Skip to content
2000
Volume 25, Issue 15
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Skin cancer is a significant health concern, affecting millions of individuals globally on an annual basis. According to data from the World Health Organization, it stands as the most prevalent form of cancer within the white population. Current treatments for skin cancer typically involve a combination of chemotherapy, radiation therapy, and surgery. However, these methods often come with drawbacks, such as side effects and potential scarring. Therefore, there is a growing need for alternative treatments that can offer effective results with fewer adverse effects, driving ongoing research in skin cancer therapy. The advancement of immune checkpoint inhibitors has been facilitated by a more profound comprehension of the interplay between tumors and the immune system, along with the regulatory mechanisms governing T-cells. As cancer treatment continues to evolve, immunotherapy is emerging as a powerful strategy, leading to a growing interest in the role of immunological checkpoints in skin cancer. Various types of immune checkpoints and their expression, including PD-1, PDL-1, CTLA-4, lymphocyte activation gene 3, and B7-H3, along with their blockers and monoclonal antibodies, have been established for various cancers. PD-1, PDL-1, and CTLA-4 are crucial immune system regulators, acting as brakes to prevent T-cell overactivation and potential autoimmunity. However, tumors can exploit these checkpoints to evade immune detection. Inhibiting these immune checkpoints can enhance the body's ability to recognize and attack cancer cells. This review focuses on the characteristics of PD-1, PDL-1, and CTLA-4 immune checkpoints, their mechanism of action, and their role in skin cancer. Additionally, it summarizes the ongoing clinical trials sponsored or conducted by various pharmaceutical companies and provides insights into the latest patent data.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501320281240822052657
2024-09-10
2024-11-22
Loading full text...

Full text loading...

References

  1. ChenJ.T. KemptonS.J. RaoV.K. The economics of skin cancer: An analysis of Medicare payment data.Plast. Reconstr. Surg. Glob. Open201649e86810.1097/GOX.000000000000082627757333
    [Google Scholar]
  2. BennardoL. BennardoF. GiudiceA. PassanteM. DastoliS. MorroneP. ProvenzanoE. PatrunoC. NisticòS.P. Local chemotherapy as an adjuvant treatment in unresectable squamous cell carcinoma: What do we know so far?Curr. Oncol.20212842317232510.3390/curroncol2804021334201867
    [Google Scholar]
  3. LansburyL. Bath-HextallF. PerkinsW. StantonW. Leonardi-BeeJ. Interventions for non-metastatic squamous cell carcinoma of the skin: systematic review and pooled analysis of observational studies.BMJ2013347nov04 1f615310.1136/bmj.f615324191270
    [Google Scholar]
  4. PDQ Pediatric Treatment Editorial Board Rare cancers of childhood treatment (PDQ®): Patient version.PDQ Cancer Information Summaries National Cancer Institute (US)Bethesda (MD)2002
    [Google Scholar]
  5. AnthonyML Surgical treatment of nonmelanoma skin cancer.AORN J.200071355056410.1016/S0001‑2092(06)61577‑9
    [Google Scholar]
  6. National Comprehensive Cancer Network National Comprehensive Cancer Network. Squamous Cell Skin Cancer (Version 5.2022).2022Available from: https://www.nccn. org/professionals/physician_gls/pdf/squamous.pdf
  7. BadashI. ShaulyO. LuiC.G. GouldD.J. PatelK.M. Nonmelanoma facial skin cancer: A review of diagnostic strategies, surgical treatment, and reconstructive techniques.Clin. Med. Insights Ear Nose Throat20191210.1177/117955061986527831384136
