Skip to content
2000
image of Recent Advances in Targeted Nanocomposite-Based Therapeutics for Cancer Therapy

Abstract

Cancer therapies have advanced significantly, yet traditional treatments still confront obstacles, such as systemic toxicity and drug resistance. Nanotechnology plays a pivotal role in addressing these issues, particularly through the development of polymer nanocomposites (PNCs). PNCs are hybrid materials composed of a polymer matrix embedded with nanoscale fillers. These composites can be classified based on the type of matrix (ceramic, metal, or polymer) and their structural properties (exfoliated or intercalated forms). Synthesis methods, such as solvent casting and polymerization, ensure the uniform dispersion of nanoparticles within the polymer matrix. PNC-based drug delivery systems are categorized into two types: passive targeting, which leverages the enhanced permeability and retention (EPR) effect, and active targeting, which relies on ligand-receptor interactions. In the pharmaceutical industry, recent developments in nanocomposite-based systems have demonstrated great promise, especially in terms of improving medication solubility, stability, and bioavailability while reducing adverse effects. These methods use nanoparticles embedded in a matrix to increase drug delivery, addressing issues, such as poor solubility and limited bioavailability associated with conventional therapies. Before these novel medicines are widely used, clinical studies are essential for assessing their safety and effectiveness and making sure they adhere to legal requirements. Furthermore, the growth of patents pertaining to nanocomposites indicates continued study and advancement in this field, emphasizing nanocomposites’ potential uses in a range of medical conditions. Nanocomposites are anticipated to transform drug delivery methods and make a substantial contribution to current medicine as research advances.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775367848250226063700
2025-03-13
2025-05-08
Loading full text...

Full text loading...

References

  1. Global cancer burden growing, amidst mounting need for services. 2024 Available from: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services
  2. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  3. Angolkar M. Paramshetti S. Halagali P. Jain V. Patil A.B. Somanna P. Nanotechnological advancements in the brain tumor therapy: A novel approach. Ther. Deliv. 2022 13 11 531 557 10.4155/tde‑2022‑0035 36802944
    [Google Scholar]
  4. Bakshi Ishaan Comparing minimally invasive techniques to traditional surgery for specific tumor or cancer types: A comprehensive review. Int. J. Multidiscip. Res. 2024 6 2 1 17
    [Google Scholar]
  5. Mathan S V. Rajput M Singh RP. Chemotherapy and radiation therapy for cancer. Academic Press 2022 10.1016/B978‑0‑323‑99883‑3.00003‑2
    [Google Scholar]
  6. Maqbool H. Yasin U. Shawal L. Zulfiqar F. Fatima N. Hasan W. Nasim H. Ismail M. Rafiq M.A. Advancements in cancer pharmacotherapy: Targeted therapies and immunotherapy strategies, A review. Biol. Clin. Sci. Res. J. 2024 2024 1 1025 10.54112/bcsrj.v2024i1.1025
    [Google Scholar]
  7. Taibi T. Cheon S. Perna F. Vu L.P. mRNA-based therapeutic strategies for cancer treatment. Mol. Ther. 2024 32 9 2819 2834 10.1016/j.ymthe.2024.04.035 38702886
    [Google Scholar]
