Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Parkinson's disease (PD) is a complex neurological condition caused due to inheritance, environment, and behavior among various other parameters. The onset, diagnosis, course of therapy, and future of PD are thoroughly examined in this comprehensive review. This review also presents insights into pathogenic mechanisms of reactive microgliosis, Lewy bodies, and their functions in the evolution of PD. It addresses interaction complexity with genetic mutations, especially in genes such as UCH-L1, parkin, and α-synuclein, which illuminates changes in the manner dopaminergic cells handle proteins and use proteases. This raises the improved outcomes and life quality for those with PD. Potential treatments for severe PD include new surgical methods like Deep Brain Stimulation (DBS). Further, exploration of non-motor manifestations, such as cognitive impairment, autonomic dysfunction, and others, is covered in this review article. These symptoms have a significant impact on patients' quality of life. Furthermore, one of the emerging therapeutic routes that are being investigated is neuroprotective medicines that aim to prevent the aggregation of α-synuclein and interventions that modify the progression of diseases. The review concludes by stressing the dynamic nature of PD research and the potential game-changing impact of precision medicines on current approaches to therapy.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501319817240919103802
2024-09-30
2025-01-13
Loading full text...

Full text loading...

References

  1. YadavD. KumarP. Restoration and targeting of aberrant neurotransmitters in Parkinson’s disease therapeutics.Neurochem. Int.202215610532710.1016/j.neuint.2022.10532735331828
    [Google Scholar]
  2. SperanzaL. di PorzioU. ViggianoD. de DonatoA. VolpicelliF. Dopamine: The neuromodulator of long-term synaptic plasticity, reward and movement control.Cells202110473510.3390/cells1004073533810328
    [Google Scholar]
  3. PalakurthiB. BurugupallyS.P. Postural instability in parkinson’s disease: A review.Brain Sci.20199923910.3390/brainsci909023931540441
    [Google Scholar]
  4. RameshS. ArachchigeA.S.P.M. Depletion of dopamine in Parkinson’s disease and relevant therapeutic options: A review of the literature.AIMS Neurosci.202310320023110.3934/Neuroscience.202301737841347
    [Google Scholar]
  5. KhanA.U. AkramM. DaniyalM. ZainabR. AshrafG.M. PerveenA. MathewB. BarretoG.E. Awareness and current knowledge of Parkinson’s disease: A neurodegenerative disorder.Int. J. Neurosci.20191291559310.1080/00207454.2018.148683729883227
    [Google Scholar]
  6. ChurchF.C. Treatment options for motor and non-motor symptoms of parkinson’s disease.Biomolecules202111461210.3390/biom1104061233924103
    [Google Scholar]
  7. JagaranK. SinghM. Nanomedicine for neurodegenerative disorders: Focus on alzheimer’s and parkinson’s diseases.Int. J. Mol. Sci.20212216908210.3390/ijms2216908234445784
    [Google Scholar]
  8. ZahraW. RaiS.N. BirlaH. SinghS.S. DilnashinH. RathoreA.S. SinghS.P. The global economic impact of neurodegenerative diseases: Opportunities and challenges.Bioeconomy Sustainable Dev.2020133334510.1007/978‑981‑13‑9431‑7_17
    [Google Scholar]
  9. Peña-DíazS. García-PardoJ. VenturaS. Development of small molecules targeting α-synuclein aggregation: A promising strategy to treat parkinson’s disease.Pharmaceutics202315383910.3390/pharmaceutics1503083936986700
    [Google Scholar]
  10. JagadeesanA.J. MurugesanR. Vimala DeviS. MeeraM. MadhumalaG. Vishwanathan PadmajaM. RameshA. BanerjeeA. SushmithaS. KhokhlovA.N. MarottaF. PathakS. Current trends in etiology, prognosis and therapeutic aspects of Parkinson’s disease: A review.Acta Biomed.201788324926229083328
    [Google Scholar]
  11. LeesA.J. TolosaE. OlanowC.W. Four pioneers of L-dopa treatment: Arvid carlsson, oleh hornykiewicz, george cotzias, and melvin yahr.Mov. Disord.2015301193610.1002/mds.2612025488030
    [Google Scholar]
  12. PoeweW. AntoniniA. ZijlmansJ.C. BurkhardP.R. VingerhoetsF. Levodopa in the treatment of Parkinson’s disease: An old drug still going strong.Clin. Interv. Aging2010522923820852670
    [Google Scholar]
  13. VolkmannJ. Deep brain stimulation for the treatment of Parkinson’s disease.J. Clin. Neurophysiol.200421161710.1097/00004691‑200401000‑0000315097290
    [Google Scholar]
  14. FarrowS.L. CooperA.A. O’SullivanJ.M. Redefining the hypotheses driving Parkinson’s diseases research.NPJ Parkinsons Dis.2022814510.1038/s41531‑022‑00307‑w35440633
    [Google Scholar]
  15. Del ReyN.L.G. Quiroga-VarelaA. GarbayoE. Carballo-CarbajalI. Fernández-SantiagoR. MonjeM.H.G. Trigo-DamasI. Blanco-PrietoM.J. BlesaJ. Advances in Parkinson’s disease: 200 years later.Front. Neuroanat.20181211310.3389/fnana.2018.0011330618654
    [Google Scholar]
  16. KouliA. TorsneyK.M. KuanW-L. Parkinson’s disease: Etiology, neuropathology, and pathogenesis.Parkinson’s disease: Pathogenesis and clinical aspectsBrisbane, AustraliaExon Publications2018
    [Google Scholar]
