Skip to content
2000
image of A Narrative Overview of Retinoid X Receptor Inhibitors in Chronic Disease Management

Abstract

The Retinoid X Receptor (RXR) is a member of the nuclear receptor superfamily and regulates gene transcription as well as diverse cellular processes like metabolism, inflammation, and cell differentiation. As an attractive therapeutic target, RXR inhibitors have garnered attention for their potential in alleviating chronic diseases. RXR inhibitors have the potential to modulate inflammation and immune responses and manage diseases like rheumatoid arthritis, inflammatory diseases, metabolic disorders such as diabetes and dyslipidemia, cancer progression, solid tumors, and hematologic malignancies. Understanding the molecular mechanisms behind their therapeutic effects is crucial for optimizing their use in different disease contexts. While RXR inhibitors hold promise, some challenges and questions necessitate further research. Future directions include refining the understanding of specific pathways affected by RXR inhibition and addressing potential side effects along with tailoring treatment approaches based on individual patient characteristics, as this would improve outcomes. Exploring the potential synergies of RXR inhibitors with other therapeutic agents could enhance their efficacy and broaden their applicability.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775314743241111063341
2024-12-02
2025-01-30
Loading full text...

Full text loading...

References

  1. de Almeida N.R. Conda-Sheridan M. A review of the molecular design and biological activities of RXR agonists. Med. Res. Rev. 2019 39 4 1372 1397 30941786
    [Google Scholar]
  2. Shao M. Lu L. Wang Q. Ma L. Tian X. Li C. Li C. Guo D. Wang Q. Wang W. Wang Y. The multi-faceted role of retinoid X receptor in cardiovascular diseases. Biomed. Pharmacother. 2021 137 111264 33761589
    [Google Scholar]
  3. Saito-Hakoda A. Uruno A. Yokoyama A. Shimizu K. Parvin R. Kudo M. Saito-Ito T. Sato I. Kogure N. Suzuki D. Shimada H. Yoshikawa T. Fujiwara I. Kagechika H. Iwasaki Y. Kure S. Ito S. Sugawara A. Effects of RXR agonists on cell proliferation/apoptosis and ACTH secretion/Pomc expression. PLoS One 2015 10 12 e0141960 26714014
    [Google Scholar]
  4. Domínguez-Avila J.A. Dietary Phenolic Compounds Exert Some of Their Health-Promoting Bioactivities by Targeting Liver X Receptor (LXR) and Retinoid X Receptor (RXR). Foods 2023 12 23 4205 10.3390/foods12234205 38231664
    [Google Scholar]
  5. le Maire A. Teyssier C. Balaguer P. Bourguet W. Germain P. Regulation of RXR-RAR heterodimers by RXR-and RAR-specific ligands and their combinations. Cells 2019 8 11 1392 31694317
    [Google Scholar]
  6. Sharma S. Shen T. Chitranshi N. Gupta V. Basavarajappa D. Sarkar S. Mirzaei M. You Y. Krezel W. Graham S.L. Gupta V. Retinoid X receptor: cellular and biochemical roles of nuclear receptor with a focus on neuropathological involvement. Mol. Neurobiol. 2022 59 4 2027 2050 10.1007/s12035‑021‑02709‑y 35015251
    [Google Scholar]
  7. Yamada S. Kakuta H. Retinoid X receptor ligands: a patent review (2007 – 2013). Expert Opin. Ther. Pat. 2014 24 4 443 452 10.1517/13543776.2014.880692 24456080
    [Google Scholar]
  8. Dawson M.I. Xia Z. The retinoid X receptors and their ligands. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2012 1821 1 21 56 10.1016/j.bbalip.2011.09.014 22020178