  8. Ali R. Adil M. Sultan A. Khan N.J. Ishrat R. Nanotechnology, drug delivery and prospects in precision medicine. Bentham Books 2024 464 510 10.2174/9789815223583124010023
    [Google Scholar]
  9. Jahagirdar V. Krishna S.M.K.L. Palaksha S. Shariff A. Doddawad V.G. Halagali P. An overview Of EGCG and its potential effects on breast. Cancer Cells 2023 14 1 800 806
    [Google Scholar]
  10. Andoh V. Ocansey D. Naveed H. Wang N. Chen L. Chen K. Mao F. The advancing role of nanocomposites in cancer diagnosis and treatment. Int. J. Nanomedicine 2024 19 6099 6126 10.2147/IJN.S471360 38911500
    [Google Scholar]
  11. Chakraborty S. Rahman T. The difficulties in cancer treatment. Ecancermedicalscience. Ecancermedicalscience 2012 6 16
    [Google Scholar]
  12. Mahvi D.A. Liu R. Grinstaff M.W. Colson Y.L. Raut C.P. Local cancer recurrence: The realities, challenges, and opportunities for new therapies. CA Cancer J. Clin. 2018 68 6 488 505 10.3322/caac.21498 30328620
    [Google Scholar]
  13. Nurgali K. Jagoe R.T. Abalo R. Editorial: Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae? Front. Pharmacol. 2018 9 MAR 245 10.3389/fphar.2018.00245 29623040
    [Google Scholar]
  14. Anand U. Dey A. Chandel A.K.S. Sanyal R. Mishra A. Pandey D.K. De Falco V. Upadhyay A. Kandimalla R. Chaudhary A. Dhanjal J.K. Dewanjee S. Vallamkondu J. Pérez de la Lastra J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023 10 4 1367 1401 10.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  15. Majeed H. Gupta V. Adverse Effects Of Radiation Therapy. StatPearls Publishing Treasure Island (FL) 2020
    [Google Scholar]
  16. Wang K Radiation therapy-associated toxicity: Etiology, management, and prevention. CA Cancer J Clin. 2021 71 5 437 454
    [Google Scholar]
  17. Chehelgerdi M. Chehelgerdi M. Allela O.Q.B. Pecho R.D.C. Jayasankar N. Rao D.P. Thamaraikani T. Vasanthan M. Viktor P. Lakshmaiya N. Saadh M.J. Amajd A. Abo-Zaid M.A. Castillo-Acobo R.Y. Ismail A.H. Amin A.H. Akhavan-Sigari R. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Mol. Cancer 2023 22 1 169 10.1186/s12943‑023‑01865‑0 37814270
    [Google Scholar]
  18. Cheng Z. Li M. Dey R. Chen Y. Nanomaterials for cancer therapy: Current progress and perspectives. J. Hematol. Oncol. 2021 14 1 85 10.1186/s13045‑021‑01096‑0 34059100
    [Google Scholar]
  19. Tiwari H. Rai N. Singh S. Gupta P. Verma A. Singh A.K. Kajal Salvi P. Singh S.K. Gautam V. Recent advances in nanomaterials-based targeted drug delivery for preclinical cancer diagnosis and therapeutics. Bioengineering 2023 10 7 760 10.3390/bioengineering10070760 37508788
    [Google Scholar]
  20. Mago G Kalyon DM Jana SC Fisher FT Polymer nanocomposite processing, characterization, and applications. J Nanomater 2010 325807
    [Google Scholar]
  21. Yao Y. Zhou Y. Liu L. Xu Y. Chen Q. Wang Y. Wu S. Deng Y. Zhang J. Shao A. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci. 2020 7 193 10.3389/fmolb.2020.00193 32974385
    [Google Scholar]
  22. Hapuarachchige S. Artemov D. Theranostic pretargeting drug delivery and imaging platforms in cancer precision medicine. Front. Oncol. 2020 10 1131 10.3389/fonc.2020.01131 32793481
    [Google Scholar]
  23. Saeed K Khan I Khan I Ali N Bilal M Graphene and carbon nanotubes-based polymer nanocomposites. Smart Polymer Nanocomposites Elsevier 2023 205 218
    [Google Scholar]