  17. RajanR. DivyaK.P. KandadaiR.M. YadavR. SatagopamV.P. MadhusoodananU.K. AgarwalP. KumarN. FerreiraT. KumarH. Sreeram PrasadA.V. ShettyK. MehtaS. DesaiS. KumarS. PrashanthL.K. BhattM. WadiaP. RamalingamS. WaliG.M. PandeyS. BartuschF. HannussekM. KrügerJ. Kumar-SreelathaA. GroverS. LichtnerP. SturmM. RoeperJ. BusskampV. ChandakG.R. SchwambornJ. SethP. GasserT. RiessO. GoyalV. PalP.K. BorgohainR. KrügerR. KishoreA. SharmaM. Genetic architecture of parkinson’s disease in the indian population: Harnessing genetic diversity to address critical gaps in parkinson’s disease research.Front. Neurol.20201152410.3389/fneur.2020.0052432655481
    [Google Scholar]
  18. NarenP. CholkarA. KambleS. KhanS.S. SrivastavaS. MadanJ. MehraN. TiwariV. SinghS.B. KhatriD.K. Pathological and therapeutic advances in parkinson’s disease: Mitochondria in the interplay.J. Alzheimers Dis.202394s1S399S42810.3233/JAD‑22068236093711
    [Google Scholar]
  19. WillisA.W. RobertsE. BeckJ.C. FiskeB. RossW. SavicaR. Van Den EedenS.K. TannerC.M. MarrasC. AlcalayR. SchwarzschildM. RacetteB. ChenH. ChurchT. WilsonB. DoriaJ.M. Incidence of Parkinson disease in North America.NPJ Parkinsons Dis.20228117010.1038/s41531‑022‑00410‑y36522332
    [Google Scholar]
  20. PolymeropoulosM.H. LavedanC. LeroyE. IdeS.E. DehejiaA. DutraA. PikeB. RootH. RubensteinJ. BoyerR. StenroosE.S. ChandrasekharappaS. AthanassiadouA. PapapetropoulosT. JohnsonW.G. LazzariniA.M. DuvoisinR.C. Di IorioG. GolbeL.I. NussbaumR.L. Mutation in the α-synuclein gene identified in families with Parkinson’s disease.Science199727653212045204710.1126/science.276.5321.20459197268
    [Google Scholar]
  21. CiureaA.V. NeacșuC. CarareR.O. AhmedA.I. MarincuI. MoraruI. Unraveling molecular and genetic insights into neurodegenerative diseases: advances in understanding alzheimer’s, Parkinson’s, ALS, and huntington’s disease.Brain Sci.202313574937239221
    [Google Scholar]
  22. Bandres-CigaS. Diez-FairenM. KimJ.J. SingletonA.B. VitaleD. BlauwendraatC. CooksonM.R. SingletonA. Genetics of Parkinson’s disease: An introspection of its journey towards precision medicine.Neurobiol. Dis.202013710478210.1016/j.nbd.2020.10478231991247
    [Google Scholar]
  23. MellickG.D. SilburnP.A. SutherlandG.T. SiebertG.A. Exploiting the potential of molecular profiling in Parkinson’s disease: Current practice and future probabilities.Expert Rev. Mol. Diagn.20101081035105010.1586/erm.10.8621080820
    [Google Scholar]
  24. MillerK.M. MercadoN.M. SortwellC.E. Synucleinopathy-associated pathogenesis in Parkinson’s disease and the potential for brain-derived neurotrophic factor.NPJ Parkinsons Dis.2021713510.1038/s41531‑021‑00179‑633846345
    [Google Scholar]
  25. BaronM. KudinA.P. KunzW.S. Mitochondrial dysfunction in neurodegenerative disorders.Biochem. Soc. Trans.20073551228123110.1042/BST035122817956319
    [Google Scholar]
  26. ThapaK. KhanH. KanojiaN. SinghT.G. KaurA. KaurG. Therapeutic insights on Ferroptosis in Parkinson’s disease.Eur. J. Pharmacol.202293017513310.1016/j.ejphar.2022.17513335792170
    [Google Scholar]
  27. ChenC. TurnbullD.M. ReeveA.K. Mitochondrial dysfunction in parkinson’s disease—cause or consequence?Biology (Basel)2019823810.3390/biology802003831083583
    [Google Scholar]
  28. IndrieriA. PizzarelliR. FrancoB. De LeonibusE. CennamoG. NicolaiR. D’AmicoA. VozziG. FilosaS. CarellaM. SalvatoreF. FrancoB. Dopamine, alpha-synuclein, and mitochondrial dysfunctions in parkinsonian eyes.Front. Neurosci.20201456712910.3389/fnins.2020.56712933192254
    [Google Scholar]
  29. LückingC.B. DürrA. BonifatiV. VaughanJ. De MicheleG. GasserT. HarhangiB.S. MecoG. DenèfleP. WoodN.W. AgidY. NichollD. BretelerM.M.B. OostraB.A. De MariM. MarconiR. FillaA. BonnetA-M. BroussolleE. PollakP. RascolO. RosierM. ArnouldA. BriceA. Association between early-onset Parkinson’s disease and mutations in the parkin gene.N. Engl. J. Med.2000342211560156710.1056/NEJM20000525342210310824074
    [Google Scholar]
  30. LopesF.M. BristotI.J. da MottaL.L. ParsonsR.B. KlamtF. Mimicking Parkinson’s disease in a dish: Merits and pitfalls of the most commonly used dopaminergic in vitro models.Neuromolecular Med.2017192-324125510.1007/s12017‑017‑8454‑x28721669
    [Google Scholar]
  31. LinK.J. LinK.L. ChenS.D. LiouC.W. ChuangY.C. LinH.Y. LinT.K. The overcrowded crossroads: Mitochondria, alpha-synuclein, and the endo-lysosomal system interaction in Parkinson’s disease.Int. J. Mol. Sci.20192021531210.3390/ijms2021531231731450
    [Google Scholar]
  32. WangX.L. FengS.T. WangZ.Z. YuanY.H. ChenN.H. ZhangY. Parkin, an E3 ubiquitin ligase, plays an essential role in mitochondrial quality control in Parkinson’s disease.Cell. Mol. Neurobiol.20214171395141110.1007/s10571‑020‑00914‑232623547
    [Google Scholar]
  33. GeggM.E. CooperJ.M. SchapiraA.H.V. TaanmanJ.W. Silencing of PINK1 expression affects mitochondrial DNA and oxidative phosphorylation in dopaminergic cells.PLoS One200943e475610.1371/journal.pone.000475619270741
    [Google Scholar]
  34. ScarffeL.A. StevensD.A. DawsonV.L. DawsonT.M. Parkin and PINK1: Much more than mitophagy.Trends Neurosci.201437631532410.1016/j.tins.2014.03.00424735649
    [Google Scholar]