    [Google Scholar]
  8. ZengL. GowdaB.H.J. AhmedM.G. AbourehabM.A.S. ChenZ.S. ZhangC. LiJ. KesharwaniP. Advancements in nanoparticle-based treatment approaches for skin cancer therapy.Mol. Cancer20232211010.1186/s12943‑022‑01708‑436635761
    [Google Scholar]
  9. MutoP PastoreF. Radiotherapy in the adjuvant and advanced setting of CSCC.Dermatol. Pract. Concept.202111Suppl 210.5826/dpc.11S2a168S
    [Google Scholar]
  10. JenningsL. SchmultsC.D. Management of high-risk cutaneous squamous cell carcinoma.J. Clin. Aesthet. Dermatol.201034394820725546
    [Google Scholar]
  11. Calzavara-PintonP.G. VenturiniM. SalaR. CapezzeraR. ParrinelloG. SpecchiaC. ZaneC. Methylaminolaevulinate-based photodynamic therapy of Bowen’s disease and squamous cell carcinoma.Br. J. Dermatol.2008159113714410.1111/j.1365‑2133.2008.08593.x18489606
    [Google Scholar]
  12. MarmurE.S. SchmultsC.D. GoldbergD.J. A review of laser and photodynamic therapy for the treatment of nonmelanoma skin cancer.Dermatol. Surg.2004302 Pt 226427114871220
    [Google Scholar]
  13. BrahmerJ.R. LacchettiC. SchneiderB.J. AtkinsM.B. BrassilK.J. CaterinoJ.M. ChauI. ErnstoffM.S. GardnerJ.M. GinexP. HallmeyerS. Holter ChakrabartyJ. LeighlN.B. MammenJ.S. McDermottD.F. NaingA. NastoupilL.J. PhillipsT. PorterL.D. PuzanovI. ReichnerC.A. SantomassoB.D. SeigelC. SpiraA. Suarez-AlmazorM.E. WangY. WeberJ.S. WolchokJ.D. ThompsonJ.A. National Comprehensive Cancer Network Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline.J. Clin. Oncol.201836171714176810.1200/JCO.2017.77.638529442540
    [Google Scholar]
  14. NghiemP.T. BhatiaS. LipsonE.J. KudchadkarR.R. MillerN.J. AnnamalaiL. BerryS. ChartashE.K. DaudA. FlingS.P. FriedlanderP.A. KlugerH.M. KohrtH.E. LundgrenL. MargolinK. MitchellA. OlenckiT. PardollD.M. ReddyS.A. ShanthaE.M. SharfmanW.H. SharonE. ShemanskiL.R. ShinoharaM.M. SunshineJ.C. TaubeJ.M. ThompsonJ.A. TownsonS.M. YearleyJ.H. TopalianS.L. CheeverM.A. PD-1 blockade with pembrolizumab in advanced Merkel-cell carcinoma.N. Engl. J. Med.2016374262542255210.1056/NEJMoa160370227093365
    [Google Scholar]
  15. MigdenM.R. RischinD. SchmultsC.D. GuminskiA. HauschildA. LewisK.D. ChungC.H. Hernandez-AyaL. LimA.M. ChangA.L.S. RabinowitsG. ThaiA.A. DunnL.A. HughesB.G.M. KhushalaniN.I. ModiB. SchadendorfD. GaoB. SeebachF. LiS. LiJ. MathiasM. BoothJ. MohanK. StankevichE. BabikerH.M. BranaI. Gil-MartinM. HomsiJ. JohnsonM.L. MorenoV. NiuJ. OwonikokoT.K. PapadopoulosK.P. YancopoulosG.D. LowyI. FuryM.G. PD-1 blockade with cemiplimab in advanced cutaneous squamous cell carcinoma.N. Engl. J. Med.2018379434135110.1056/NEJMoa180513129863979
    [Google Scholar]
  16. LawrenceM.S. StojanovP. PolakP. KryukovG.V. CibulskisK. SivachenkoA. CarterS.L. StewartC. MermelC.H. RobertsS.A. KiezunA. HammermanP.S. McKennaA. DrierY. ZouL. RamosA.H. PughT.J. StranskyN. HelmanE. KimJ. SougnezC. AmbrogioL. NickersonE. SheflerE. CortésM.L. AuclairD. SaksenaG. VoetD. NobleM. DiCaraD. LinP. LichtensteinL. HeimanD.I. FennellT. ImielinskiM. HernandezB. HodisE. BacaS. DulakA.M. LohrJ. LandauD.A. WuC.J. Melendez-ZajglaJ. Hidalgo-MirandaA. KorenA. McCarrollS.A. MoraJ. LeeR.S. CromptonB. OnofrioR. ParkinM. WincklerW. ArdlieK. GabrielS.B. RobertsC.W.M. BiegelJ.A. StegmaierK. BassA.J. GarrawayL.A. MeyersonM. GolubT.R. GordeninD.A. SunyaevS. LanderE.S. GetzG. Mutational heterogeneity in cancer and the search for new cancer-associated genes.Nature2013499745721421810.1038/nature1221323770567
    [Google Scholar]