    [Google Scholar]
  9. Schierle S. Merk D. Therapeutic modulation of retinoid X receptors – SAR and therapeutic potential of RXR ligands and recent patents. Expert Opin. Ther. Pat. 2019 29 8 605 621 10.1080/13543776.2019.1643322 31298602
    [Google Scholar]
  10. Sánchez-Martínez R. Zambrano A. Castillo A.I. Aranda A. Vitamin D-dependent recruitment of corepressors to vitamin D/retinoid X receptor heterodimers. Mol. Cell. Biol. 2008 28 11 3817 3829 10.1128/MCB.01909‑07 18362166
    [Google Scholar]
  11. Altucci L. Leibowitz M.D. Ogilvie K.M. de Lera A.R. Gronemeyer H. RAR and RXR modulation in cancer and metabolic disease. Nat. Rev. Drug Discov. 2007 6 10 793 810 10.1038/nrd2397 17906642
    [Google Scholar]
  12. Garattini E. Gianni M. Terao M. Retinoids as differentiating agents in oncology: a network of interactions with intracellular pathways as the basis for rational therapeutic combinations. Curr. Pharm. Des. 2007 13 13 1375 1400 10.2174/138161207780618786 17506722
    [Google Scholar]
  13. Takahashi B. Ohta K. Kawachi E. Fukasawa H. Hashimoto Y. Kagechika H. Novel retinoid X receptor antagonists: specific inhibition of retinoid synergism in RXR-RAR heterodimer actions. J. Med. Chem. 2002 45 16 3327 3330 10.1021/jm0255320 12139443
    [Google Scholar]
  14. Pérez E. Bourguet W. Gronemeyer H. de Lera A.R. Modulation of RXR function through ligand design. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2012 1821 1 57 69 10.1016/j.bbalip.2011.04.003 21515403
    [Google Scholar]
  15. Lin C.Y. Gustafsson J.Å. Targeting liver X receptors in cancer therapeutics. Nat. Rev. Cancer 2015 15 4 216 224 10.1038/nrc3912 25786697
    [Google Scholar]
  16. Fessler MBJP The challenges and promise of targeting the Liver X Receptors for treatment of inflammatory disease Pharmacol Ther 2018 181 1 12
    [Google Scholar]
  17. Xu P. Li D. Tang X. Bao X. Huang J. Tang Y. Yang Y. Xu H. Fan X. LXR agonists: new potential therapeutic drug for neurodegenerative diseases. Mol. Neurobiol. 2013 48 3 715 728 10.1007/s12035‑013‑8461‑3 23625315
    [Google Scholar]
  18. Nakayama M. Yamada S. Ohsawa F. Ohta Y. Kawata K. Makishima M. Kakuta H. Discovery of a Potent Retinoid X Receptor Antagonist Structurally Closely Related to RXR Agonist NEt-3IB. ACS Med. Chem. Lett. 2011 2 12 896 900 10.1021/ml200197e 24900278
    [Google Scholar]
  19. Zhou H. Liu W. Su Y. Wei Z. Liu J. Kolluri S.K. Wu H. Cao Y. Chen J. Wu Y. Yan T. Cao X. Gao W. Molotkov A. Jiang F. Li W.G. Lin B. Zhang H.P. Yu J. Luo S.P. Zeng J.Z. Duester G. Huang P.Q. Zhang X.K. NSAID sulindac and its analog bind RXRalpha and inhibit RXRalpha-dependent AKT signaling. Cancer Cell 2010 17 6 560 573 10.1016/j.ccr.2010.04.023 20541701
    [Google Scholar]
  20. Sakaki J. Konishi K. Kishida M. Gunji H. Kanazawa T. Uchiyama H. Fukaya H. Mitani H. Kimura M. Synthesis and structure–activity relationship of RXR antagonists based on the diazepinylbenzoic acid structure. Bioorg. Med. Chem. Lett. 2007 17 17 4808 4811 10.1016/j.bmcl.2007.06.079 17651969
    [Google Scholar]
  21. Umemiya H. Fukasawa H. Ebisawa M. Eyrolles L. Kawachi E. Eisenmann G. Gronemeyer H. Hashimoto Y. Shudo K. Kagechika H. Regulation of retinoidal actions by diazepinylbenzoic acids. Retinoid synergists which activate the RXR-RAR heterodimers. J. Med. Chem. 1997 40 26 4222 4234 10.1021/jm9704309 9435893