  35. PilslA. WinklhoferK.F. Parkin, PINK1 and mitochondrial integrity: Emerging concepts of mitochondrial dysfunction in Parkinson’s disease.Acta Neuropathol.2012123217318810.1007/s00401‑011‑0902‑322057787
    [Google Scholar]
  36. ThapaR. MogladE. AfzalM. GuptaG. BhatA.A. almalkiW.H. KazmiI. AlzareaS.I. PantK. AliH. PaudelK.R. DurejaH. SinghT.G. SinghS.K. DuaK. ncRNAs and their impact on dopaminergic neurons: Autophagy pathways in Parkinson’s disease.Ageing Res. Rev.20249810232710.1016/j.arr.2024.10232738734148
    [Google Scholar]
  37. LückingC.B. BriceA. Alpha-synuclein and Parkinson’s disease.Cell. Mol. Life Sci.200057131894190810.1007/PL0000067111215516
    [Google Scholar]
  38. NuberS. TadrosD. FieldsJ. OverkC.R. EttleB. KosbergK. ManteM. RockensteinE. TrejoM. MasliahE. Environmental neurotoxic challenge of conditional alpha-synuclein transgenic mice predicts a dopaminergic olfactory-striatal interplay in early PD.Acta Neuropathol.2014127447749410.1007/s00401‑014‑1255‑524509835
    [Google Scholar]
  39. VizzielloM. BorelliniL. FrancoG. ArdolinoG. Disruption of mitochondrial homeostasis: The role of PINK1 in Parkinson’s disease.Cells20211011302210.3390/cells1011302234831247
    [Google Scholar]
  40. FengS.T. WangZ.Z. YuanY.H. SunH.M. ChenN.H. ZhangY. Update on the association between alpha-synuclein and tau with mitochondrial dysfunction: Implications for Parkinson’s disease.Eur. J. Neurosci.20215392946295910.1111/ejn.1469932031280
    [Google Scholar]
  41. PangS.Y.Y. LoR.C.N. HoP.W.L. LiuH.F. ChangE.E.S. LeungC.T. MalkiY. ChoiZ.Y.K. WongW.Y. KungM.H.W. RamsdenD.B. HoS.L. LRRK2, GBA and their interaction in the regulation of autophagy: Implications on therapeutics in Parkinson’s disease.Transl. Neurodegener.2022111510.1186/s40035‑022‑00281‑635101134
    [Google Scholar]
  42. Lind-Holm MogensenF. ScafidiA. PoliA. MichelucciA. PARK7/DJ-1 in microglia: Implications in Parkinson’s disease and relevance as a therapeutic target.J. Neuroinflammation20232019510.1186/s12974‑023‑02776‑z37072827
    [Google Scholar]
  43. ZhangW. WangT. PeiZ. MillerD.S. WuX. BlockM.L. WilsonB. ZhangW. ZhouY. HongJ.S. ZhangJ. Aggregated α-synuclein activates microglia: A process leading to disease progression in Parkinson’s disease.FASEB J.200519653354210.1096/fj.04‑2751com15791003
    [Google Scholar]
  44. DuffyM.F. Lewy body-like alpha-synuclein inclusions trigger reactive microgliosis prior to nigral degeneration.J. Neuroinflammation201815118
    [Google Scholar]
  45. SorrentinoZ.A. GiassonB.I. ChakrabartyP. α-Synuclein and astrocytes: Tracing the pathways from homeostasis to neurodegeneration in Lewy body disease.Acta Neuropathol.2019138112110.1007/s00401‑019‑01977‑230798354
    [Google Scholar]
  46. WakabayashiK. EngelenderS. YoshimotoM. TsujiS. RossC.A. TakahashiH. Synphilin-1 is present in Lewy bodies in Parkinson’s disease.Ann. Neurol.200047452152310.1002/1531‑8249(200004)47:4<521::AID‑ANA18>3.0.CO;2‑B10762166
    [Google Scholar]
  47. HendersonM.X. TrojanowskiJ.Q. LeeV.M.Y. α-Synuclein pathology in Parkinson’s disease and related α-synucleinopathies.Neurosci. Lett.201970913431610.1016/j.neulet.2019.13431631170426
    [Google Scholar]
  48. DavidsonK. PickeringA.M. The proteasome: A key modulator of nervous system function, brain aging, and neurodegenerative disease.Front. Cell Dev. Biol.202311112490710.3389/fcell.2023.112490737123415
    [Google Scholar]
  49. DexterD.T. JennerP. Parkinson disease: From pathology to molecular disease mechanisms.Free Radic. Biol. Med.20136213214410.1016/j.freeradbiomed.2013.01.01823380027
    [Google Scholar]
  50. LeiY. KlionskyD.J. The emerging roles of autophagy in human diseases.Biomedicines2021911165110.3390/biomedicines911165134829881
    [Google Scholar]
  51. LiaoZ. WangB. LiuW. XuQ. HouL. SongJ. GuoQ. LiN. Dysfunction of chaperone-mediated autophagy in human diseases.Mol. Cell. Biochem.202147631439145410.1007/s11010‑020‑04006‑z33389491
    [Google Scholar]
  52. SawadaM. KiyonoT. NakashimaS. ShinodaJ. NaganawaT. HaraS. IwamaT. SakaiN. Molecular mechanisms of TNF-α-induced ceramide formation in human glioma cells:P53-mediated oxidant stress-dependent and -independent pathways.Cell Death Differ.2004119997100810.1038/sj.cdd.440143815131591
    [Google Scholar]
  53. PastoreD. Della-MorteD. CoppolaA. CapuaniB. LombardoM.F. PacificiF. FerrelliF. ArrigaR. MammiC. FedericiM. BelliaA. Di DanieleN. TesauroM. DonadelG. NotoD. SbracciaP. SconocchiaG. LauroD. SGK-1 protects kidney cells against apoptosis induced by ceramide and TNF-α.Cell Death Dis.201569e1890e189010.1038/cddis.2015.23226379195
    [Google Scholar]
  54. BellouV. BelbasisL. TzoulakiI. EvangelouE. IoannidisJ.P.A. Environmental risk factors and Parkinson’s disease: An umbrella review of meta-analyses.Parkinsonism Relat. Disord.2016231910.1016/j.parkreldis.2015.12.00826739246
    [Google Scholar]
  55. OngY.L. DengX. TanE.K. Etiologic links between environmental and lifestyle factors and Essential tremor.Ann. Clin. Transl. Neurol.20196597998910.1002/acn3.75831139697
    [Google Scholar]
  56. Portero McLellanK.C. WyneK. VillagomezE.T. HsuehW.A. Therapeutic interventions to reduce the risk of progression from prediabetes to type 2 diabetes mellitus.Ther. Clin. Risk Manag.20141017318824672242