  17. SeidelJ.A. OtsukaA. KabashimaK. Anti-PD-1 and anti-CTLA-4 therapies in cancer: Mechanisms of action, efficacy, and limitations.Front. Oncol.201888610.3389/fonc.2018.0008629644214
    [Google Scholar]
  18. PennockN.D. WhiteJ.T. CrossE.W. CheneyE.E. TamburiniB.A. KedlR.M. T cell responses: Naïve to memory and everything in between.Adv. Physiol. Educ.201337427328310.1152/advan.00066.201324292902
    [Google Scholar]
  19. TengM.W.L. GalonJ. FridmanW.H. SmythM.J. From mice to humans: Developments in cancer immunoediting.J. Clin. Invest.201512593338334610.1172/JCI8000426241053
    [Google Scholar]
  20. OtsukaA. DreierJ. ChengP.F. NägeliM. LehmannH. FeldererL. FrewI.J. MatsushitaS. LevesqueM.P. DummerR. Hedgehog pathway inhibitors promote adaptive immune responses in basal cell carcinoma.Clin. Cancer Res.20152161289129710.1158/1078‑0432.CCR‑14‑211025593302
    [Google Scholar]
  21. OtsukaA. LevesqueM.P. DummerR. KabashimaK. Hedgehog signaling in basal cell carcinoma.J. Dermatol. Sci.20157829510010.1016/j.jdermsci.2015.02.00725766766
    [Google Scholar]
  22. ZaretskyJ.M. Garcia-DiazA. ShinD.S. Escuin-OrdinasH. HugoW. Hu-LieskovanS. TorrejonD.Y. Abril-RodriguezG. SandovalS. BarthlyL. SacoJ. Homet MorenoB. MezzadraR. ChmielowskiB. RuchalskiK. ShintakuI.P. SanchezP.J. Puig-SausC. CherryG. SejaE. KongX. PangJ. Berent-MaozB. Comin-AnduixB. GraeberT.G. TumehP.C. SchumacherT.N.M. LoR.S. RibasA. Mutations associated with acquired resistance to PD-1 blockade in melanoma.N. Engl. J. Med.2016375981982910.1056/NEJMoa160495827433843
    [Google Scholar]
  23. VinayDS RyanEP PawelecG TalibWH StaggJ ElkordE LichtorT DeckerWK WhelanRL KumaraHS SignoriE Immune evasion in cancer: Mechanistic basis and therapeutic strategies.Semin. Cancer Biol.201535SupplS185S198
    [Google Scholar]
  24. SarvariaA. MadrigalJ.A. SaudemontA. B cell regulation in cancer and anti-tumor immunity.Cell. Mol. Immunol.201714866267410.1038/cmi.2017.3528626234
    [Google Scholar]
  25. IshidaY. AgataY. ShibaharaK. HonjoT. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death.EMBO J.199211113887389510.1002/j.1460‑2075.1992.tb05481.x1396582
    [Google Scholar]
  26. SharmaN, Mazumder R, Rai P, Debnath A. Role of PD-1 in skin cancer: Molecular mechanism, clinical applications, and resistance.Chem Biol Drug Des20241043e14613
    [Google Scholar]
  27. ShindoY. YoshimuraK. KuramasuA. WatanabeY. ItoH. KondoT. OgaA. ItoH. YoshinoS. HazamaS. TamadaK. YagitaH. OkaM. Combination immunotherapy with 4-1BB activation and PD-1 blockade enhances antitumor efficacy in a mouse model of subcutaneous tumor.Anticancer Res.201535112913625550543
    [Google Scholar]
  28. RitprajakP. AzumaM. Intrinsic and extrinsic control of expression of the immunoregulatory molecule PD-L1 in epithelial cells and squamous cell carcinoma.Oral Oncol.201551322122810.1016/j.oraloncology.2014.11.01425500094
    [Google Scholar]
  29. SunJ.Y. ZhangD. WuS. XuM. ZhouX. LuX.J. JiJ. Resistance to PD-1/PD-L1 blockade cancer immunotherapy: Mechanisms, predictive factors, and future perspectives.Biomark. Res.2020813510.1186/s40364‑020‑00212‑532864132
    [Google Scholar]
  30. ChenL. HanX. Anti–PD-1/PD-L1 therapy of human cancer: Past, present, and future.J. Clin. Invest.201512593384339110.1172/JCI8001126325035
    [Google Scholar]
  31. PerkinsD WangZ DonovanC HeH MarkD GuanG WangY WalunasT BluestoneJ ListmanJ FinnPW Regulation of CTLA-4 expression during T cell activation.J. Immunol.19961561141544159
    [Google Scholar]
  32. Le MercierI. LinesJ.L. NoelleR.J. Beyond CTLA-4 and PD-1, the generation Z of negative checkpoint regulators.Front. Immunol.2015641810.3389/fimmu.2015.0041826347741