    [Google Scholar]
  22. Santín E.P. Germain P. Quillard F. Khanwalkar H. Rodríguez-Barrios F. Gronemeyer H. de Lera Á.R. Bourguet W. Modulating retinoid X receptor with a series of (E)-3-[4-hydroxy-3-(3-alkoxy-5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)phenyl]acrylic acids and their 4-alkoxy isomers. J. Med. Chem. 2009 52 10 3150 3158 10.1021/jm900096q 19408900
    [Google Scholar]
  23. Chai SC Wright WC Strategies for developing pregnane X receptor antagonists: Implications from metabolism to cancer Med Res Rev 2020 40 3 1061 1083
    [Google Scholar]
  24. Koyama E. Mundy C. Saunders C. Chung J. Catheline S.E. Rux D. Iwamoto M. Pacifici M. Premature Growth Plate Closure Caused by a Hedgehog Cancer Drug Is Preventable by Co-Administration of a Retinoid Antagonist in Mice. J. Bone Miner. Res. 2020 36 7 1387 1402 10.1002/jbmr.4291 33724538
    [Google Scholar]
  25. Viragova S. Aparicio L. Palmerini P. Zhao J. Valencia Salazar L.E. Schurer A. Dhuri A. Sahoo D. Moskaluk C.A. Rabadan R. Dalerba P. Inverse agonists of retinoic acid receptor/retinoid X receptor signaling as lineage-specific antitumor agents against human adenoid cystic carcinoma. J. Natl. Cancer Inst. 2023 115 7 838 852 10.1093/jnci/djad062 37040084
    [Google Scholar]
  26. Waizenegger J. Lenze D. Luckert C. Seidel A. Lampen A. Hessel S. Dose‐dependent induction of signaling pathways by the flavonoid quercetin in human primary hepatocytes: A transcriptomic study. Mol. Nutr. Food Res. 2015 59 6 1117 1129 10.1002/mnfr.201400764 25788151
    [Google Scholar]
  27. Hao X. Xiao H. Ju J. Lee M.J. Lambert J.D. Yang C.S. Green tea polyphenols inhibit colorectal tumorigenesis in azoxymethane-treated F344 rats. Nutr. Cancer 2017 69 4 623 631 10.1080/01635581.2017.1295088 28323438
    [Google Scholar]
  28. Maj E. Maj B. Bobak K. Gos M. Chodyński M. Kutner A. Wietrzyk J. Differential response of lung cancer cells, with various driver mutations, to plant polyphenol resveratrol and vitamin D active metabolite PRI-2191. Int. J. Mol. Sci. 2021 22 5 2354 10.3390/ijms22052354 33652978
    [Google Scholar]
  29. Xie C.L. Zhang D. Guo K.Q. Yan Q.X. Zou Z.B. He Z.H. Wu Z. Zhang X-K. Chen H-F. Yang X-W. Meroterpenthiazole A, a unique meroterpenoid from the deep-sea-derived Penicillium allii-sativi, significantly inhibited retinoid X receptor (RXR)-α transcriptional effect. Chin. Chem. Lett. 2022 33 4 2057 2059 10.1016/j.cclet.2021.09.073
    [Google Scholar]
  30. Wu Y. Liao H. Liu L.Y. Sun F. Chen H.F. Jiao W.H. Zhu H.R. Yang F. Huang G. Zeng D.Q. Zhou M. Wang S.P. Lin H.W. Phakefustatins A–C: Kynurenine-bearing cycloheptapeptides as RXRα modulators from the marine sponge Phakellia fusca. Org. Lett. 2020 22 17 6703 6708 10.1021/acs.orglett.0c01586 32701300
    [Google Scholar]
  31. Grubbs CJ Hill DL Bland KI Beenken SW Lin T-H Eto I 9cUAB30, an RXR specific retinoid, and/or tamoxifen in the prevention of methylnitrosourea-induced mammary cancers Cancer Lett 2003 201 1 17 24
    [Google Scholar]
  32. Mazumdar A. Medina D. Kittrell F.S. Zhang Y. Hill J.L. Edwards D.E. Bissonnette R.P. Brown P.H. The combination of tamoxifen and the rexinoid LG100268 prevents ER-positive and ER-negative mammary tumors in p53-null mammary gland mice. Cancer Prev. Res. (Phila.) 2012 5 10 1195 1202 10.1158/1940‑6207.CAPR‑11‑0524 22926341