    [Google Scholar]
  57. DourosA. Dell’AnielloS. YuO.H.Y. FilionK.B. AzoulayL. SuissaS. Sulfonylureas as second line drugs in type 2 diabetes and the risk of cardiovascular and hypoglycaemic events: Population based cohort study.BMJ2018362k269310.1136/bmj.k269330021781
    [Google Scholar]
  58. FuM.R. RidnerS.H. HuS.H. StewartB.R. CormierJ.N. ArmerJ.M. Psychosocial impact of lymphedema: A systematic review of literature from 2004 to 2011.Psychooncology20132271466148410.1002/pon.320123044512
    [Google Scholar]
  59. Chin-ChanM. Navarro-YepesJ. Quintanilla-VegaB. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases.Front. Cell. Neurosci.2015912410.3389/fncel.2015.0012425914621
    [Google Scholar]
  60. DixitS. BohreK. SinghY. HimeurY. MansoorW. AtallaS. SrinivasanK. A Comprehensive review on AI-enabled models for Parkinson’s disease diagnosis.Electronics (Basel)202312478310.3390/electronics12040783
    [Google Scholar]
  61. AgimZ.S. CannonJ.R. Dietary factors in the etiology of Parkinson’s disease.Biomed Res Int.2015201567283810.1155/2015/672838
    [Google Scholar]
  62. JosephR.J. Alonso-AlonsoM. BondD.S. Pascual-LeoneA. BlackburnG.L. The neurocognitive connection between physical activity and eating behaviour.Obes. Rev.2011121080081210.1111/j.1467‑789X.2011.00893.x21676151
    [Google Scholar]
  63. RudrapalM. MajiS. PrajapatiS.K. KesharwaniP. DebP.K. KhanJ. Mohamed IsmailR. KankateR.S. SahooR.K. KhairnarS.J. BendaleA.R. Protective effects of diets rich in polyphenols in cigarette smoke (CS)-induced oxidative damages and associated health implications.Antioxidants2022117121710.3390/antiox1107121735883708
    [Google Scholar]
  64. JankovicJ. TanE.K. Parkinson’s disease: Etiopathogenesis and treatment.J. Neurol. Neurosurg. Psychiatry202091879580810.1136/jnnp‑2019‑32233832576618
    [Google Scholar]
  65. SampatR. YoungS. RosenA. BernhardD. MillingtonD. FactorS. JinnahH.A. Potential mechanisms for low uric acid in Parkinson disease.J. Neural Transm. (Vienna)2016123436537010.1007/s00702‑015‑1503‑426747026
    [Google Scholar]
  66. MaC. YuR. LiJ. WangX. GuoJ. XiaoE. LiuP. Association of serum uric acid levels with bone mineral density and the presence of osteoporosis in Chinese patients with Parkinson’s disease: A cross-sectional study.J. Bone Miner. Metab.202341571472610.1007/s00774‑023‑01446‑737420115
    [Google Scholar]
  67. YadavR.K. ShahK. DewanganH.K. Intranasal drug delivery of sumatriptan succinate-loaded polymeric solid lipid nanoparticles for brain targeting.Drug Dev. Ind. Pharm.2022481212810.1080/03639045.2022.209057535703403
    [Google Scholar]
  68. GaoV. BrianoJ.A. KomerL.E. BurréJ. Functional and pathological effects of α-synuclein on synaptic SNARE complexes.J. Mol. Biol.2023435116771410.1016/j.jmb.2022.16771435787839
    [Google Scholar]
  69. BreydoL. WuJ.W. UverskyV.N. α-Synuclein misfolding and Parkinson’s disease.Biochim. Biophys. Acta Mol. Basis Dis.20121822226128510.1016/j.bbadis.2011.10.00222024360
    [Google Scholar]
  70. ThakurP. ChiuW.H. RoeperJ. GoldbergJ.A. α-Synuclein 2.0 — Moving towards Cell Type Specific Pathophysiology.Neuroscience201941224825610.1016/j.neuroscience.2019.06.00531202707
    [Google Scholar]
  71. MagrinelliF. BalintB. BhatiaK. P. Challenges in Clinicogenetic Correlations: One Gene–Many Phenotypes Unravelling the Basis of Phenotypic Heterogeneity in Monogenic Disorders.Mov. Disord. Clin. Pract.20152015mdc3.131
    [Google Scholar]
  72. GravesN.J. GambinY. SiereckiE. α-Synuclein Strains and Their Relevance to Parkinson’s Disease, Multiple System Atrophy, and Dementia with Lewy Bodies.Int. J. Mol. Sci.202324151213410.3390/ijms24151213437569510
    [Google Scholar]
  73. TavassolyO. del Cid PelliteroE. LarroquetteF. CaiE. ThomasR.A. SoubannierV. LuoW. DurcanT.M. FonE.A. Pharmacological Inhibition of Brain EGFR Activation By a BBB-penetrating Inhibitor, AZD3759, Attenuates α-synuclein Pathology in a Mouse Model of α-Synuclein Propagation.Neurotherapeutics202118297999710.1007/s13311‑021‑01017‑633713002
    [Google Scholar]
  74. DeepikaD. DewanganH.K. MauryaL. SinghS. Intranasal Drug Delivery of Frovatriptan Succinate–Loaded Polymeric Nanoparticles for Brain Targeting.J. Pharm. Sci.2019108285185910.1016/j.xphs.2018.07.01330053555
    [Google Scholar]
  75. AboJabelH. ArgavanE. Hassin-BaerS. InzelbergR. WernerP. Exploring the perceptions and stigmatizing experiences of Israeli family caregivers of people with Parkinson’s disease.J. Aging Stud.20215610091010.1016/j.jaging.2020.10091033712095
    [Google Scholar]
  76. RomanatoM. PiatkowskaW. SpolaorF. ToD.K. VolpeD. SawachaZ. Different perspectives in understanding muscle functions in Parkinson’s disease through surface electromyography: Exploring multiple activation patterns.J. Electromyogr. Kinesiol.20226410265810.1016/j.jelekin.2022.10265835439716
    [Google Scholar]
  77. MarrasC. ChaudhuriK.R. Nonmotor features of Parkinson’s disease subtypes.Mov. Disord.20163181095110210.1002/mds.2651026861861
    [Google Scholar]
