Skip to content
2000
Volume 17, Issue 1
  • ISSN: 2589-9775
  • E-ISSN: 2589-9783

Abstract

Cytomegalovirus (CMV) is a prevalent virus across the world that belongs to the family Herpesviridae but remains dormant in the body unless the immune system is compromised. In addition, when the bacterium is compromised without any health risks, the infection spreads from one person to another person through body fluids, such as saliva, blood, . Ganciclovir is an anti-viral medication used in treating viral infections, especially in the treatment of CMV in people with acquired immune deficiency syndrome and immunity at risk. The quality control of ganciclovir in industries is carried out by using anti-green solvents in large volumes; these solvents are not safe in consideration of environmental factors and analysts. Also, the waste generation by these solvents causes hazardous effects on the environment. Further, using 12 green analytical chemistry principles promotes the awareness of analytical judgments among the research groups. It is a revolutionary step in the analytical field to enhance the safety of the environment, and analysts, apart from safety, help to control waste production and conserve energy-reducing occupational hazards. Many works have been carried out for the quality control of ganciclovir using different solvents, such as acetonitrile, methanol, . Despite this, there are no existing methods with green solvents or procedures to reduce energy and waste generation. Therefore, the purpose of this review is to understand the drug profile of ganciclovir and the methods developed.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775309331240607105830
2024-06-24
2025-05-04
Loading full text...

Full text loading...

References

  1. Al-BadrA.A. AjarimT.D.S. Ganciclovir.Profiles Drug Subst. Excip. Relat. Methodol.201843120810.1016/bs.podrm.2017.12.00129678260
    [Google Scholar]
  2. National Center for Biotechnology Information (2024).PubChem Compound Summary for CID 135398740 Ganciclovir. Retrieved January 192024Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Ganciclovir
    [Google Scholar]
  3. MondalD. Ganciclovir, xPharm: The comprehensive pharmacology reference.Elsevier20071510.1016/B978‑008055232‑3.61809‑4
    [Google Scholar]
  4. Bethesda Clinical and Research Information on Drug-Induced Liver Injury : National Institute of Diabetes and Digestive and Kidney Diseases; 2012-. Ganciclovir. [Updated 2018 Mar 6]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK548760
  5. DuncanS.R. GrgurichW.F. IaconoA.T. BurckartG.J. YousemS.A. ParadisI.L. WilliamsP.A. JohnsonB.A. GriffithB.P. A comparison of ganciclovir and acyclovir to prevent cytomegalovirus after lung transplantation.Am. J. Respir. Crit. Care Med.1994150114615210.1164/ajrccm.150.1.80257418025741
    [Google Scholar]
  6. TsengA. FoisyM. The role of ganciclovir for the management of cytomegalovirus retinitis in HIV patients: Pharmacological review and update on new developments.Can. J. Infect. Dis.19967318319410.1155/1996/78083122514437
    [Google Scholar]
  7. PaintsilE. ChengY.C. Antiviral Agents.Encyclopedia of Microbiology.200922325710.1016/B978‑012373944‑5.00178‑4
    [Google Scholar]
  8. MatthewsT. BoehmeR. Antiviral activity and mechanism of action of ganciclovir.Clin. Infect. Dis.198810Suppl. 3S490S49410.1093/clinids/10.Supplement_3.S4902847285
    [Google Scholar]
  9. Bethesda , LiverTox: Clinical and Research Information on Drug-Induced Liver Injury : National Institute of Diabetes and Digestive and Kidney Diseases; 2012. Ganciclovir. Available from: https://www.ncbi.nlm.nih.gov/books/NBK548760/