    [Google Scholar]
  33. Wu J. Wang X. Zhang M. Mathews P. Kang Y. RXR Agonists Enhance Lenalidomide Anti-Myeloma Activity and T Cell Functions while Retaining Glucose-Lowering Effect. Cells 2023 12 15 1993 10.3390/cells12151993 37566072
    [Google Scholar]
  34. Brown P.H. Subbaramaiah K. Salmon A.P. Baker R. Newman R.A. Yang P. Zhou X.K. Bissonnette R.P. Dannenberg A.J. Howe L.R. Combination chemoprevention of HER2/neu-induced breast cancer using a cyclooxygenase-2 inhibitor and a retinoid X receptor-selective retinoid. Cancer Prev. Res. (Phila.) 2008 1 3 208 214 10.1158/1940‑6207.CAPR‑08‑0021 19138958
    [Google Scholar]
  35. Kong J.N. He Q. Wang G. Dasgupta S. Dinkins M.B. Zhu G. Kim A. Spassieva S. Bieberich E. Guggulsterone and bexarotene induce secretion of exosome‐associated breast cancer resistance protein and reduce doxorubicin resistance in MDA‐MB ‐231 cells. Int. J. Cancer 2015 137 7 1610 1620 10.1002/ijc.29542 25833198
    [Google Scholar]
  36. Plutzky J. The PPAR-RXR transcriptional complex in the vasculature: energy in the balance. Circ. Res. 2011 108 8 1002 1016 10.1161/CIRCRESAHA.110.226860 21493923
    [Google Scholar]
  37. Desvergne B. RXR: from partnership to leadership in metabolic regulations. Vitam. Horm. 2007 75 1 32 10.1016/S0083‑6729(06)75001‑4 17368310
    [Google Scholar]
  38. Sherratt S.C.R. Libby P. Budoff M.J. Bhatt D.L. Mason R.P. Role of omega-3 fatty acids in cardiovascular disease: the debate continues. Curr. Atheroscler. Rep. 2023 25 1 1 17 10.1007/s11883‑022‑01075‑x 36580204
    [Google Scholar]
  39. Dheer Y. Understanding the Retinoid-x-receptor biology and manipulating it as a novel strategy to protect the retina. Macquarie University 2022
    [Google Scholar]
  40. Atigadda V.R. Kashyap M.P. Yang Z. Chattopadhyay D. Melo N. Sinha R. Belyaeva O.V. Chou C.F. Chang P.L. Kedishvili N.Y. Grubbs C.J. Renfrow M.B. Muccio D.D. Elmets C.A. Athar M. Conformationally Defined Rexinoids for the Prevention of Inflammation and Nonmelanoma Skin Cancers. J. Med. Chem. 2022 65 21 14409 14423 10.1021/acs.jmedchem.2c00735 36318154
    [Google Scholar]
  41. Szymański Ł. Skopek R. Palusińska M. Schenk T. Stengel S. Lewicki S. Kraj L. Kamiński P. Zelent A. Retinoic acid and its derivatives in skin. Cells 2020 9 12 2660 10.3390/cells9122660 33322246
    [Google Scholar]
  42. Dai X. Jin J. Jia Y. Yang K. Han J. Zhang Z. Ding X. Yao C. Sun T. Zhu C. Liu H. A non‐retinol retinoic acid receptor‐γ (RAR‐γ/NR1B3) selective agonist, tectorigenin, can effectively inhibit the ultraviolet A‐induced skin damage. Br. J. Pharmacol. 2022 179 19 4722 4737 10.1111/bph.15902 35731978
    [Google Scholar]
  43. Schierle S. Chaikuad A. Lillich F.F. Ni X. Woltersdorf S. Schallmayer E. Renelt B. Ronchetti R. Knapp S. Proschak E. Merk D. Oxaprozin analogues as selective RXR agonists with superior properties and pharmacokinetics. J. Med. Chem. 2021 64 8 5123 5136 10.1021/acs.jmedchem.1c00235 33793232
    [Google Scholar]
  44. Zhao L. Lei W. Deng C. Wu Z. Sun M. Jin Z. Song Y. Yang Z. Jiang S. Shen M. Yang Y. The roles of liver X receptor α in inflammation and inflammation‐associated diseases. J. Cell. Physiol. 2021 236 7 4807 4828 10.1002/jcp.30204 33305467
    [Google Scholar]
