999635
    [Google Scholar]
  184. RosaJ.M. DafreA.L. RodriguesA.L.S. Antidepressant-like responses in the forced swimming test elicited by glutathione and redox modulation.Behav. Brain Res.201325316517210.1016/j.bbr.2013.07.00923850355
    [Google Scholar]
  185. LiaoD. LvC. CaoL. YaoD. WuY. LongM. LiuN. JiangP. Curcumin attenuates chronic unpredictable mild stress-induced depressive-like behaviors via restoring changes in oxidative stress and the activation of Nrf2 signaling pathway in rats.Oxid. Med. Cell. Longev.2020202011110.1155/2020/926808333014280
    [Google Scholar]
  186. CaoH. ZuoC. HuangY. ZhuL. ZhaoJ. YangY. JiangY. WangF. Hippocampal proteomic analysis reveals activation of necroptosis and ferroptosis in a mouse model of chronic unpredictable mild stress-induced depression.Behav. Brain Res.202140711326110.1016/j.bbr.2021.11326133775778
    [Google Scholar]
  187. WeiY. ChangL. HashimotoK. Molecular mechanisms underlying the antidepressant actions of arketamine: Beyond the NMDA receptor.Mol. Psychiatry202227155957310.1038/s41380‑021‑01121‑133963284
    [Google Scholar]
  188. Martín-de-SaavedraM.D. BudniJ. CunhaM.P. Gómez-RangelV. LorrioS. del BarrioL. Lastres-BeckerI. ParadaE. TorderaR.M. RodriguesA.L.S. CuadradoA. LópezM.G. Nrf2 participates in depressive disorders through an anti-inflammatory mechanism.Psychoneuroendocrinology201338102010202210.1016/j.psyneuen.2013.03.02023623252
    [Google Scholar]
  189. DangR. WangM. LiX. WangH. LiuL. WuQ. ZhaoJ. JiP. ZhongL. LicinioJ. XieP. Edaravone ameliorates depressive and anxiety-like behaviors via Sirt1/Nrf2/HO-1/Gpx4 pathway.J. Neuroinflammation20221914110.1186/s12974‑022‑02400‑635130906
    [Google Scholar]
  190. HodgesH. FealkoC. SoaresN. Autism spectrum disorder: Definition, epidemiology, causes, and clinical evaluation.Transl. Pediatr.20209S1S55S6510.21037/tp.2019.09.0932206584
    [Google Scholar]
  191. de LimaT.A. ZuanettiP.A. NunesM.E.N. HamadA.P.A. Differential diagnosis between autism spectrum disorder and other developmental disorders with emphasis on the preschool period.World J. Pediatr.202319871572610.1007/s12519‑022‑00629‑y36282408
    [Google Scholar]
  192. GonçalvesA.C. CortesãoE. OliveirosB. AlvesV. EspadanaA.I. RitoL. MagalhãesE. LobãoM.J. PereiraA. Nascimento CostaJ.M. Mota-VieiraL. Sarmento-RibeiroA.B. Oxidative stress and mitochondrial dysfunction play a role in myelodysplastic syndrome development, diagnosis, and prognosis: A pilot study.Free Radic. Res.20154991081109410.3109/10715762.2015.103526825968944
    [Google Scholar]
  193. RoseS. MelnykS. PavlivO. BaiS. NickT.G. FryeR.E. JamesS.J. Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain.Transl. Psychiatry201227e134e13410.1038/tp.2012.6122781167
    [Google Scholar]
  194. ChoiB. KangK.S. KwakM.K. Effect of redox modulating NRF2 activators on chronic kidney disease.Molecules2014198127271275910.3390/molecules19081272725140450
    [Google Scholar]
  195. HidemaS. KikuchiS. TakataR. YanaiT. ShimomuraK. HorieK. NishimoriK. Single administration of resveratrol improves social behavior in adult mouse models of autism spectrum disorder.Biosci. Biotechnol. Biochem.202084112207221410.1080/09168451.2020.179478332698690
    [Google Scholar]
  196. SchwingelG.B. Fontes-DutraM. RamosB. RiesgoR. Bambini-JuniorV. GottfriedC. Preventive effects of resveratrol against early-life impairments in the animal model of autism induced by valproic acid.IBRO Neurosci. Rep.20231524225110.1016/j.ibneur.2023.09.00837841088
    [Google Scholar]
  197. TianJ. GaoX. YangL. Repetitive restricted behaviors in Autism Spectrum Disorder: From mechanism to development of therapeutics.Front. Neurosci.20221678040710.3389/fnins.2022.78040735310097
    [Google Scholar]
  198. NadeemA. AhmadS.F. Al-HarbiN.O. AttiaS.M. BakheetS.A. IbrahimK.E. AlqahtaniF. AlqinyahM. Nrf2 activator, sulforaphane ameliorates autism-like symptoms through suppression of Th17 related signaling and rectification of oxidant-antioxidant imbalance in periphery and brain of BTBR T+tf/J mice.Behav. Brain Res.201936421322410.1016/j.bbr.2019.02.03130790585
    [Google Scholar]
  199. LuoT. ChenS. RuanY. ChenH. ChenY. LiY. ZhouW. Downregulation of DDIT4 ameliorates abnormal behaviors in autism by inhibiting ferroptosis via the PI3K/Akt pathway.Biochem. Biophys. Res. Commun.202364116817610.1016/j.bbrc.2022.12.03236528956
    [Google Scholar]
  200. ZhangQ. WuH. ZouM. LiL. LiQ. SunC. XiaW. CaoY. WuL. Folic acid improves abnormal behavior via mitigation of oxidative stress, inflammation, and ferroptosis in the BTBR T+ tf/J mouse model of autism.J. Nutr. Biochem.2019719810910.1016/j.jnutbio.2019.05.00231323609
    [Google Scholar]
  201. MalaraM. LutzA.K. IncearapB. BauerH.F. CursanoS. VolbrachtK. LernerJ.J. PandeyR. DellingJ.P. IoannidisV. ArévaloA.P. von BernhardiJ.E. SchönM. BockmannJ. DimouL. BoeckersT.M. SHANK3 deficiency leads to myelin defects in the central and peripheral nervous system.Cell. Mol. Life Sci.202279737110.1007/s00018‑022‑04400‑435726031
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501320839240918110656
Loading
/content/journals/cdt/10.2174/0113894501320839240918110656
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test