  10. KuppermannB. SharmaA. KenneyM.C. KuppermannB.D. Valganciclovir in the treatment of cytomegalovirus retinitis in HIV-infected patients.Clin. Ophthalmol.2010411111910.2147/OPTH.S324820234777
    [Google Scholar]
  11. StudahlM. LindquistL. ErikssonB.M. GüntherG. BengnerM. Franzen-RöhlE. FohlmanJ. BergströmT. AureliusE. Acute viral infections of the central nervous system in immunocompetent adults: Diagnosis and management.Drugs201373213115810.1007/s40265‑013‑0007‑523377760
    [Google Scholar]
  12. WishartD.S. FeunangY.D. GuoA.C. LoE.J. MarcuA. GrantJ.R. SajedT. JohnsonD. LiC. SayeedaZ. AssempourN. IynkkaranI. LiuY. MaciejewskiA. GaleN. WilsonA. ChinL. CummingsR. LeD. PonA. KnoxC. WilsonM. DrugBank 5.0: A major update to the DrugBank database for 2018.Nucleic Acids Res.201746D1074D108210.1093/nar/gkx103729126136
    [Google Scholar]
  13. KnoxC. WilsonM. KlingerC.M. FranklinM. OlerE. WilsonA. PonA. CoxJ. ChinN.E.L. StrawbridgeS.A. Garcia-PatinoM. KrugerR. SivakumaranA. SanfordS. DoshiR. KhetarpalN. FatokunO. DoucetD. ZubkowskiA. RayatD.Y. JacksonH. HarfordK. AnjumA. ZakirM. WangF. TianS. LeeB. LiigandJ. PetersH. WangR.Q.R. NguyenT. SoD. SharpM. da SilvaR. GabrielC. ScantleburyJ. JasinskiM. AckermanD. JewisonT. SajedT. GautamV. WishartD.S. DrugBank 6.0: The drugbank knowledgebase for 2024.Nucleic Acids Res.202452D1D1265D127510.1093/nar/gkad97637953279
    [Google Scholar]
  14. LawV. KnoxC. DjoumbouY. JewisonT. GuoA.C. LiuY. MaciejewskiA. ArndtD. WilsonM. NeveuV. TangA. GabrielG. LyC. AdamjeeS. DameZ.T. HanB. ZhouY. WishartD.S. DrugBank 4.0: Shedding new light on drug metabolism.Nucleic Acids Res.201442D1D1091D109710.1093/nar/gkt106824203711
    [Google Scholar]
  15. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 135398740, Ganciclovir. Retrieved February 2, 2024. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Ganciclovir
  16. KnoxC. LawV. JewisonT. LiuP. LyS. FrolkisA. PonA. BancoK. MakC. NeveuV. DjoumbouY. EisnerR. GuoA.C. WishartD.S. DrugBank 3.0: A comprehensive resource for ‘Omics’ research on drugs.Nucleic Acids Res.201139DatabaseD1035D104110.1093/nar/gkq112621059682
    [Google Scholar]
  17. WishartD.S. KnoxC. GuoA.C. ShrivastavaS. HassanaliM. StothardP. ChangZ. WoolseyJ. DrugBank: A comprehensive resource for in silico drug discovery and exploration.Nucleic Acids Res.20063490001D668D67210.1093/nar/gkj06716381955
    [Google Scholar]
  18. RameshP.J. BasavaiahK. VinayK.B. CijoM. Development and validation of RP-HPLC method for the determination of ganciclovir in bulk drug and in formulations.Int. Schol. Res. Not.20122012894965
    [Google Scholar]
  19. PatlolaMadhusudhan Determination of assay and validation of stability indicating RP-HPLC method for ganciclovir in nciclovir drug substance.Int. J. Scient. Technol. Res.20209227
    [Google Scholar]
  20. Lokendra singh Chundawat, Dr. Chatan Singh Chouhan. RP-HPLC Method Development for Estimation of Various Pharmacokinetic Parameters of Optimized Formulation of Ganciclovir.Eur. J. Mol. Clin. Med.2020070116
    [Google Scholar]
  21. NarendraB. New anlyatical method development and validation of ganciclovir by Rp-Hplc And Uv method along with forced degredation study.Int. J. Curr. Res. Sci. Eng. Technol.20213525825208
    [Google Scholar]
  22. HaqN. AlanaziF.K. AlsarraI.A. ShakeelF. Rapid analysis of glibenclamide using an environmentally benign stability-indicating RP-HPLC method.Iran. J. Pharm. Res.201413386387225276186
    [Google Scholar]
  23. Rodrigues, Danilo Fernando Autor UNESP Autor no Google Scholar, Nunes Salgado, Herida Regina. Development and Validation of a Green Analytical Method of RP-HPLC for Quantification of Cefepime Hydrochloride in Pharmaceutical Dosage Form: Simple, Sensitive and Economic. 2016-01-01.