  45. Leal A.S. Reich L.A. Moerland J.A. Zhang D. Liby K.T. Potential therapeutic uses of rexinoids. Adv. Pharmacol. 2021 91 141 183 10.1016/bs.apha.2021.01.004 34099107
    [Google Scholar]
  46. Clark J.N. Whiting A. McCaffery P. Retinoic acid receptor-targeted drugs in neurodegenerative disease. Expert Opin. Drug Metab. Toxicol. 2020 16 11 1097 1108 10.1080/17425255.2020.1811232 32799572
    [Google Scholar]
  47. Wishart D.S. Feunang Y.D. Guo A.C. Lo E.J. Marcu A. Grant J.R. Sajed T. Johnson D. Li C. Sayeeda Z. Assempour N. Iynkkaran I. Liu Y. Maciejewski A. Gale N. Wilson A. Chin L. Cummings R. Le D. Pon A. Knox C. Wilson M. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 46 D1 D1074 D1082 10.1093/nar/gkx1037 29126136
    [Google Scholar]
  48. Oyarce C. Vizcaino-Castro A. Chen S. Boerma A. Daemen T. Re-polarization of immunosuppressive macrophages to tumor-cytotoxic macrophages by repurposed metabolic drugs. OncoImmunology 2021 10 1 1898753 10.1080/2162402X.2021.1898753 33796407
    [Google Scholar]
  49. Sun S. Peng K. Yang B. Yang M. Jia X. Wang N. Zhang Q. Kong D. Du Y. The therapeutic effect of wine-processed Corni Fructus on chronic renal failure in rats through the interference with the LPS/IL-1-mediated inhibition of RXR function. J. Ethnopharmacol. 2024 321 117511 10.1016/j.jep.2023.117511 38036016
    [Google Scholar]
  50. Zhao W Li S Chen R Ni J Huang X Li S RXR signaling targeted cancer therapy. 2023 1 1 100014 10.59717/j.xinn‑life.2023.100014
    [Google Scholar]
  51. Ye X. Wu H. Sheng L. Liu Y. Ye F. Wang M. Zhou H. Su Y. Zhang X. Oncogenic potential of truncated RXRα during colitis-associated colorectal tumorigenesis by promoting IL-6-STAT3 signaling. Nat. Commun. 2019 10 1 1463 10.1038/s41467‑019‑09375‑8 30931933
    [Google Scholar]
  52. Wang J. Xue X. Zhao X. Luo L. Liu J. Dai S. Forsythiaside A alleviates acute lung injury by inhibiting inflammation and epithelial barrier damages in lung and colon through PPAR-gamma/RXR-alpha complex. J. Adv. Res. 2023 10.1016/j.jare.2023.08.006 37579917
    [Google Scholar]
  53. Wang Y. Zhao H. Lin C. Ren J. Zhang S. Forsythiaside A. Forsythiaside A Exhibits Anti-inflammatory Effects in LPS-Stimulated BV2 Microglia Cells Through Activation of Nrf2/HO-1 Signaling Pathway. Neurochem. Res. 2016 41 4 659 665 10.1007/s11064‑015‑1731‑x 26498935
    [Google Scholar]
  54. Wu M. Wang J. Zhou W. Wang M. Hu C. Zhou M. Jiao K. Li Z. Vitamin D inhibits tamoxifen-induced non-alcoholic fatty liver disease through a nonclassical estrogen receptor/liver X receptor pathway. Chem. Biol. Interact. 2024 389 110865 10.1016/j.cbi.2024.110865 38191086
    [Google Scholar]
  55. Lv M. Shi X-l. Li W. Zhou M. Gou X. Huang Y. Daqinjiao Decoction Ameliorates CSVD Induced by Chronic Cerebral Hypoperfusion in Rats via Activating the PPAR Signaling Pathway: Insights from Transcriptome Sequencing and Network Pharmacology. SSRN 2024 10.2139/ssrn.4670812
    [Google Scholar]
  56. Crowe D.L. Chandraratna R.A.S. A retinoid X receptor (RXR)-selective retinoid reveals that RXR-α is potentially a therapeutic target in breast cancer cell lines, and that it potentiates antiproliferative and apoptotic responses to peroxisome proliferator-activated receptor ligands. Breast Cancer Res. 2004 6 5 R546 R555 10.1186/bcr913 15318936
    [Google Scholar]