    [Google Scholar]
  33. KouryJ LuceroM CatoC ChangL GeigerJ HenryD HernandezJ HungF KaurP TeskeyG TranA. Immunotherapies: Exploiting the immune system for cancer treatment.J. Immunol. Res.2018201810.1155/2018/9585614
    [Google Scholar]
  34. HodiF.S. O’DayS.J. McDermottD.F. WeberR.W. SosmanJ.A. HaanenJ.B. GonzalezR. RobertC. SchadendorfD. HasselJ.C. AkerleyW. van den EertweghA.J.M. LutzkyJ. LoriganP. VaubelJ.M. LinetteG.P. HoggD. OttensmeierC.H. LebbéC. PeschelC. QuirtI. ClarkJ.I. WolchokJ.D. WeberJ.S. TianJ. YellinM.J. NicholG.M. HoosA. UrbaW.J. Improved survival with ipilimumab in patients with metastatic melanoma.N. Engl. J. Med.2010363871172310.1056/NEJMoa100346620525992
    [Google Scholar]
  35. O’DayS.J. HamidO. UrbaW.J. Targeting cytotoxic T-lymphocyte antigen-4 (CTLA-4).Cancer2007110122614262710.1002/cncr.2308618000991
    [Google Scholar]
  36. FifeB.T. BluestoneJ.A. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways.Immunol. Rev.2008224116618210.1111/j.1600‑065X.2008.00662.x18759926
    [Google Scholar]
  37. StamperC.C. ZhangY. TobinJ.F. ErbeD.V. IkemizuS. DavisS.J. StahlM.L. SeehraJ. SomersW.S. MosyakL. Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses.Nature2001410682860861110.1038/3506911811279502
    [Google Scholar]
  38. WingK. OnishiY. Prieto-MartinP. YamaguchiT. MiyaraM. FehervariZ. NomuraT. SakaguchiS. CTLA-4 control over Foxp3+ regulatory T cell function.Science2008322589927127510.1126/science.116006218845758
    [Google Scholar]
  39. MakerA.V. PhanG.Q. AttiaP. YangJ.C. SherryR.M. TopalianS.L. KammulaU.S. RoyalR.E. HaworthL.R. LevyC. KleinerD. MavroukakisS.A. YellinM. RosenbergS.A. Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: A phase I/II study.Ann. Surg. Oncol.200512121005101610.1245/ASO.2005.03.53616283570
    [Google Scholar]
  40. PostowM.A. SidlowR. HellmannM.D. Immune-related adverse events associated with immune checkpoint blockade.N. Engl. J. Med.2018378215816810.1056/NEJMra170348129320654
    [Google Scholar]
  41. YiM. YuS. QinS. LiuQ. XuH. ZhaoW. ChuQ. WuK. Gut microbiome modulates efficacy of immune checkpoint inhibitors.J. Hematol. Oncol.20181114710.1186/s13045‑018‑0592‑629580257
    [Google Scholar]
  42. KwokG YauTC ChiuJW TseE KwongYL Pembrolizumab (Keytruda).Hum. Vaccin. Immunother.2016121127772789
    [Google Scholar]
  43. RobertC. RibasA. WolchokJ.D. HodiF.S. HamidO. KeffordR. WeberJ.S. JoshuaA.M. HwuW.J. GangadharT.C. PatnaikA. DroncaR. ZarourH. JosephR.W. BoasbergP. ChmielowskiB. MateusC. PostowM.A. GergichK. Elassaiss-SchaapJ. LiX.N. IannoneR. EbbinghausS.W. KangS.P. DaudA. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: A randomised dose-comparison cohort of a phase 1 trial.Lancet201438499481109111710.1016/S0140‑6736(14)60958‑225034862
    [Google Scholar]
  44. Oro-AyudeM. Suh-OhH.J. Sacristán-SantosV. Vázquez-BartoloméP. FlórezÁ. Nivolumab for metastatic cutaneous squamous cell carcinoma.Case Rep. Dermatol.2020121374110.1159/00050547832595466
    [Google Scholar]
  45. Zambrano-RománM. Padilla-GutiérrezJ.R. ValleY. Muñoz-ValleJ.F. Valdés-AlvaradoE. Non-melanoma skin cancer: A genetic update and future perspectives.Cancers20221410237110.3390/cancers1410237135625975
    [Google Scholar]
  46. ChangJ. ZhuG.A. CheungC. LiS. KimJ. ChangA.L.S. Association between programmed death ligand 1 expression in patients with basal cell carcinomas and the number of treatment modalities.JAMA Dermatol.2017153428529010.1001/jamadermatol.2016.506228259105
    [Google Scholar]