  24. HaqN. ShakeelF. AlanaziF. AlshoraD.H. IbrahimM.A. Development and validation of a green RP-HPLC method for the analysis of rosuvastatin: A step towards making liquid chromatography environmentally benign.Green Proces.Synth.20187216016910.1515/gps‑2017‑0023
    [Google Scholar]
  25. LimaJ. KogawaA. SalgadoH. R. N. Green analytical method for quantification of secnidazole in tablets by hplc-uv.Drug Analyt. Res.201822202610.22456/2527‑2616.89411
    [Google Scholar]
  26. EldinA.B. ShalabyA. AbdallahM.S. ShaldamM.A. AbdallahM.A. Applying green analytical chemistry (GAC) for development of stability indicating HPLC method for determining clonazepam and its related substances in pharmaceutical formulations and calculating uncertainty.Arab. J. Chem.20191271212121810.1016/j.arabjc.2014.10.051
    [Google Scholar]
  27. SaxenaJuhi SarojSeema ShahPriya Virendrakumar RajputSadhana Development and validation of an environmentally benign and robust stability indicating assay method for lenalidomide: Comprehensive degradation kinetics study and application of synergistic approach involving green analytical chemistry and quality by design methodology.Ind. J. Pharmac. Educ. Res.2019531133143
    [Google Scholar]
  28. MehmoodT. HanifS. AzharF. AliI. AlafnanA. HussainT. MoinA. AlamriM.A. SyedM.A. HPLC method validation for the estimation of lignocaine HCl, ketoprofen and hydrocortisone: Greenness analysis using agree score.Int. J. Mol. Sci.202224144010.3390/ijms2401044036613881
    [Google Scholar]
  29. FaresM.Y. HegazyM.A. El-SayedG.M. AbdelrahmanM.M. AbdelwahabN.S. Quality by design approach for green HPLC method development for simultaneous analysis of two thalassemia drugs in biological fluid with pharmacokinetic study.RSC Adv.20221222138961391610.1039/D2RA00966H35548387
    [Google Scholar]
  30. NoraA. A quality-by-design eco-friendly UV-HPLC method for the determination of four drugs used to treat symptoms of common cold and COVID-19.Sci Rep20231311616
    [Google Scholar]
  31. Acetonitrile Results : AEGL Program. In EPA.gov. Retrieved, may 20, 2023, Available from : https://www.epa.gov/aegl/acetonitrile-results-aegl-program
  32. Health effects assessment for acetonitrile. In EPA.gov. Retrieved, 1987- 2024 , Available from : https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=2000TGAN.txt
  33. Supporting documents for Methanol. In EPA.gov. Retrieved, nov 09, 2023, Available from : https://www.epa.gov/iris/supporting-documents-methanol
  34. Review and Summary Documents for N-Hexane (External Review Draft).Washington, D.C.U.S. Environmental Protection Agency2005
    [Google Scholar]
  35. 2004https://nj.gov/health/eoh/rtkweb/documents/fs/1823.pdf
  36. RoblesH. Acetonitrile, Editor(s): Philip Wexler, Encyclopedia of Toxicology (Second Edition)Elsevier20052830
    [Google Scholar]
  37. RobledoC. SarachoR. Intoxicación por metanol por inhalación de disolvente.Nefrologia201838667968010.1016/j.nefroe.2018.03.01329859671
    [Google Scholar]
  38. PanJ.H. PengC.Y. LoC.T. DaiC.Y. WangC.L. ChuangH.Y. n-Hexane intoxication in a Chinese medicine pharmaceutical plant: A case report.J. Med. Case Reports201711112010.1186/s13256‑017‑1280‑928454586
    [Google Scholar]
  39. KatahiraT TeramotoK HoriguchiS. Experimental studies on the acute toxicity of tetrahydrofuran in animals.Sangyo Igaku.198224437337810.1539/joh1959.24.373
    [Google Scholar]
  40. Environmental health criteria 154 Acetonitrile- World Health organization, EHC 154, 1993. Available from: https://iris.who.int/bitstream/handle/10665/39035/9241571543eng
  41. Methanol safety fact sheet, methanol institute, pg: 6. Available from: https://www.methanol.org/wp-content/uploads/2018/03/2018factsheet_smallquantitiesbulletin.pdf