  78. SirkisD.W. BonhamL.W. JohnsonT.P. La JoieR. YokoyamaJ.S. Dissecting the clinical heterogeneity of early-onset Alzheimer’s disease.Mol. Psychiatry20222762674268810.1038/s41380‑022‑01531‑935393555
    [Google Scholar]
  79. AlqahtaniT. DeoreS.L. KideA.A. ShendeB.A. SharmaR. Dadarao ChakoleR. NemadeL.S. Kishor KaleN. BorahS. Shrikant DeokarS. BeheraA. Dhawal BhandariD. GaikwadN. Kalam AzadA. GhoshA. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease, and Parkinson’s disease, Huntington’s disease and Amyotrophic Lateral Sclerosis -An updated review.Mitochondrion202371839210.1016/j.mito.2023.05.00737269968
    [Google Scholar]
  80. SpanoP.F. BellucciA. Novel perspectives for Parkinson’s disease therapy: insights from the latest advances in disease pathophysiology, diagnostic and experimental tools and molecular targets.CNS Neurol. Disord. Drug Targets20131281083108524040812
    [Google Scholar]
  81. Leite SilvaA.B.R. Gonçalves de OliveiraR.W. DiógenesG.P. de Castro AguiarM.F. SallemC.C. LimaM.P.P. de Albuquerque FilhoL.B. Peixoto de MedeirosS.D. Penido de MendonçaL.L. de Santiago FilhoP.C. NonesD.P. da Silva CardosoP.M.M. RibasM.Z. GalvãoS.L. GomesG.F. Bezerra de MenezesA.R. dos SantosN.L. MororóV.M. DuarteF.S. dos SantosJ.C.C. Premotor, nonmotor and motor symptoms of Parkinson’s Disease: A new clinical state of the art.Ageing Res. Rev.20238410183410.1016/j.arr.2022.10183436581178
    [Google Scholar]
  82. PostumaR.B. AarslandD. BaroneP. BurnD.J. HawkesC.H. OertelW. ZiemssenT. Identifying prodromal Parkinson’s disease: Pre-Motor disorders in Parkinson’s disease.Mov. Disord.201227561762610.1002/mds.2499622508280
    [Google Scholar]
  83. JinH. ZhangJ.R. ShenY. LiuC.F. Clinical Significance of REM Sleep Behavior Disorders and Other Non-motor Symptoms of Parkinsonism.Neurosci. Bull.201733557658410.1007/s12264‑017‑0164‑828770440
    [Google Scholar]
  84. KeserwaniP.K. DasS. SarkarN. A Comparative Study: Prediction of Parkinson’s Disease Using Machine Learning, Deep Learning, and Nature Inspired Algorithm.Multimed. Tools Appl2024836939369441
    [Google Scholar]
  85. VoicuV. BreharF.M. ToaderC. Covache-BusuiocR.A. CorlatescuA.D. BordeianuA. CostinH.P. BratuB.G. GlavanL.A. CiureaA.V. Cannabinoids in Medicine: A Multifaceted Exploration of Types, Therapeutic Applications, and Emerging Opportunities in Neurodegenerative Diseases and Cancer Therapy.Biomolecules2023139138810.3390/biom1309138837759788
    [Google Scholar]
  86. WuJ. CuiX. KeP.C. MortimerM. WangX. BaoL. ChenC. Nanomaterials as novel agents for amelioration of Parkinson’s disease.Nano Today20214110132810.1016/j.nantod.2021.101328
    [Google Scholar]
  87. CassottaM. GeertsH. HarbomL. OuteiroT.F. PediaditakisI. ReinerO. SchildknechtS. SchwambornJ.C. BaileyJ. HerrmannK. HogbergH.T. The future of Parkinson’s disease research: A new paradigm of human-specific investigation is necessary… and possible.Altern. Anim. Exp.202239469470910.14573/altex.220316135404466
    [Google Scholar]
  88. DebnathS. SharmaD. ChaudhariS.Y. SharmaR. ShaikhA.A. BuchadeR.S. KesariK.K. Abdel-FattahA.F.M. AlgahtaniM. MheidatM. AlsaidalaniR. PaulT. SayedA.A. Abdel-DaimM.M. Wheat ergot fungus-derived and modified drug for inhibition of intracranial aneurysm rupture due to dysfunction of TLR-4 receptor in Alzheimer’s disease.PLoS One2023181e027961610.1371/journal.pone.027961636656815
    [Google Scholar]
  89. FieldsC.R. Bengoa-VergnioryN. Wade-MartinsR. Targeting Alpha-Synuclein as a Therapy for Parkinson’s Disease.Front. Mol. Neurosci.20191229910.3389/fnmol.2019.0029931866823
    [Google Scholar]
  90. SardiS.P. CedarbaumJ.M. BrundinP. Targeted Therapies for Parkinson’s Disease: From Genetics to the Clinic.Mov. Disord.201833568469610.1002/mds.2741429704272
    [Google Scholar]
  91. UrsoD. ChaudhuriK.R. QamarM.A. JennerP. Improving the Delivery of Levodopa in Parkinson’s Disease: A Review of Approved and Emerging Therapies.CNS Drugs202034111149116310.1007/s40263‑020‑00769‑733146817
    [Google Scholar]
  92. PoeweW. AntoniniA. Novel formulations and modes of delivery of levodopa.Mov. Disord.201530111412010.1002/mds.2607825476691
    [Google Scholar]
  93. NehaS.L. MishraA.K. RaniL. ParohaS. DewanganH.K. SahooP.K. Design and evaluations of a nanostructured lipid carrier loaded with dopamine hydrochloride for intranasal bypass drug delivery in Parkinson’s disease.J. Microencapsul.202340859961210.1080/02652048.2023.226438637787159
    [Google Scholar]
  94. StroblW. TheologisT. BrunnerR. KocerS. ViehwegerE. Pascual-PascualI. PlaczekR. Best clinical practice in botulinum toxin treatment for children with cerebral palsy.Toxins (Basel)2015751629164810.3390/toxins705162925969944
    [Google Scholar]
  95. CooperL. LuiM. NdukaC. Botulinum toxin treatment for facial palsy: A systematic review.J. Plast. Reconstr. Aesthet. Surg.201770683384110.1016/j.bjps.2017.01.00928389084
    [Google Scholar]
  96. DayabandaraM. HanwellaR. RatnatungaS. SeneviratneS. SuraweeraC. de SilvaV. Antipsychotic-associated weight gain: Management strategies and impact on treatment adherence.Neuropsychiatr. Dis. Treat.2017132231224110.2147/NDT.S11309928883731
    [Google Scholar]