  24. Locatelli E. Comes Franchini M. Biodegradable PLGA-b-PEG polymeric nanoparticles: Synthesis, properties, and nanomedical applications as drug delivery system. J. Nanopart. Res. 2012 14 12 1316 10.1007/s11051‑012‑1316‑4
    [Google Scholar]
  25. Li S. Meng Lin M. Toprak M.S. Kim D.K. Muhammed M. Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev. 2010 1 1 5214 10.3402/nano.v1i0.5214 22110855
    [Google Scholar]
  26. Son K.H. Hong J.H. Lee J.W. Carbon nanotubes as cancer therapeutic carriers and mediators. Int. J. Nanomedicine 2016 11 5163 5185 10.2147/IJN.S112660 27785021
    [Google Scholar]
  27. Rane AV Kanny K Abitha VK Thomas S Methods for synthesis of nanoparticles and fabrication of nanocomposites. Synthesis of Inorganic Nanomaterials Woodhead Publishing 2018 121 139 10.1016/B978‑0‑08‑101975‑7.00005‑1
    [Google Scholar]
  28. Dhand C. Dwivedi N. Loh X.J. Jie Ying A.N. Verma N.K. Beuerman R.W. Lakshminarayanan R. Ramakrishna S. Methods and strategies for the synthesis of diverse nanoparticles and their applications: A comprehensive overview. RSC Advances 2015 5 127 105003 105037 10.1039/C5RA19388E
    [Google Scholar]
  29. Adnan M.M. Dalod A.R.M. Balci M.H. Glaum J. Einarsrud M.A. In situ synthesis of hybrid inorganic-polymer nanocomposites. Polymers 2018 10 10 1129 10.3390/polym10101129 30961054
    [Google Scholar]
  30. Gagliardi A. Giuliano E. Venkateswararao E. Fresta M. Bulotta S. Awasthi V. Cosco D. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front. Pharmacol. 2021 12 601626 10.3389/fphar.2021.601626 33613290
    [Google Scholar]
  31. Mittal V. Synthesis techniques for polymer nanocomposites. Synthesis Techniques for Polymer Nanocomposites 2014 1 297 10.1002/9783527670307
    [Google Scholar]
  32. Lago E. Toth P.S. Pugliese G. Pellegrini V. Bonaccorso F. Solution blending preparation of polycarbonate/graphene composite: Boosting the mechanical and electrical properties. RSC Advances 2016 6 100 97931 97940 10.1039/C6RA21962D
    [Google Scholar]
  33. Zhang D Liu L Wang J Zhang H Zhang Z Xing G Drug-loaded PEG-PLGA nanoparticles for cancer treatment. Front Pharmacol. 2022 13 990505 10.3389/fphar.2022.990505
    [Google Scholar]
  34. Zhao Q. Lin Y. Han N. Li X. Geng H. Wang X. Cui Y. Wang S. Mesoporous carbon nanomaterials in drug delivery and biomedical application. Drug Deliv. 2017 24 2 94 107 10.1080/10717544.2017.1399300 29124979
    [Google Scholar]
  35. Mondal A. Nayak A. Chakraborty P. Banerjee S. Nandy B. Natural polymeric nanobiocomposites for anti-cancer drug delivery therapeutics: A recent update. Pharmaceutics 2023 15 8 2064 10.3390/pharmaceutics15082064 37631276
    [Google Scholar]
  36. Xiao X. Teng F. Shi C. Chen J. Wu S. Wang B. Meng X. Essiet Imeh A. Li W. Polymeric nanoparticles—Promising carriers for cancer therapy. Front. Bioeng. Biotechnol. 2022 10 1024143 10.3389/fbioe.2022.1024143 36277396
    [Google Scholar]
  37. Castro J.I. Valencia Llano C.H. Tenorio D.L. Saavedra M. Zapata P. Navia-Porras D.P. Delgado-Ospina J. Chaur M.N. Hernández J.H.M. Grande-Tovar C.D. Biocompatibility assessment of polylactic acid (PLA) and nanobioglass (n-BG) nanocomposites for biomedical applications. Molecules 2022 27 11 3640 10.3390/molecules27113640 35684575
    [Google Scholar]
  38. Fouad F.A. Youssef D.G. Refay F.A. Heakal F.E.T. Biocompatibility of Nanomaterials Reinforced Polymer-Based Nanocomposites. Springer 2023 10.1007/978‑3‑031‑09710‑2_17