  47. IkedaS. GoodmanA.M. CohenP.R. JensenT.J. EllisonC.K. FramptonG. MillerV. PatelS.P. KurzrockR. Metastatic basal cell carcinoma with amplification of PD-L1: Exceptional response to anti-PD1 therapy.NPJ Genom. Med.2016111603710.1038/npjgenmed.2016.3727942391
    [Google Scholar]
  48. MohanS.V. KuoK.Y. ChangA.L.S. Incidental regression of an advanced basal cell carcinoma after ipilimumab exposure for metastatic melanoma.JAAD Case Rep.201621131510.1016/j.jdcr.2015.11.00727051815
    [Google Scholar]
  49. PatrinelyJ.R.Jr DewanA.K. JohnsonD.B. The role of anti-PD-1/PD-L1 in the treatment of skin cancer.BioDrugs202034449550310.1007/s40259‑020‑00428‑932447657
    [Google Scholar]
  50. ChukM.K. ChangJ.T. TheoretM.R. SampeneE. HeK. WeisS.L. HelmsW.S. JinR. LiH. YuJ. ZhaoH. ZhaoL. PacigaM. SchmielD. RawatR. KeeganP. PazdurR. FDA approval summary: Accelerated approval of pembrolizumab for second-line treatment of metastatic melanoma.Clin. Cancer Res.201723195666567010.1158/1078‑0432.CCR‑16‑066328235882
    [Google Scholar]
  51. AhmedS.R. PetersenE. PatelR. MigdenM.R. Cemiplimab-rwlc as first and only treatment for advanced cutaneous squamous cell carcinoma.Expert Rev. Clin. Pharmacol.2019121094795110.1080/17512433.2019.166502631524530
    [Google Scholar]
  52. TawbiH.A. ForsythP.A. AlgaziA. HamidO. HodiF.S. MoschosS.J. KhushalaniN.I. LewisK. LaoC.D. PostowM.A. AtkinsM.B. ErnstoffM.S. ReardonD.A. PuzanovI. KudchadkarR.R. ThomasR.P. TarhiniA. PavlickA.C. JiangJ. AvilaA. DemeloS. MargolinK. Combined nivolumab and ipilimumab in melanoma metastatic to the brain.N. Engl. J. Med.2018379872273010.1056/NEJMoa180545330134131
    [Google Scholar]
  53. RamagopalU.A. LiuW. Garrett-ThomsonS.C. BonannoJ.B. YanQ. SrinivasanM. WongS.C. BellA. MankikarS. RanganV.S. DeshpandeS. KormanA.J. AlmoS.C. Structural basis for cancer immunotherapy by the first-in-class checkpoint inhibitor ipilimumab.Proc. Natl. Acad. Sci. USA201711421E4223E423210.1073/pnas.161794111428484017
    [Google Scholar]
  54. JazirehiA.R. LimA. DinhT. PD-1 inhibition and treatment of advanced melanoma-role of pembrolizumab.Am. J. Cancer Res.20166102117212827822406
    [Google Scholar]
  55. ChoiJ. LeeS.Y. Clinical characteristics and treatment of immune-related adverse events of immune checkpoint inhibitors.Immune Netw.2020201e910.4110/in.2020.20.e932158597
    [Google Scholar]
  56. NasserH JohnMS Immunotherapeutic approaches to head and neck cancer.Crit. Rev. Oncog.2018233-410.1615/CritRevOncog.2018027641
    [Google Scholar]
  57. BansalP. OsmanD. GanG.N. SimonG.R. BoumberY. Recent advances in immunotherapy in metastatic NSCLC.Front. Oncol.2016623910.3389/fonc.2016.0023927896216
    [Google Scholar]
  58. VaddepallyR.K. KharelP. PandeyR. GarjeR. ChandraA.B. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence.Cancers202012373810.3390/cancers1203073832245016
    [Google Scholar]
  59. ZhangQ. HuoG. ZhangH. SongY. Efficacy of pembrolizumab for advanced/metastatic melanoma: A meta-analysis.Open Med.202015144745610.1515/med‑2020‑011033313405
    [Google Scholar]
  60. Jackson-SpenceF. SzabadosB. TomsC. YangY.H. SngC. PowlesT. Avelumab in locally advanced or metastatic urothelial carcinoma.Expert Rev. Anticancer Ther.202222213514010.1080/14737140.2022.202862135015593
    [Google Scholar]
  61. TsangJ. WongJ.S.L. KwokG.G.W. LiB.C.W. LeungR. ChiuJ. CheungT. YauT. Nivolumab + Ipilimumab for patients with hepatocellular carcinoma previously treated with Sorafenib.Expert Rev. Gastroenterol. Hepatol.202115658959810.1080/17474124.2021.189980833666530
    [Google Scholar]