  57. Lee J.J. Wu X. Hildebrandt M.A.T. Yang H. Khuri F.R. Kim E. Gu J. Ye Y. Lotan R. Spitz M.R. Hong W.K. Global assessment of genetic variation influencing response to retinoid chemoprevention in head and neck cancer patients. Cancer Prev. Res. (Phila.) 2011 4 2 185 193 10.1158/1940‑6207.CAPR‑10‑0125 21292633
    [Google Scholar]
  58. Talpur R. Ward S. Apisarnthanarax N. Breuer-McHam J. Duvic M. Optimizing bexarotene therapy for cutaneous T-cell lymphoma. J. Am. Acad. Dermatol. 2002 47 5 672 684 10.1067/mjd.2002.124607 12399758
    [Google Scholar]
  59. Brown P.H. Subbaramaiah K. Salmon A.P. Baker R. Newman R.A. Yang P. Combination chemoprevention of HER2/neu-induced breast cancer using a COX-2 inhibitor and an RXR-selective retinoid. Cancer Prev. Res. (Phila.) 2008 1 3 208 10.1158/1940‑6207.CAPR‑08‑0021 19138958
    [Google Scholar]
  60. Brown PHJCEB Preclinical and clinical studies for the prevention of ER-negative breast cancer. Cancer Epidemiol Biomarkers Prev 2006 15 12_Supplement CS09 CS04
    [Google Scholar]
  61. Li B. Cai S.Y. Boyer J.L. The role of the retinoid receptor, RAR/RXR heterodimer, in liver physiology. Biochim. Biophys. Acta Mol. Basis Dis. 2021 1867 5 166085 10.1016/j.bbadis.2021.166085 33497820
    [Google Scholar]
  62. Deng K. Ren C. Fan Y. Liu Z. Zhang G. Zhang Y. You P. Wang F. miR-27a is an important adipogenesis regulator associated with differential lipid accumulation between intramuscular and subcutaneous adipose tissues of sheep. Domest. Anim. Endocrinol. 2020 71 106393 10.1016/j.domaniend.2019.106393 31731253
    [Google Scholar]
  63. Rao M. McDuffie E. Srivastava S. Plaisted W. Sachs C. Safety Implications of Modulating Nuclear Receptors: A Comprehensive Analysis from Non-Clinical and Clinical Perspectives. Pharmaceuticals (Basel) 2024 17 7 875 10.3390/ph17070875 39065726
    [Google Scholar]
  64. Vivat-Hannah V Retinoids as therapeutic agents: Today and tomorrow Mini Rev Med Chem 2005 5 8 755 760
    [Google Scholar]
  65. Zhu L. Lu L. Wang S. Wu J. Shi J. Yan T. Oral absorption basics: pathways and physicochemical and biological factors affecting absorption. Developing solid oral dosage forms. 2017 297 329 10.1016/B978‑0‑12‑802447‑8.00011‑X
    [Google Scholar]
  66. Prakash C. Zuniga B. Seog Song C. Jiang S. Cropper J. Park S. Chatterjee B. Nuclear receptors in drug metabolism, drug response and drug interactions. Nucl. Receptor Res. 2015 2 2 10.11131/2015/101178 27478824
    [Google Scholar]
  67. Joseph C. Al-Izzi S. Alsaleem M. Kurozumi S. Toss M.S. Arshad M. Goh F.Q. Alshankyty I.M. Aleskandarany M.A. Ali S. Ellis I.O. Mongan N.P. Green A.R. Rakha E.A. Retinoid X receptor gamma (RXRG) is an independent prognostic biomarker in ER-positive invasive breast cancer. Br. J. Cancer 2019 121 9 776 785 10.1038/s41416‑019‑0589‑0 31558802
    [Google Scholar]
  68. Handelman S.K. Puentes Y.M. Kuppa A. Chen Y. Du X. Feitosa M.F. Palmer N.D. Speliotes E.K. Population‐based meta‐analysis and gene‐set enrichment identifies FXR/RXR pathway as common to fatty liver disease and serum lipids. Hepatol. Commun. 2022 6 11 3120 3131 10.1002/hep4.2066 36098472
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775314743241111063341
Loading
/content/journals/cdrr/10.2174/0125899775314743241111063341
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: chronic disease management ; diabetes ; RXR inhibitor ; inflammation ; cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test