  97. ServaS.N. BernsteinJ. ThompsonJ.A. KernD.S. OjemannS.G. An update on advanced therapies for Parkinson’s disease: From gene therapy to neuromodulation.Front. Surg.2022986392110.3389/fsurg.2022.86392136211256
    [Google Scholar]
  98. SquillaroT. PelusoG. GalderisiU. Clinical Trials with Mesenchymal Stem Cells: An Update.Cell Transplant.201625582984810.3727/096368915X68962226423725
    [Google Scholar]
  99. EllisT. RochesterL. Mobilizing Parkinson’s Disease: The Future of Exercise.J. Parkinsons Dis.20188s1S95S10010.3233/JPD‑18148930584167
    [Google Scholar]
  100. UnnisaA. DuaK. KamalM.A. Mechanism of Mesenchymal Stem Cells as a Multitarget Disease- Modifying Therapy for Parkinson’s Disease.Curr. Neuropharmacol.2023214988100010.2174/1570159X2066622032721241435339180
    [Google Scholar]
  101. AsanoH. TianY.S. HatabuA. TakagiT. UedaM. IkedaK. SuzukiY. IidaT. NishioA. Safety comparisons among monoamine oxidase inhibitors against Parkinson’s disease using FDA adverse event reporting system.Sci. Rep.20231311927210.1038/s41598‑023‑44142‑237935702
    [Google Scholar]
  102. YangY. GaoF. GaoL. MiaoJ. WangQ. ZhaoX. Effects of rasagiline combined with levodopa and benserazide hydrochloride on motor function and homocysteine and IGF-1 levels in elderly patients with Parkinson’s disease.BMC Neurol.202323136010.1186/s12883‑023‑03411‑337803329
    [Google Scholar]
  103. GoudaN.A. ElkamhawyA. ChoJ. Emerging Therapeutic Strategies for Parkinson’s Disease and Future Prospects: A 2021 Update.Biomedicines202210237110.3390/biomedicines1002037135203580
    [Google Scholar]
  104. NielsenJ. LauritsenJ. PedersenJ.N. NowakJ.S. BendtsenM.K. KleijwegtG. LusserK. PitarchL.C. MorenoJ.V. SchneiderM.M. KrainerG. GoksøyrL. KhaliféP. KaalundS.S. AznarS. KjærgaardM. SereikaitéV. StrømgaardK. KnowlesT.P.J. NielsenM.A. SanderA.F. Romero-RamosM. OtzenD.E. Molecular properties and diagnostic potential of monoclonal antibodies targeting cytotoxic α-synuclein oligomers.NPJ Parkinsons Dis.202410113910.1038/s41531‑024‑00747‑639075088
    [Google Scholar]
  105. GrünewaldA. KumarK.R. SueC.M. New insights into the complex role of mitochondria in Parkinson’s disease.Prog. Neurobiol.2019177739310.1016/j.pneurobio.2018.09.00330219247
    [Google Scholar]
  106. GoldeT.E. Overcoming translational barriers impeding development of Alzheimer’s disease modifying therapies.J. Neurochem.2016139S2Suppl. 222423610.1111/jnc.1358327145445
    [Google Scholar]
  107. StocchiF. Optimising levodopa therapy for the management of Parkinson’s disease.J. Neurol.2005252S4Suppl. 4iv43iv4810.1007/s00415‑005‑4009‑416222437
    [Google Scholar]
  108. LeesA. TolosaE. StocchiF. FerreiraJ.J. RascolO. AntoniniA. PoeweW. SchapiraA. Optimizing levodopa therapy, when and how? Perspectives on the importance of delivery and the potential for an early combination approach.Expert Rev. Neurother.2023231152410.1080/14737175.2023.217622036729395
    [Google Scholar]
  109. OkerekeC.S. Role of integrative pharmacokinetic and pharmacodynamic optimization strategy in the management of Parkinson"s disease patients experiencing motor fluctuations with levodopa.J. Pharm. Pharm. Sci.20025214616112207867
    [Google Scholar]
  110. Boelens KeunJ.T. ArnoldussenI.A. VriendC. van de RestO. IbrahimN. Dietary approaches to improve efficacy and control side effects of levodopa therapy in parkinson’s disease: A systematic review.Adv. Nutr.20211262265228710.1093/advances/nmab06034113965
    [Google Scholar]
  111. MasoodN. Jimenez-ShahedJ. Effective Management of “OFF” Episodes in Parkinson’s Disease: Emerging Treatment Strategies and Unmet Clinical Needs.Neuropsychiatr. Dis. Treat.20231924726610.2147/NDT.S27312136721795
    [Google Scholar]
  112. NakmodeD.D. DayC.M. SongY. GargS. ZhengX. LiD. YangW. The management of parkinson’s disease: An overview of the current advancements in drug delivery systems.Pharmaceutics2023155150310.3390/pharmaceutics1505150337242745
    [Google Scholar]
  113. AntoniniA. EmmiA. CampagnoloM. Beyond the dopaminergic system: Lessons learned from levodopa resistant symptoms in parkinson’s disease.Mov. Disord. Clin. Pract. (Hoboken)202310S2Suppl. 2S50S5510.1002/mdc3.1378637637981
    [Google Scholar]
  114. SandykR. Freezing of gait in Parkinson’s disease is improved by treatment with weak electromagnetic fields.Int. J. Neurosci.1996851-211112410.3109/002074596089863568727687
    [Google Scholar]
  115. BhidayasiriR. PrasertpanT. TinazziM. Engaging multi-stakeholders to develop a great digital assistive technology that Parkinson's Disease patients love, value, and use to improve motor aspects of daily living.Handbook of digital technologies in movement disordersAmsterdamElsevier2024
    [Google Scholar]
  116. PirtošekZ. BajenaruO. KovácsN. MilanovI. ReljaM. SkorvanekM. Update on the management of parkinson’s disease for general neurologists.Parkinsons Dis.2020202011310.1155/2020/913147432300476
    [Google Scholar]
  117. GiugniJ.C. OkunM.S. Treatment of advanced Parkinson’s disease.Curr. Opin. Neurol.201427445046010.1097/WCO.000000000000011824978634
    [Google Scholar]