    [Google Scholar]
  39. Rahim M. Mas Haris M.R.H. Saqib N.U. An overview of polymeric nano-biocomposites as targeted and controlled-release devices. Biophys. Rev. 2020 12 5 1223 1231 10.1007/s12551‑020‑00750‑0 32901426
    [Google Scholar]
  40. Wu J. The enhanced permeability and retention (Epr) effect: The significance of the concept and methods to enhance its application. J. Pers. Med. 2021 11 8 771 10.3390/jpm11080771 34442415
    [Google Scholar]
  41. Matsumura Y. Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986 46 12 Pt 1 6387 6392 2946403
    [Google Scholar]
  42. Lu T. Prakash J. Nanomedicine strategies to enhance tumor drug penetration in pancreatic cancer. Int. J. Nanomedicine 2021 16 6313 6328 10.2147/IJN.S279192 34552327
    [Google Scholar]
  43. Maeda H. Bharate G.Y. Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm. 2009 71 3 409 419 10.1016/j.ejpb.2008.11.010 19070661
    [Google Scholar]
  44. Argenziano M. Arpicco S. Brusa P. Cavalli R. Chirio D. Dosio F. Gallarate M. Peira E. Stella B. Ugazio E. Developing actively targeted nanoparticles to fight cancer: Focus on italian research. Pharmaceutics 2021 13 10 1538 10.3390/pharmaceutics13101538 34683830
    [Google Scholar]
  45. Ebrahimnejad P. Sodagar Taleghani A. Asare-Addo K. Nokhodchi A. An updated review of folate-functionalized nanocarriers: A promising ligand in cancer. Drug Discov. Today 2022 27 2 471 489 10.1016/j.drudis.2021.11.011 34781032
    [Google Scholar]
  46. Ramalho M.J. Loureiro J.A. Coelho M.A.N. Pereira M.C. Transferrin receptor-targeted nanocarriers: Overcoming barriers to treat glioblastoma. Pharmaceutics 2022 14 2 279 10.3390/pharmaceutics14020279 35214012
    [Google Scholar]
  47. Karimi M. Eslami M. Sahandi-Zangabad P. Mirab F. Farajisafiloo N. Shafaei Z. Ghosh D. Bozorgomid M. Dashkhaneh F. Hamblin M.R. pH ‐Sensitive stimulus‐responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016 8 5 696 716 10.1002/wnan.1389 26762467
    [Google Scholar]
  48. Sun Y Wang Q Chen J Liu L Ding L Shen M Temperature-sensitive gold nanoparticle-coated Pluronic-PLL nanoparticles for drug delivery and chemo-photothermal therapy. Theranostics 2017 7 18 4424 4444 10.7150/thno.18832
    [Google Scholar]
  49. Xu X. Liu Y. Fu W. Yao M. Ding Z. Xuan J. Li D. Wang S. Xia Y. Cao M. Poly(N-isopropylacrylamide)-based thermoresponsive composite hydrogels for biomedical applications. Polymers 2020 12 3 580 10.3390/polym12030580 32150904
    [Google Scholar]
  50. Mathur A Singhal J Gupta D Saxena R Enzyme-responsive nanoparticles for drug delivery. Bentham Book 2024 10.2174/9789815256505124010007
    [Google Scholar]
  51. Liao S. Jia S. Yue Y. Zeng H. Lin J. Liu P. Advancements in pH-Responsive nanoparticles for osteoarthritis treatment: Opportunities and challenges. Front. Bioeng. Biotechnol. 2024 12 1426794 10.3389/fbioe.2024.1426794 39036562
    [Google Scholar]
  52. Zhou L. Lu Y. Liu W. Wang S. Wang L. Zheng P. Zi G. Liu H. Liu W. Wei S. Drug conjugates for the treatment of lung cancer: From drug discovery to clinical practice. Exp. Hematol. Oncol. 2024 13 1 26 10.1186/s40164‑024‑00493‑8 38429828
    [Google Scholar]
  53. Luckanagul J.A. Alcantara K.P. Bulatao B.P.I. Wong T.W. Rojsitthisak P. Rojsitthisak P. Thermo-Responsive Polymers and Their Application as Smart Biomaterials. Nanotechnol. Life Sci. 2021 291 343 10.1007/978‑3‑030‑84262‑8_11
