Skip to content
2000
image of Significance of Impurity Analysis in Antiviral Drug: A Critical Review

Abstract

Today's pharmaceutical products are seeing a massive increase in impurity profiling. A drug substance or product will inevitably contain contaminants in trace amounts. According to pharmaceutical chemistry, impurities are undesirable substances found in pharmaceutical compounds with therapeutic activity. Due to their extraordinary potency and likelihood of toxicity, they may exhibit unanticipated pharmacological effects that are detrimental to human health. For the pharmaceutical sector, impurity management is currently a major concern. The impurity can appear in medicines either during the formulation process or after the produced Active Pharmaceutical Ingredients (APIs) have aged. The term “impurity profiling” refers to a collection of analytical procedures that include characterizing, quantifying, and describing the known and unknown impurities found in novel pharmacological compounds. Highly sophisticated analytical techniques and instrumentation are essential for identifying small elements (drugs, contaminants, breakdown products, and metabolites) in diverse matrices. Current references and articles reveal different impurities found in the APIs of antiviral drugs, techniques for locating them, and potential countermeasures for the interferences they produce in pharmaceutical analysis. Antiviral medications are a class of medications used to treat viral infections. They work by preventing the growth of the pathogen they are intended to treat. Drugs that target viral activities must enter host cells because viruses are obligatory intracellular entities and prevent the production of viral DNA, which is subsequently converted to triphosphate. Regulatory authorities now need not just purity profiles but also impurity profiles. This review also covers the origins of impurities, how they are classified, and the different analytical techniques used to identify and quantify them. It also covers the simple, rapid, accurate, precise, and exact creation of innovative analytical techniques for determining impurity levels.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775331541250226065837
2025-03-06
2025-05-09
Loading full text...

Full text loading...