  118. SprengerF. PoeweW. Management of motor and non-motor symptoms in Parkinson’s disease.CNS Drugs201327425927210.1007/s40263‑013‑0053‑223515972
    [Google Scholar]
  119. PunyakotiP. BehlT. SehgalA. YadavS. SachdevaM. AnwerM.K. Vargas-De-La-CruzC. VenkatachalamT. NaqviM. VermaR. TuliH.S. Postulating the possible cellular signalling mechanisms of antibody drug conjugates in Alzheimer’s disease.Cell. Signal.202310211053910.1016/j.cellsig.2022.11053936455831
    [Google Scholar]
  120. PupíkováM. RektorováI. Non-pharmacological management of cognitive impairment in Parkinson’s disease.J. Neural Transm. (Vienna)2020127579982010.1007/s00702‑019‑02113‑w31823066
    [Google Scholar]
  121. SantosB. González-FraileE. ZabalaA. GuillénV. RuedaJ.R. BallesterosJ. Cognitive improvement of acetylcholinesterase inhibitors in schizophrenia.J. Psychopharmacol.201832111155116610.1177/026988111880549630324844
    [Google Scholar]
  122. TomarS. YadavR.K. ShahK. DewanganH.K. A Comprehensive Review on Carrier Mediated Nose to Brain Targeting: Emphasis on Molecular Targets, Current Trends, Future Prospects, and Challenges.Int. J. Polym. Mater.20221123
    [Google Scholar]
  123. van den BerghR. EversL.J.W. de VriesN.M. Silva de LimaA.L. BloemB.R. ValentiG. MeindersM.J. Usability and utility of a remote monitoring system to support physiotherapy for people with Parkinson’s disease.Front. Neurol.202314125139510.3389/fneur.2023.125139537900610
    [Google Scholar]
  124. LoddoG. Calandra-BuonauraG. SambatiL. GianniniG. CecereA. CortelliP. ProviniF. The Treatment of Sleep Disorders in Parkinson’s Disease: From Research to Clinical Practice.Front. Neurol.201784210.3389/fneur.2017.0004228261151
    [Google Scholar]
  125. SunA. WuX. Efficacy of non-pharmacological interventions on improving sleep quality in depressed patients: A systematic review and network meta-analysis.J. Psychosom. Res.202317211143510.1016/j.jpsychores.2023.11143537451171
    [Google Scholar]
  126. DeschenesC.L. McCurryS.M. Current treatments for sleep disturbances in individuals with dementia.Curr. Psychiatry Rep.2009111202610.1007/s11920‑009‑0004‑219187704
    [Google Scholar]
  127. PollakP. Deep Brain Stimulation for Parkinson’s Disease–Patient Selection.Handbook of Clinical NeurologyAmsterdamElsevier201310.1016/B978‑0‑444‑53497‑2.00009‑7
    [Google Scholar]
  128. AntoniniA. NituB. Apomorphine and levodopa infusion for motor fluctuations and dyskinesia in advanced Parkinson disease.J. Neural Transm. (Vienna)201812581131113510.1007/s00702‑018‑1906‑030006821
    [Google Scholar]
  129. van LaarT. BorgemeesterR. The need for non-oral therapy in Parkinson’s disease; a potential role for apomorphine.Parkinsonism Relat. Disord.201633Suppl. 1S22S2710.1016/j.parkreldis.2016.11.01927998652
    [Google Scholar]
  130. ThanviB.R. LoT.C.N. Long term motor complications of levodopa: Clinical features, mechanisms, and management strategies.Postgrad. Med. J.20048094645245810.1136/pgmj.2003.01391215299154
    [Google Scholar]
  131. SuraL. MadhavanA. CarnabyG. CraryM.A. Dysphagia in the elderly: Management and nutritional considerations.Clin. Interv. Aging2012728729822956864
    [Google Scholar]
  132. MalafarinaV. Serra RexachJ.A. MasanésF. Cervera-DíazM.C. Lample LacasaL. Ollero OrtigasA. Cruz-JentoftA.J. Results of High-Protein, High-Calorie Oral Nutritional Supplementation in Malnourished Older People in Nursing Homes: An Observational, Multicenter, Prospective, Pragmatic Study (PROT-e-GER).J. Am. Med. Dir. Assoc.202122919191926.e510.1016/j.jamda.2021.02.03933819452
    [Google Scholar]
  133. KosterE. WadhwaniyaZ. Namasivayam-MacDonaldA.M. Preliminary Study of the Effects of a Dysphagia Support Group on Quality of Life.Am. J. Speech Lang. Pathol.20233241466148810.1044/2023_AJSLP‑22‑0027837130039
    [Google Scholar]
  134. NaganoA. OnakaM. MaedaK. UeshimaJ. ShimizuA. IshidaY. NagamiS. MiyaharaS. NishiharaK. YasudaA. SatakeS. MoriN. Prevalence and Characteristics of the Course of Dysphagia in Hospitalized Older Adults.Nutrients20231520437110.3390/nu1520437137892446
    [Google Scholar]
  135. Utrilla FornalsA. Costas-BatlleC. MedlinS. Menjón-LajusticiaE. Cisneros-GonzálezJ. Saura-CarmonaP. Montoro-HuguetM.A. Metabolic and Nutritional Issues after Lower Digestive Tract Surgery: The Important Role of the Dietitian in a Multidisciplinary Setting.Nutrients202416224610.3390/nu1602024638257141
    [Google Scholar]
  136. SuiY. TianY. KoW.K.D. WangZ. JiaF. HornA. De RidderD. ChoiK.S. BariA.A. WangS. HamaniC. BakerK.B. MachadoA.G. AzizT.Z. FonoffE.T. KühnA.A. BergmanH. SangerT. LiuH. HaberS.N. LiL. Deep Brain Stimulation Initiative: Toward Innovative Technology, New Disease Indications, and Approaches to Current and Future Clinical Challenges in Neuromodulation Therapy.Front. Neurol.20211159745110.3389/fneur.2020.59745133584498
    [Google Scholar]
  137. SandströmL. SchallingE. KarlssonF. BlomstedtP. HarteliusL. Speech Function Following Deep Brain Stimulation of the Caudal Zona Incerta: Effects of Habitual and High-Amplitude Stimulation.J. Speech Lang. Hear. Res.2021646S2121213310.1044/2020_JSLHR‑20‑0025633647213
    [Google Scholar]