  62. GaoJ. ZhangC. WeiZ. YeX. Immunotherapy for early-stage non-small cell lung cancer: A system review.J. Cancer Res. Ther.202319484986510.4103/jcrt.jcrt_723_2337675709
    [Google Scholar]
  63. LambaN. OttP.A. IorgulescuJ.B. Use of first-line immune checkpoint inhibitors and association with overall survival among patients with metastatic melanoma in the anti–PD-1 era.JAMA Netw. Open202258e222545910.1001/jamanetworkopen.2022.2545936006646
    [Google Scholar]
  64. KangC. Retifanlimab: First approval.Drugs202383873173710.1007/s40265‑023‑01884‑737184754
    [Google Scholar]
  65. Neo-adjuvant nivolumab or nivolumab with ipilimumab in advanced cutaneous squamous cell carcinoma prior to surgery (MATISSE).Patent NCT046202002020
  66. Study of cemiplimab in patients with type of skin cancer stage II to IV cutaneous squamous cell carcinoma.Patent NCT041549432020
  67. Neoadjuvant atezolizumab in surgically resectable advanced cutaneous squamous cell carcinoma.Patent NCT047104982020
  68. Intralesional cemiplimab for adult patients with cutaneous squamous cell carcinoma or basal cell carcinoma.Patent NCT038899122020
  69. Study of adjuvant cemiplimab versus placebo after surgery and radiation therapy in patients with high-risk cutaneous squamous cell carcinoma.Patent NCT039690042020
  70. Nivolumab in patients with advanced cutaneous squamous cell carcinoma (CA209-9JC). Patent NCT038342332020
  71. Neoadjuvant pembrolizumab in cutaneous squamous cell carcinoma (DESQUAMATE).Patent NCT050258132020
  72. Study of REGN2810 in patients with advanced cutaneous squamous cell carcinoma.Patent NCT027604982020
  73. Cemiplimab-rwlc for unresectable locally recurrent and/or metastatic CSCC.Patent NCT042421732020
  74. Radiotherapy in combination with atezolizumab in locally advanced borderline resectable or unresectable cutaneous SCC.Patent NCT050854962020
  75. Cemiplimab in AlloSCT/SOT recipients with CSCC (CONTRAC).Patent NCT043390622020
  76. Study evaluating cemiplimab alone and combined with rp1 in treating advanced squamous skin cancer (CERPASS).Patent NCT040504362020
  77. Neoadjuvant plus adjuvant treatment with cemiplimab in cutaneaous squamous cell carcinoma.Patent NCT046324332020
  78. Atezolizumab before surgery for the treatment of regionally metastatic head and neck squamous cell cancer with an unknown or historic primary site.Patent NCT051107812020
  79. BeforeC. SurgeryA. Cemiplimab before and after surgery for the treatment of high-risk cutaneous squamous cell cancer.Patent NCT044286712020
  80. Nivolumab for treatment of squamous cell carcinoma of the skin.Patent NCT042048372020
  81. Neoadjuvant study of PD-1 inhibitor pembrolizumab in PD-1 naive cutaneous squamous cell carcinoma (cSCC).Patent NCT048089992020
  82. Avelumab with or without cetuximab in treating patients with advanced skin squamous cell cancer.Patent NCT039449412020
  83. Study of Pembrolizumab (MK-3475) in Adults with Recurrent/Metastatic Cutaneous Squamous Cell Carcinoma (cSCC) or Locally Advanced Unresectable cSCC (MK-3475-629/KEYNOTE-629).Patent NCT032844242020
  84. Study of Pembrolizumab (MK-3475) in Adults with Recurrent/Metastatic Cutaneous Squamous Cell Carcinoma (cSCC) or Locally Advanced Unresectable cSCC (MK-3475-629/KEYNOTE-629).Patent NCT037377212020
  85. Pembrolizumab (MK-3475) versus Placebo Following Surgery and Radiation in Participants with Locally Advanced Cutaneous Squamous Cell Carcinoma (MK-3475-630/KEYNOTE-630)Patent NCT038331672020
  86. Post-operative radiation with cetuximab for locally advanced cutaneous squamous cell carcinoma of the head and neck.Patent NCT019792112020