    [Google Scholar]
  54. Ghassami E. Varshosaz J. Taymouri S. Redox sensitive polysaccharide based nanoparticles for improved cancer treatment: A comprehensive review. Curr. Pharm. Des. 2018 24 28 3303 3319 10.2174/1381612824666180813114841 30101696
    [Google Scholar]
  55. Alvarez-Lorenzo C. Bromberg L. Concheiro A. Light-sensitive intelligent drug delivery systems. Photochem. Photobiol. 2009 85 4 848 860 10.1111/j.1751‑1097.2008.00530.x 19222790
    [Google Scholar]
  56. Brazel C.S. Magnetothermally-responsive nanomaterials: Combining magnetic nanostructures and thermally-sensitive polymers for triggered drug release. Pharm. Res. 2009 26 3 644 656 10.1007/s11095‑008‑9773‑2 19005741
    [Google Scholar]
  57. Jin Z. Al Amili M. Guo S. Tumor microenvironment-responsive drug delivery based on polymeric micelles for precision cancer therapy: Strategies and prospects. Biomedicines 2024 12 2 417 10.3390/biomedicines12020417 38398021
    [Google Scholar]
  58. Seidu T.A. Kutoka P.T. Asante D.O. Farooq M.A. Alolga R.N. Bo W. Functionalization of nanoparticulate drug delivery systems and its influence in cancer therapy. Pharmaceutics 2022 14 5 1113 10.3390/pharmaceutics14051113 35631699
    [Google Scholar]
  59. Rahim M.A. Jan N. Khan S. Shah H. Madni A. Khan A. Jabar A. Khan S. Elhissi A. Hussain Z. Aziz H.C. Sohail M. Khan M. Thu H.E. Recent advancements in stimuli responsive drug delivery platforms for active and passive cancer targeting. Cancers 2021 13 4 670 10.3390/cancers13040670 33562376
    [Google Scholar]
  60. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 2001 41 1 189 207 10.1016/S0065‑2571(00)00013‑3 11384745
    [Google Scholar]
  61. Shi J. Xiao Z. Kamaly N. Farokhzad O.C. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc. Chem. Res. 2011 44 10 1123 1134 10.1021/ar200054n 21692448
    [Google Scholar]
  62. Danhier F. Feron O. Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 2010 148 2 135 146 10.1016/j.jconrel.2010.08.027 20797419
    [Google Scholar]
  63. Alromi D. Madani S. Seifalian A. Emerging application of magnetic nanoparticles for diagnosis and treatment of cancer. Polymers 2021 13 23 4146 10.3390/polym13234146 34883649
    [Google Scholar]
  64. Manescu Paltanea V. Paltanea G. Antoniac I. Vasilescu M. Magnetic nanoparticles used in oncology. Materials 2021 14 20 5948 10.3390/ma14205948 34683540
    [Google Scholar]
  65. Howard C.B. Fletcher N. Houston Z.H. Fuchs A.V. Boase N.R.B. Simpson J.D. Raftery L.J. Ruder T. Jones M.L. de Bakker C.J. Mahler S.M. Thurecht K.J. Overcoming instability of antibody‐nanomaterial conjugates: Next generation targeted nanomedicines using bispecific antibodies. Adv. Healthc. Mater. 2016 5 16 2055 2068 10.1002/adhm.201600263 27283923
    [Google Scholar]
  66. Singh A Suhag D Polymers and polymeric composites in nano/bio-medicine. Integrated Nanomaterials and their Applications Springer Singapore 2023 153 176
    [Google Scholar]
  67. K V. Tiwari A. A review on magnetic polymeric nanocomposite materials: Emerging applications in biomedical field. Inorganic and Nano-Metal Chemistry 2023 53 7 639 663 10.1080/24701556.2023.2187418
    [Google Scholar]