References

  1. Venkatesan P. Valliappan K. Impurity profiling: Theory and practice. J. Pharm. Sci. Res. 2014 6 7 254
    [Google Scholar]
  2. Poojashree P. Pramila T. Kumar S.M. Kumar S.G.P. A review on pharmaceutical impurities and its importance in pharmacy. Am. J. Pharmtech. Res. 2019 9 76 e87
    [Google Scholar]
  3. Shaikh T. Impurities characterization in pharmaceuticals: A review. SSRN 3958603 2019 Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3958603
    [Google Scholar]
  4. Shah S.R. Patel M.A. Naik M.V. Pradhan P.K. Upadhyay U.M. Recent approches of” impurity profiling” in pharmaceutical analysis: A review. Int. J. Pharm. Sci. Res. 2012 3 10 3603
    [Google Scholar]
  5. Chandrawanshi H.K. Pilaniya K. Pilaniya U. Manchandani P. Jain P. Singh N. Recent trends in the impurity profile of pharmaceuticals. J. Adv. Pharm. Technol. Res. 2010 1 3 302 310 10.4103/0110‑5558.72422 22247862
    [Google Scholar]
  6. ICH Q3A (R2) Impurities in new drug substances - Scientific guideline | European Medicines Agency. 2024 Available from: https://www.ema.europa.eu/en/ich-q3a-r2-impurities-new-drug-substances-scientific-guideline [cited 2024 May 13].
  7. B B.A. M K.K. B BA Impurity profiling: A review. Asian J. Pharma. Res. Deve. 2022 10 2 135 143 10.22270/ajprd.v10i2.1052
    [Google Scholar]
  8. Dsouza S.J. Sandeep D.S. Charyulu R.N. Gowrav M.P. Pradeep H.K. Impurities in drug substance-an overview of ICH Q3A, Q3C and M7 guidelines. Int. J. Pharm. Investig. 2024 14 2 299 305 [Internet]. 10.5530/ijpi.14.2.37
    [Google Scholar]
  9. Guideline IHT Impurities in new drug products. Q3B R2 Curr. Step. 2006 4 1 5
    [Google Scholar]
  10. Prajapati P. Agrawal Y.K. Analysis and impurity identification in pharmaceuticals. Rev. Anal. Chem. 2014 33 2 123 133 10.1515/revac‑2014‑0001
    [Google Scholar]
  11. Saibaba S.V. Kumar M.S. Ramu B. Pharmaceutical impurities and their characterization: A review. Eur. J. Pharm. Med. Res. 2016 3 5 190 196
    [Google Scholar]
  12. Kar A. Pharmaceutical drug analysis. New Age International. 2005 Available from: https://books.google.com/books?hl=en&lr=&id=nnNfLesNzLoC&oi=fnd&pg=PR7&dq=enumeration+of+impurities+in+drugs&ots=OeU6sE0GD_&sig=ZM9H_nWAwBKGyW8RztA0xmvSfQI [cited 2024 Dec 14].
    [Google Scholar]
  13. Misra B. Thakur A. Mahata P.P. Pharmaceutical impurities: A review. Int. J. Pharm. Chem. 2015 5 7 232 239
    [Google Scholar]
  14. Alsante K.M. Hatajik T.D. Lohr L.L. Sharp T.R. Isolation and identification of process related impurities and degradation products from pharmaceutical drug candidates, Part I. Am. Pharm. Rev. 2001 4 70 78
    [Google Scholar]
  15. Grodowska K. Parczewski A. Analytical methods for residual solvents determination in pharmaceutical products. 2010 https://ruj.uj.edu.pl/bitstreams/e7886ef4-8d3c-492b-a0ec-76611a091394/download
    [Google Scholar]
  16. Bhavyasri K. Vishnumurthy K.M. Rambabu D. Sumakanth M. ICH guidelines–“Q” series (quality guidelines)-A review. GSC Biol. Pharm. Sci. 2019 6 3
    [Google Scholar]
  17. Singh A. Afreen S. Singh D.P. Kumar R. A review on pharmaceutical impurities and their importance. World J. Pharm. Pharm. Sci. 2017 6 10 1337 1354
    [Google Scholar]
  18. Ramachandra B. Development of impurity profiling methods using modern analytical techniques. Crit. Rev. Anal. Chem. 2017 47 1 24 36 10.1080/10408347.2016.1169913 27070830
    [Google Scholar]
  19. Zheng Y.Z. Wang S. Advances in antifungal drug measurement by liquid chromatography-mass spectrometry. Clin. Chim. Acta 2019 491 132 145 10.1016/j.cca.2019.01.023 30685359
    [Google Scholar]
  20. Covey T.R. Lee E.D. Bruins A.P. Henion J.D. Liquid chromatography/mass spectrometry. Anal. Chem. 1986 58 14 1451A 1461A 10.1021/ac00127a001 3789400
    [Google Scholar]
  21. Jain S. Kumar P. Vyas R.K. Pandit P. Dalai A.K. Occurrence and removal of antiviral drugs in environment: A review. Water Air Soil Pollut. 2013 224 2 1410 10.1007/s11270‑012‑1410‑3
    [Google Scholar]
  22. Waterval W.A.H. Scheijen J.L.J.M. Ortmans-Ploemen M.M.J.C. Habets-van der Poel C.D. Bierau J. Quantitative UPLC-MS/MS analysis of underivatised amino acids in body fluids is a reliable tool for the diagnosis and follow-up of patients with inborn errors of metabolism. Clin. Chim. Acta 2009 407 1-2 36 42 10.1016/j.cca.2009.06.023 19559691
    [Google Scholar]
  23. Cordeiro F.C. Franco L.L. Carvalho T.D. Bonfilio R. Impurities in active pharmaceutical ingredients and drug products: A critical review. Crit. Rev. Anal. Chem. 2024 ••• 1 21 10.1080/10408347.2024.2384046 39058576
    [Google Scholar]
  24. Suneetha A. Kathirvel S. Ramachandrika G. A validated RP HPLC method for simultaneous estimation of lopinavir and ritonavir in combined dosage form. Int. J. Pharm. Pharm. Sci. 2011 3 1 49 51
    [Google Scholar]
  25. Katakam P. Dey B. Hwisa N.T. Assaleh F.H. Chandu B.R. Singla R.K. Mitra A. An experimental design approach for impurity profiling of valacyclovir-related products by RP-HPLC. Sci. Pharm. 2014 82 3 617 630 10.3797/scipharm.1403‑20 25853072
    [Google Scholar]
  26. Muralidharan S. Kalaimani J. Parasuraman S. Dhanaraj S.A. Development and validation of acyclovir hplc external standard method in human plasma: Application to pharmacokinetic studies. Advances in Pharmaceutics 2014 2014 1 5 10.1155/2014/284652
    [Google Scholar]