  87. Talimogene laherparepvec and panitumumab for the treatment of locally advanced or metastatic squamous cell carcinoma of the skin.Patent NCT041639522020
  88. Pembrolizumab in patients with locally advanced or metastatic skin cancer.Patent NCT029645592020
  89. CemiplimAb Survivorship Epidemiology (CASE).Patent NCT038361052020
  90. Cetuximab before surgery in treating patients with aggressive locally advanced skin cancer.Patent NCT023246082020
  91. Talimogene laherparepvec and nivolumab in treating patients with refractory lymphomas or advanced or refractory non-melanoma skin cancers.Patent NCT029786252020
  92. High-risk skin cancers with atezolizumab plus NT-I7.Patent NCT039015732020
  93. An open-label study using ASP-1929 photoimmunotherapy in combination with anti-PD1 therapy in EGFR expressing advanced solid tumors.Patent NCT043057952020
  94. A study of SAR444245 combined with cemiplimab for the treatment of participants with various advanced skin cancers (Pegathor Skin 201).Patent NCT049132202020
  95. Quad shot radiotherapy in combination with immune checkpoint inhibition.Patent NCT044544892020
  96. Pembrolizumab Combined with Cetuximab for Treatment of Recurrent/Metastatic Head & Neck Squamous Cell Carcinoma.Patent NCT030825342020
  97. Abexinostat in combination with pembrolizumab in patients with advanced solid tumor malignancies.Patent NCT035900542020
  98. Cobimetinib and atezolizumab in treating participants with advanced or refractory rare tumors.Patent NCT031081312020
  99. Phase 1 study of CK-301 (Cosibelimab) as a single agent in subjects with advanced cancers.Patent NCT032124042020
  100. Sonidegib and pembrolizumab in treating patients with advanced solid tumors.Patent NCT040077442020
  101. Pembrolizumab in Treating Patients with Rare Tumors That Cannot Be Removed by Surgery or Are Metastatic.Patent NCT027217322020
  102. Study of SO-C101 and SO-C101 in Combination with Pembro in Adult Patients with Advanced/Metastatic Solid TumorsPatent NCT027217322020
  103. Tacrolimus, Nivolumab, and Ipilimumab in Treating Kidney Transplant Recipients with Selected Unresectable or Metastatic Cancers.Patent NCT038163322020
  104. FURY MATTHEW G Administration of PD-1 inhibitors for treating skin cancer.Patent EP39308482022
  105. FURY MATTHEW G Intralesional administration of pd-1 inhibitors for treating skin cancer.Patent EP38801862021
  106. CURIEL A method of determining risk for skin cancer development and skin cancer therapeutic prevention by measuring pd-1/pd-l1 signaling pathway members.Patent WO20201182082020
  107. Fury MatthewG. Methods of treating cancer by administering a pd-1 inhibitor.Patent EP42045922023
  108. HarrathB.M. HongG. KumarP.B. Combination therapy with notch and PD-1 Or PD-L1 inhibitors.Patent EP34580912019
  109. IlonaG. Combination of an ahr-inhibitor and a pd-1inhibitor antibody and its use in the treatment of cancer.Patent EP40764622022
  110. DesaiJ. SeluzhytskyM.G. AlexandermehtaN.P. Methods of treating cancer in immunosuppressed or immunocompromised patients by administering a pd-1 inhibitor.Patent CA31709022022
  111. ShengJ. ZhouG. HaoH. QiM. WuX. ZhangK. QiuY. PD-1/PD-L1 polypeptide inhibitor and medical application thereof.Patent CN1119092402020
  112. ChenM. XingS. ChengL. ZhangL. YangC. Application of combination of anti-pd-1 antibody and il-15 protein compound in preparation of medicines for tumor treatment.Patent CN1104486912019
  113. ShengB. YangR. IgY and micromolecular Fab antibody capable of blocking PD-1/PD-L1 pathway and preparation and applications thereof.Patent CN1096944122019