  68. Crintea A. Motofelea A.C. Șovrea A.S. Constantin A.M. Crivii C.B. Carpa R. Duțu A.G. Dendrimers: Advancements and potential applications in cancer diagnosis and treatment—An overview. Pharmaceutics 2023 15 5 1406 10.3390/pharmaceutics15051406 37242648
    [Google Scholar]
  69. Rai D.B. Medicherla K. Pooja D. Kulhari H. Dendrimer-mediated delivery of anticancer drugs for colon cancer treatment. Pharmaceutics 2023 15 3 801 10.3390/pharmaceutics15030801 36986662
    [Google Scholar]
  70. Bober Z. Bartusik-Aebisher D. Aebisher D. Application of dendrimers in anticancer diagnostics and therapy. Molecules 2022 27 10 3237 10.3390/molecules27103237 35630713
    [Google Scholar]
  71. Elieh-Ali-Komi D. Hamblin M.R. Chitin and chitosan: Production and application of versatile biomedical nanomaterials. Int. J. Adv. Res. 2016 4 3 411 427 27819009
    [Google Scholar]
  72. Raafat D Sahl HG Chitosan and its antimicrobial potential--A critical literature survey. Microb Biotechnol 2009 2 2 186 201
    [Google Scholar]
  73. Tan L. Huang R. Li X. Liu S. Shen Y.M. Shao Z. Chitosan-based core-shell nanomaterials for pH-triggered release of anticancer drug and near-infrared bioimaging. Carbohydr. Polym. 2017 157 325 334 10.1016/j.carbpol.2016.09.092 27987935
    [Google Scholar]
  74. Hosseinzadeh S. Hosseinzadeh H. Pashaei S. Khodaparast Z. Synthesis of stimuli-responsive chitosan nanocomposites via RAFT copolymerization for doxorubicin delivery. Int. J. Biol. Macromol. 2019 121 677 685 10.1016/j.ijbiomac.2018.10.106 30339997
    [Google Scholar]
  75. George D. Maheswari P.U. Sheriffa Begum K.M.M. Arthanareeswaran G. Biomass-derived dialdehyde cellulose cross-linked chitosan-based nanocomposite hydrogel with phytosynthesized zinc oxide nanoparticles for enhanced curcumin delivery and bioactivity. J. Agric. Food Chem. 2019 67 39 10880 10890 10.1021/acs.jafc.9b01933 31508956
    [Google Scholar]
  76. Mondal A. Bose S. Banerjee S. Patra J.K. Malik J. Mandal S.K. Kilpatrick K.L. Das G. Kerry R.G. Fimognari C. Bishayee A. Marine cyanobacteria and microalgae metabolites—A rich source of potential anticancer drugs. Mar. Drugs 2020 18 9 476 10.3390/md18090476 32961827
    [Google Scholar]
  77. Zhang S Qamar SA Junaid M Munir B Badar Q Bilal M Algal polysaccharides-based nanoparticles for targeted drug delivery applications. Starch 2022 74 7 2200014 10.1002/star.202200014
    [Google Scholar]
  78. Idrees H. Zaidi S.Z.J. Sabir A. Khan R.U. Zhang X. Hassan S. A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials 2020 10 10 1970 10.3390/nano10101970 33027891
    [Google Scholar]
  79. Lee K.Y. Mooney D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012 37 1 106 126 10.1016/j.progpolymsci.2011.06.003 22125349
    [Google Scholar]
  80. Venkata P Kumari K Rao YS Akhila S GSC biological and pharmaceutical sciences role of nanocomposites in drug delivery. GSC Biol. Pharm. Sci. 2019 8 3 94 103
    [Google Scholar]
  81. Darekar A. Bele M. Wagh M. Nawale V. Saudagar R. A review on nanocomposite drug delivery. J. Drug Delivery Ther. 2019 9 2-s 529 536 10.22270/jddt.v9i2‑s.2475
    [Google Scholar]
  82. Haq Khan Z.U. Khan T.M. Khan A. Shah N.S. Muhammad N. Tahir K. Iqbal J. Rahim A. Khasim S. Ahmad I. Shabbir K. Gul N.S. Wu J. Brief review: Applications of nanocomposite in electrochemical sensor and drugs delivery. Front Chem. 2023 11 1152217 10.3389/fchem.2023.1152217 37007050
    [Google Scholar]