  138. OliveiraA.M. CoelhoL. CarvalhoE. Ferreira-PintoM.J. VazR. AguiarP. Machine learning for adaptive deep brain stimulation in Parkinson’s disease: Closing the loop.J. Neurol.2023270115313532610.1007/s00415‑023‑11873‑137530789
    [Google Scholar]
  139. OehrnC.R. CerneraS. HammerL.H. ShcherbakovaM. YaoJ. HahnA. WangS. OstremJ.L. LittleS. StarrP.A. Chronic adaptive deep brain stimulation versus conventional stimulation in Parkinson’s disease: A blinded randomized feasibility trial.Nat. Med.2024111210.1038/s41591‑024‑03196‑z39160351
    [Google Scholar]
  140. BratsosS.P. KarponisD. SalehS.N. Efficacy and Safety of Deep Brain Stimulation in the Treatment of Parkinson’s Disease: A Systematic Review and Meta-analysis of Randomized Controlled Trials.Cureus20181010e347410.7759/cureus.347430648026
    [Google Scholar]
  141. RascolO. LozanoA. SternM. PoeweW. Milestones in Parkinson’s disease therapeutics.Mov. Disord.20112661072108210.1002/mds.2371421626552
    [Google Scholar]
  142. Ramirez-ZamoraA. OstremJ.L. Globus Pallidus Interna or Subthalamic Nucleus Deep Brain Stimulation for Parkinson Disease.JAMA Neurol.201875336737210.1001/jamaneurol.2017.432129356826
    [Google Scholar]
  143. PolitisM. WuK. LoaneC. QuinnN.P. BrooksD.J. RehncronaS. BjorklundA. LindvallO. PicciniP. Serotonergic neurons mediate dyskinesia side effects in Parkinson’s patients with neural transplants.Sci. Transl. Med.201023838ra4610.1126/scitranslmed.300097620592420
    [Google Scholar]
  144. GuoX. TangL. TangX. Current Developments in Cell Replacement Therapy for Parkinson’s Disease.Neuroscience202146337038210.1016/j.neuroscience.2021.03.02233774124
    [Google Scholar]
  145. SonntagK.C. SongB. LeeN. JungJ.H. ChaY. LeblancP. NeffC. KongS.W. CarterB.S. SchweitzerJ. KimK.S. Pluripotent stem cell-based therapy for Parkinson’s disease: Current status and future prospects.Prog. Neurobiol.201816812010.1016/j.pneurobio.2018.04.00529653250
    [Google Scholar]
  146. BarbutiP.A. BarkerR.A. BrundinP. PrzedborskiS. PapaS.M. KaliaL.V. MochizukiH. Recent Advances in the Development of Stem-Cell-Derived Dopaminergic Neuronal Transplant Therapies for Parkinson’s Disease.Mov. Disord.20213681772178010.1002/mds.2862833963552
    [Google Scholar]
  147. Stoddard-BennettT. Reijo PeraR. Treatment of Parkinson’s Disease through Personalized Medicine and Induced Pluripotent Stem Cells.Cells2019812610.3390/cells801002630621042
    [Google Scholar]
  148. KirkebyA. ParmarM. BarkerR.A. Strategies for bringing stem cell-derived dopamine neurons to the clinic.Prog. Brain Res.201723016519010.1016/bs.pbr.2016.11.01128552228
    [Google Scholar]
  149. BarkerR.A. Designing stem-cell-based dopamine cell replacement trials for Parkinson’s disease.Nat. Med.20192571045105310.1038/s41591‑019‑0507‑231263283
    [Google Scholar]
  150. KirkebyA. NelanderJ. HobanD.B. RogeliusN. BjartmarzH. StormP. FiorenzanoA. AdlerA.F. ValeS. MudannayakeJ. ZhangY. CardosoT. MattssonB. LandauA.M. GludA.N. SørensenJ.C. LillethorupT.P. LowdellM. CarvalhoC. BainO. van VlietT. LindvallO. BjörklundA. HarryB. CuttingE. WidnerH. PaulG. BarkerR.A. ParmarM. Preclinical quality, safety, and efficacy of a human embryonic stem cell-derived product for the treatment of Parkinson’s disease, STEM-PD.Cell Stem Cell2023301012991314.e910.1016/j.stem.2023.08.01437802036
    [Google Scholar]
  151. KozłowskaM. KotarbaS. TamborJ. WiniarskiM. MoczulskaH. PietrusińskiM. BorowiecM. Parkinson’s disease gene therapy: A comparative effectiveness review of completed clinical trials in terms of their possible implementation in treatment.Med. Sci. Pulse20231641710.5604/01.3001.0016.2849
    [Google Scholar]
  152. ShchaslyvyiA.Y. AntonenkoS.V. TesliukM.G. TelegeevG.D. Current State of Human Gene Therapy: Approved Products and Vectors.Pharmaceuticals (Basel)20231610141610.3390/ph1610141637895887
    [Google Scholar]
  153. HvingelbyV.S. PaveseN. Surgical Advances in Parkinson’s Disease.Curr. Neuropharmacol.20242261033104610.2174/1570159X2166622112109434336411569
    [Google Scholar]
  154. YadavA.P. NicolelisM.A.L. Electrical stimulation of the dorsal columns of the spinal cord for Parkinson’s disease.Mov. Disord.201732682083210.1002/mds.2703328497877
    [Google Scholar]
  155. CioccaM. SeemungalB.M. TaiY.F. Spinal Cord Stimulation for Gait Disorders in Parkinson’s Disease and Atypical Parkinsonism: A Systematic Review of Preclinical and Clinical Data.Neuromodulation20232671339136110.1016/j.neurom.2023.06.00337452800
    [Google Scholar]
  156. JamesN.D. McMahonS.B. Field-FoteE.C. BradburyE.J. Neuromodulation in the restoration of function after spinal cord injury.Lancet Neurol.2018171090591710.1016/S1474‑4422(18)30287‑430264729
    [Google Scholar]
  157. NagelS.J. WilsonS. JohnsonM.D. MachadoA. FrizonL. ChardonM.K. ReddyC.G. GilliesG.T. HowardM.A.III Spinal Cord Stimulation for Spasticity: Historical Approaches, Current Status, and Future Directions.Neuromodulation201720430732110.1111/ner.1259128370802
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501319817240919103802
Loading
/content/journals/cdt/10.2174/0113894501319817240919103802
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test