  114. GabrielM. PD-1 peptide inhibitors.Patent JP20221900262022
  115. Gutierrez GabrielM. PD-1 and CTLA-4 dual inhibitor peptides.Patent Ep36308072020
  116. DzhonSung Combined therapy with tetracyclic quinolone analogues for cancer treatment.Patent RU00027525062019
  117. WangY. LijunhuangS.W. Use of bacteroides fragilis combined with immune checkpoint inhibitor in treatment of skin tumors.Patent WO20231341952023
  118. KumarM. ThangavelC. BeckerR.C. SadayappanS. Monoclonal antibody-based immunotherapy and its role in the development of cardiac toxicity.Cancers20201318610.3390/cancers1301008633396766
    [Google Scholar]
  119. BondhopadhyayB. SisodiyaS. ChikaraA. KhanA. TanwarP. AfrozeD. SinghN. AgrawalU. MehrotraR. HussainS. Cancer immunotherapy: A promising dawn in cancer research.Am. J. Blood Res.202010637538533489447
    [Google Scholar]
  120. LeeJ. HanY. WangW. JoH. KimH. KimS. YangK.M. KimS.J. DhanasekaranD.N. SongY.S. Phytochemicals in cancer immune checkpoint inhibitor therapy.Biomolecules2021118110710.3390/biom1108110734439774
    [Google Scholar]
  121. MessehaS.S. ZarmouhN.O. SolimanK.F.A. Polyphenols modulating effects of PD-L1/PD-1 checkpoint and EMT-mediated PD-L1 overexpression in breast cancer.Nutrients2021135171810.3390/nu1305171834069461
    [Google Scholar]
  122. LiuK. SunQ. LiuQ. LiH. ZhangW. SunC. Focus on immune checkpoint PD-1/PD-L1 pathway: New advances of polyphenol phytochemicals in tumor immunotherapy.Biomed. Pharmacother.202215411361810.1016/j.biopha.2022.11361836055113
    [Google Scholar]
  123. PouliquenD.L. TrošeljK.G. AntoR.J. Curcuminoids as anticancer drugs: Pleiotropic effects, potential for metabolic reprogramming and prospects for the future.Pharmaceutics2023156161210.3390/pharmaceutics1506161237376060
    [Google Scholar]
  124. DongM. MengZ. KuerbanK. QiF. LiuJ. WeiY. WangQ. JiangS. FengM. YeL. Diosgenin promotes antitumor immunity and PD-1 antibody efficacy against melanoma by regulating intestinal microbiota.Cell Death Dis.2018910103910.1038/s41419‑018‑1099‑330305604
    [Google Scholar]
  125. YanakiM. KobayashiM. ArugaA. NomuraM. OzakiM. in vivo antitumor effects of MK615 led by PD-L1 downregulation.Integr. Cancer Ther.201817364665310.1177/153473541876640329665734
    [Google Scholar]
  126. PengM. FanS. LiJ. ZhouX. LiaoQ. TangF. LiuW. Programmed death-ligand 1 signaling and expression are reversible by lycopene via PI3K/AKT and Raf/MEK/ERK pathways in tongue squamous cell carcinoma.Genes Nutr.2022171310.1186/s12263‑022‑00705‑y35164673
    [Google Scholar]
  127. LiL. ZhangM. LiuT. LiJ. SunS. ChenJ. LiuZ. ZhangZ. ZhangL. Quercetin-ferrum nanoparticles enhance photothermal therapy by modulating the tumor immunosuppressive microenvironment.Acta Biomater.202315445446610.1016/j.actbio.2022.10.008
    [Google Scholar]
  128. Ravindran MenonD. LiY. YamauchiT. OsborneD.G. VaddiP.K. WempeM.F. ZhaiZ. FujitaM. EGCG inhibits tumor growth in melanoma by targeting JAK-STAT signaling and its downstream PD-L1/PD-L2-PD1 axis in tumors and enhancing cytotoxic T-cell responses.Pharmaceuticals20211411108110.3390/ph1411108134832863
    [Google Scholar]
  129. HaoH. ZhangQ. ZhuH. WenY. QiuD. XiongJ. FuX. WuY. MengK. LiJ. Icaritin promotes tumor T-cell infiltration and induces antitumor immunity in mice.Eur. J. Immunol.201949122235224410.1002/eji.20194822531465113
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501320281240822052657
Loading
/content/journals/cdt/10.2174/0113894501320281240822052657
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test