  83. Patra J.K. Das G. Fraceto L.F. Campos E.V.R. Rodriguez-Torres M.P. Acosta-Torres L.S. Diaz-Torres L.A. Grillo R. Swamy M.K. Sharma S. Habtemariam S. Shin H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology 2018 16 1 71 10.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  84. Naumenko E. Guryanov I. Gomzikova M. Drug delivery nano-platforms for advanced cancer therapy. Sci. Pharm. 2024 92 2 28 10.3390/scipharm92020028
    [Google Scholar]
  85. Iqbal M.J. Javed Z. Sadia H. Mehmood S. Akbar A. Zahid B. Nadeem T. Roshan S. Varoni E.M. Iriti M. Gürer E.S. Sharifi-Rad J. Calina D. Targeted therapy using nanocomposite delivery systems in cancer treatment: Highlighting miR34a regulation for clinical applications. Cancer Cell Int. 2023 23 1 84 10.1186/s12935‑023‑02929‑3 37149609
    [Google Scholar]
  86. Feldman D. Polymers and polymer nanocomposites for cancer therapy. Appl. Sci. 2019 9 18 3899 10.3390/app9183899
    [Google Scholar]
  87. Sharaf M. Alhamad A.A. Ltaief O.O. Amor I.B. Challenges of nanomaterials-based cancer therapy: A future destination. Int. J. Surg. 2023 109 6 1819 1820 10.1097/JS9.0000000000000412 37072147
    [Google Scholar]
  88. Gavas S. Quazi S. Karpiński T.M. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res. Lett. 2021 16 1 173 10.1186/s11671‑021‑03628‑6 34866166
    [Google Scholar]
  89. Wang J. Sui L. Huang J. Miao L. Nie Y. Wang K. Yang Z. Huang Q. Gong X. Nan Y. Ai K. MoS2-based nanocomposites for cancer diagnosis and therapy. Bioact. Mater. 2021 6 11 4209 4242 10.1016/j.bioactmat.2021.04.021 33997503
    [Google Scholar]
  90. Kashyap B.K. Singh V.V. Solanki M.K. Kumar A. Ruokolainen J. Kesari K.K. Smart nanomaterials in cancer theranostics: Challenges and opportunities. ACS Omega 2023 8 16 14290 14320 10.1021/acsomega.2c07840 37125102
    [Google Scholar]
  91. Zhu R. Zhang F. Peng Y. Xie T. Wang Y. Lan Y. Current progress in cancer treatment using nanomaterials. Front. Oncol. 2022 12 930125 10.3389/fonc.2022.930125 35912195
    [Google Scholar]
  92. Subramanian A.P. Jaganathan S.K. Supriyanto E. Overview on in vitro and in vivo investigations of nanocomposite based cancer diagnosis and therapeutics. RSC Advances 2015 5 89 72638 72652 10.1039/C5RA11912J
    [Google Scholar]
  93. Mishra DK Yadav KS Prabhakar B Gaud RS Nanocomposite for cancer targeted drug delivery. Woodhead Publishing 2018 323 337 10.1016/B978‑0‑12‑813741‑3.00014‑5
    [Google Scholar]
  94. Ghani M.W. Iqbal A. Ghani H. Bibi S. Wang Z. Pei R. Recent advances in nanocomposite-based delivery systems for targeted CRISPR/Cas delivery and therapeutic genetic manipulation. J. Mater. Chem. B Mater. Biol. Med. 2023 11 24 5251 5271 10.1039/D2TB02610D 36779580
    [Google Scholar]
  95. Wen J. Yang K. Huang J. Sun S. Recent advances in LDH-based nanosystems for cancer therapy. Mater. Des. 2021 198 109298 10.1016/j.matdes.2020.109298
    [Google Scholar]
  96. Metselaar J.M. Lammers T. Challenges in nanomedicine clinical translation. Drug Deliv. Transl. Res. 2020 10 3 721 725 10.1007/s13346‑020‑00740‑5 32166632
    [Google Scholar]
  97. Snodin D.J. McCrossen S.D. Guidelines and pharmacopoeial standards for pharmaceutical impurities: Overview and critical assessment. Regul. Toxicol. Pharmacol. 2012 63 2 298 312 10.1016/j.yrtph.2012.03.016 22507740
    [Google Scholar]