  27. Santana-Mayor Á. Rodríguez-Ramos R. Herrera-Herrera A.V. Socas-Rodríguez B. Rodríguez-Delgado M.Á. Deep eutectic solvents. The new generation of green solvents in analytical chemistry. Trends Analyt. Chem. 2021 134 116108 10.1016/j.trac.2020.116108
    [Google Scholar]
  28. Kurowska-Susdorf A. Zwierżdżyński M. Bevanda A.M. Talić S. Ivanković A. Płotka-Wasylka J. Green analytical chemistry: Social dimension and teaching. Trends Analyt. Chem. 2019 111 185 196 10.1016/j.trac.2018.10.022
    [Google Scholar]
  29. Guardia D.L.M. Armenta S. Green analytical chemistry: Theory and practice. 2010 https://books.google.com/books?hl=en&lr=&id=NnTcJY2w2qMC&oi=fnd&pg=PP1&dq=%09Green+analytical+chemistry%E2%80%94theory+and+practice+-+Chemical+Society+Reviews+(RSC+Publishing)&ots=kJe4Kiohyd&sig=A0IdTrHcKV3soVUh6W33C-wnnmQ
  30. Sharma S. Singh N. Ankalgi A.D. Rana A. Ashawat M.S. Modern trends in analytical techniques for method development and validation of pharmaceuticals: A review. J. Drug Deliv. Ther. 2021 11 1-s 121 130 10.22270/jddt.v11i1‑s.4515
    [Google Scholar]
  31. Phadke R. Mali R. Mundhe A. Gosar A. Drug Impurity profiling an emerging task to Pharmaceutical Industries now days - A Review. Amer. J. PharmTech Res. 2019 9 2 94 111 10.46624/ajptr.2019.v9.i2.010
    [Google Scholar]
  32. Hamilton R.J. Sewell P.A. Introduction to high performance liquid chromatography. Introduction to high performance liquid chromatography. Hamilton R.J. Sewell P.A. [Internet] Dordrecht Springer Netherlands 1982 1 12
    [Google Scholar]
  33. Lough W.J. Wainer I.W. High performance liquid chromatography: Fundamental principles and practice. 1995 Available from: https://books.google.com/books?hl=en&lr=&id=9SzJGAmWIvMC&oi=fnd&pg=PA1&dq=%09High-Performance+Liquid+Chromatography&ots=pvOJHivtcR&sig=-JAsNAiyxaZ6tN59_mtgRL1JNFs
  34. Xiao W. Oefner P.J. Denaturing high-performance liquid chromatography: A review. Hum. Mutat. 2001 17 6 439 474 10.1002/humu.1130 11385705
    [Google Scholar]
  35. Debrus B. Lebrun P. Kindenge J.M. Lecomte F. Ceccato A. Caliaro G. Mbay J.M.T. Boulanger B. Marini R.D. Rozet E. Hubert P. Innovative high-performance liquid chromatography method development for the screening of 19 antimalarial drugs based on a generic approach, using design of experiments, independent component analysis and design space. J. Chromatogr. A 2011 1218 31 5205 5215 10.1016/j.chroma.2011.05.102 21705006
    [Google Scholar]
  36. Patil M.P.N. HPLC Method Development–A Review. J Pharm Res Educ. 2017 1 2 243 260
    [Google Scholar]
  37. Murugan S. Elayaraja A. Chandrakala K. Ramaiah P. Vulchi C. A review on method development and validation by using HPLC. Int. J. Novel Trends Pharm. Sci. 2013 3 4 78 81
    [Google Scholar]
  38. Patwekar S.L. Sakhare R.S. Nalbalwar N.N. HPLC method development and validation-A general Concept. Int J Chem Pharm Sci. 2015 6 1 8 14
    [Google Scholar]
  39. Bhardwaj S.K. Dwivedia K. Agarwala D.D. A review: HPLC method development and validation. Int J Anal Bioanal Chem. 2015 5 4 76 81
    [Google Scholar]
  40. Kausar S. Khan S.F. Ishaq Mujeeb Ur Rehman M. Akram M. Riaz M. Rasool G. Khan H.A. Saleem I. Shamim S. Malik A. A review: Mechanism of action of antiviral drugs. Int. J. Immunopathol. Pharmacol. 2021 35 20587384211002621 10.1177/20587384211002621 33726557
    [Google Scholar]
  41. Niraj N. Mahajan S.S. Prakash A. Sarma P. Medhi B. Paxlovid. Indian J. Pharmacol. 2022 54 6 452 458 10.4103/ijp.ijp_291_22 36722557
    [Google Scholar]
  42. Khalil H.A. Hassanein N.A. El-Yazbi A.F. Recent analytical methodologies for the determination of anti-covid-19 drug therapies in various matrices: A critical review. RSC Advances 2023 13 19 13224 13239 10.1039/D3RA00654A 37124020
    [Google Scholar]
  43. Imam M.S. Batubara A.S. Gamal M. Abdelazim A.H. Almrasy A.A. Ramzy S. Adjusted green HPLC determination of nirmatrelvir and ritonavir in the new FDA approved co-packaged pharmaceutical dosage using supported computational calculations. Sci. Rep. 2023 13 1 137 10.1038/s41598‑022‑26944‑y 36599900
    [Google Scholar]
  44. Rashed N.S. Zayed S. Abdelazeem A. Fouad F. Development and validation of a green HPLC method for the analysis of clorsulon, albendazole, triclabendazole and ivermectin using monolithic column: Assessment of the greenness of the proposed method. Microchem. J. 2020 157 105069 10.1016/j.microc.2020.105069
    [Google Scholar]
  45. Jiang B. Li G. Yu J. Xu X. Pan H. Zhao C. Zhong J. Zhang F. Synthesis and crystal characteristics of nirmatrelvir. React. Chem. Eng. 2023 8 7 1747 1759 10.1039/D3RE00019B
    [Google Scholar]
  46. Bari S. Jain P.S. Shirkhedkar A.A. Sonawane L.V. Mhaske A.J. Gawad J.B. Impurities in pharmaceuticals: A review. World J. Pharm. Res. 2015 4 10 2932 2947
    [Google Scholar]
  47. Tegeli V.S. Gajeli G.B. Chougule G.K. Thorat Y.S. Shivsharan U.S. Kumbhar S.T. Significance of impurity profiling: A Review. Int. J. Drug Formul. Res. 2011 2 4 174 195
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775331541250226065837
Loading
/content/journals/cdrr/10.2174/0125899775331541250226065837
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: anti-viral drugs ; HPLC ; safety ; analysis ; ICH guidelines ; Drugs ; degradation studies ; impurity profiling
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test