  42. South Hampton Resources, Safety data sheet, n-Hexane, Oct 2019. Available from: https://d1io3yog0oux5.cloudfront.net/southhamptonr/files/pages/products/20191119/SDS+Normal+Hexane+65%25%281%29.pdf
  43. Minnesota department of health, Tetrahydrofuran and drinking water, July 2016. Available from: https://www.health.state.mn.us/communities/environment/risk/docs/guidance/gw/thfinfo.pdf
  44. KalshettiM. S. PatilR. Y. KaraleR. A. KulkarniA. A. Bioanalytical method development for estimation of deferasirox in human plasma.Int. J. Pharm. Pharm. Sci.201579399402
    [Google Scholar]
  45. De FranciaS. A new HPLC-UV validated method for therapeutic monitoring of deferasirox in thalassaemic patients.J. Chromatogr. B: Anal. Technol. Biomed. Life Sci.2012893894127133
    [Google Scholar]
  46. MalviaH. SharmaA. SharmaP. MishraR. A micellarliquid chromatographic method for the determination of azosemide in solubilized system.J. Surfactants Deterg.201720614111418
    [Google Scholar]
  47. Narasimha RajuC. B. V. PandaG. Nageswara RaoG. Stability indicating LC assay method for the determinationof famciclovir in bulk drug and pharmaceutical dosageforms.Chromatographia2008689-10837841
    [Google Scholar]
  48. SaravananS. SwethaR. Method development andvalidation for determination of impurities in deferasirox byRP-HPLC technique.J. Drug Deliv. Therapeut.201223148152
    [Google Scholar]
  49. PrashanthiM. VenkateshwarluG. Kinetic spectrophotometric determination of drugs based on oxidation by alkaline KMnO4.World J. Pharm. Res.201656814
    [Google Scholar]
  50. BarotH. ShahD. Development of stability indicating UV- spectroscopy method for the estimation of deferiprone in pharmaceutical formulation.J. PharmTech Res.201551621632
    [Google Scholar]
  51. CantrillH.L. HenryK. MelroeN.H. KnoblochW.H. RamsayR.C. BalfourH.H.Jr Treatment of cytomegalovirus retinitis with intravitreal ganciclovir. Long-term results.Ophthalmology198996336737410.1016/S0161‑6420(89)32900‑92540470
    [Google Scholar]
  52. MarkhamA. FauldsD. Ganciclovir.Drugs199448345548410.2165/00003495‑199448030‑000097527763
    [Google Scholar]
  53. The United States PharmacopoeiaXXIV Revision, the National Formulary XIX Rockville.USP Convention20002482
    [Google Scholar]
  54. WellerD.R. BalfourH.H.Jr VezinaH.E. Simultaneous determination of acyclovir, ganciclovir, and (R)-9-[4-hydroxy-2-(hydroxymethyl)butyl]guanine in human plasma using high-performance liquid chromatography.Biomed. Chromatogr.200923882282710.1002/bmc.119219358150
    [Google Scholar]
  55. MaesA. GarréB. DesmetN. van der MeulenK. NauwynckH. De BackerP. CroubelsS. Determination of acyclovir in horse plasma and body fluids by high-performance liquid chromatography combined with fluorescence detection and heated electrospray ionization tandem mass spectrometry.Biomed. Chromatogr.200923213214010.1002/bmc.109318823074
    [Google Scholar]
  56. DaoY. JiaoZ. ZhongM. Simultaneous determination of aciclovir, ganciclovir, and penciclovir in human plasma by high-performance liquid chromatography with fluorescence detection.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2008867227027610.1016/j.jchromb.2008.04.02218468495
    [Google Scholar]
  57. KasiariM. GikasE. GeorgakakouS. KazanisM. PanderiI. Selective and rapid liquid chromatography/negative-ion electrospray ionization mass spectrometry method for the quantification of valacyclovir and its metabolite in human plasma.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20088641-2788610.1016/j.jchromb.2008.01.04618295558
    [Google Scholar]
  58. PerrottetN. BeguinA. MeylanP. PascualM. ManuelO. BuclinT. BiollazJ. DecosterdL.A. Determination of aciclovir and ganciclovir in human plasma by liquid chromatography–spectrofluorimetric detection and stability studies in blood samples.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20078521-242042910.1016/j.jchromb.2007.01.04517303480