  98. Zhao R. Keen L. Kong X. Clinical Translation and Safety Regulation of Nanobiomaterials. Wiley 2018 459 479 10.1002/9783527698646.ch19
    [Google Scholar]
  99. Loo Y.S. Zahid N.I. Madheswaran T. Mat Azmi I.D. Recent advances in the development of multifunctional lipid-based nanoparticles for co-delivery, combination treatment strategies, and theranostics in breast and lung cancer. J. Drug Deliv. Sci. Technol. 2022 71 103300 10.1016/j.jddst.2022.103300
    [Google Scholar]
  100. ClinicalTrials.gov is a place to learn about clinical studies from around the world. 2024 Available from: https://clinicaltrials.gov
  101. Designs in action: Creating smart enhanced reefs to regenerate marine life 2024 Available from: https://www.wipo.int/portal/en/index.html
  102. Sharma H. Halagali P. Majumder A. Sharma V. Pathak R. Natural compounds targeting signaling pathways in breast cancer therapy. African J Biol Sci 2024 6 10 5430 5479 10.33472/AFJBS.6.10.2024.5430‑5479
    [Google Scholar]
  103. Pathak R. Kaur V. Sharma S. Bhandari M. Mishra R. Saxena A. Pazopanib: Effective monotherapy for precise cancer treatment, targeting specific mutations and tumors. Afr.J.Bio.Sc. 2024 6 9 1311 1330 10.33472/AFJBS.6.9.2024.1311‑1330
    [Google Scholar]
  104. Kumar P. Sharma H. Singh A. Durgapal S. Kukreti G. Bhowmick M. Bhowmick P. Ashique S. Targeting the interplay of proteins through PROTACs for management cancer and associated disorders. Curr. Cancer Ther. Rev. 2024 20 . 10.2174/0115733947304806240417092449
    [Google Scholar]
  105. Ashique S. Bhowmick M. Pal R. Khatoon H. Kumar P. Sharma H. Garg A. Kumar S. Das U. Multi drug resistance in Colorectal Cancer- approaches to overcome, advancements and future success. Adv. Cancer Biol. Metastasis 2024 10 100114 10.1016/j.adcanc.2024.100114
    [Google Scholar]
  106. Kumar P. Pandey S. Ahmad F. Verma A. Sharma H. Ashique S. Carbon nanotubes: A targeted drug delivery against cancer cell. Curr. Nanosci. 2023 9 1 31 10.2174/0115734137271865231105070727
    [Google Scholar]
  107. Chandra P. Sharma H. Sachan N. The Potential Role of Prebiotics, Probiotics, and Synbiotics in Cancer Prevention and Therapy. Synbiotics in Metabolic Disorders. Boca Raton CRC Press 2024 191 213 10.1201/9781032702438‑13
    [Google Scholar]
  108. Sharma H. Pathak R. Sachan N. Chandra P. Role of Tumor Antigens for Cancer Vaccine Development. Cancer Vaccination and Challenges. Apple Academic Press New York 2024 57 94 10.1201/9781003501718‑3
    [Google Scholar]
  109. Kaushik M. Kumar S. Singh M. Sharma H. Bhowmick M. Bhowmick P. Bio-inspired Nanomaterials in Cancer Theranostics. Nanotheranostics for Diagnosis and Therapy. Springer Nature Singapore Singapore 2024 95 123 10.1007/978‑981‑97‑3115‑2_5
    [Google Scholar]
  110. Datta D. Colaco V. Bandi S.P. Sharma H. Dhas N. Giram P.S. Classes/types of polymers used in oral delivery (natural, semisynthetic, synthetic), their chemical structure and general functionalities Polymers for Oral Drug Delivery Technologies Woodhead Publishing 2025 263 333 10.1016/B978‑0‑443‑13774‑7.00007‑4
    [Google Scholar]
  111. Sharma S. Dinda S.C.S.H. Matrix types drug delivery system for sustained release : A review. ASIO J Drug Deliv. 2022 6 1 1 8
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775367848250226063700
Loading
/content/journals/cdrr/10.2174/0125899775367848250226063700
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test