    [Google Scholar]
  59. SchenkelF. RudazS. DaaliY. OestreicherM.K. VeutheyJ.L. DayerP. Development and validation of a new reversed-phase ion pairing liquid chromatographic method with fluorescence detection for penciclovir analysis in plasma and aqueous humor.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20058261-21710.1016/j.jchromb.2005.07.02216140045
    [Google Scholar]
  60. TeshimaD. OtsuboK. YoshidaT. ItohY. OishiR. A simple and simultaneous determination of acyclovir and ganciclovir in human plasma by high-performance liquid chromatography.Biomed. Chromatogr.200317850050310.1002/bmc.25814648605
    [Google Scholar]
  61. SharafY.A. Abd El-FattahM.H. El-SayedH.M. HassanS.A. A solvent-free HPLC method for the simultaneous determination of Favipiravir and its hydrolytic degradation product.Sci. Rep.20231311851210.1038/s41598‑023‑45618‑x37898682
    [Google Scholar]
  62. ImamM.S. BatubaraA.S. GamalM. AbdelazimA.H. AlmrasyA.A. RamzyS. Adjusted green HPLC determination of nirmatrelvir and ritonavir in the new FDA approved co-packaged pharmaceutical dosage using supported computational calculations.Sci. Rep.202313113710.1038/s41598‑022‑26944‑y36599900
    [Google Scholar]
  63. HemdanA. EissaM.S. Simultaneous chromatographic analysis of Sofosbuvir/Ledipasvir in their combined dosage form: An application to green analytical chemistry.J. Anal. Sci. Technol.20191013910.1186/s40543‑019‑0197‑x
    [Google Scholar]
  64. ChakrabortyS. MondalS. A green eco-friendly analytical method development, validation, and stress degradation studies of favipiravir in bulk and different tablet dosages form by UV-spectrophotometric and RP-HPLC methods with their comparison by using ANOVA and in-vitro dissolution studies.Int. J. Pharm. Investig.202313229030510.5530/ijpi.13.2.039
    [Google Scholar]
  65. IbrahimA.E. SarayaR.E. SalehH. ElhenaweeM.J.H. Development and validation of eco-friendly micellar-hplc and hptlc-densitometry methods for the simultaneous determination of paritaprevir, ritonavir and ombitasvir in pharmaceutical dosage forms.Heliyon20195114
    [Google Scholar]
  66. El DeebS. AbdelsamadK. ParrM.K. Whiter and greener RP-HPLC method for simultaneous determination of dorzolamide, brinzolamide, and timolol using isopropanol as a sustainable organic solvent in the mobile phase.Separations20241138310.3390/separations11030083
    [Google Scholar]
  67. BaluchováS. MamaloukouA. KoldenhofR.H.J.M. BuijnstersJ.G. Modification-free boron-doped diamond as a sensing material for direct and reliable detection of the antiretroviral drug nevirapine.Electrochim. Acta202345014223810.1016/j.electacta.2023.142238
    [Google Scholar]
  68. MabroukM. AbdelfattahI.I. MansourF.R. Green method for determination of four anti-viral drugs using micellar liquid chromatography: Application to dosage form analysis.Sustain. Chem. Pharm.20233510120210.1016/j.scp.2023.101202
    [Google Scholar]
  69. MohamedH.M. SaadA.S. MorsiA.M. EssamH.M. Green RP-HPLC method for simultaneous determination of sofosbuvir, ledipasvir, velpatasvir antivirals and beyond in their bulk material and co-formulated products.Microchem. J.202318610834410.1016/j.microc.2022.108344
    [Google Scholar]
  70. ShahD. ShahJ. PatelB. Optimization of simultaneous estimation of candesartan and nifedipine in combination therapy for hypertension management: A green HPLC approach using design of experiment methodology.J. Advan. Zool.202445312320
    [Google Scholar]
  71. IbrahimA.E. DeebS.E. AbdelhalimE.M. Al-HarrasiA. SayedR.A. Green stability indicating organic solvent-free HPLC determination of remdesivir in substances and pharmaceutical dosage forms.Separations202181224310.3390/separations8120243
    [Google Scholar]
  72. BatubaraA.S. AbdelazimA.H. AlmrasyA.A. GamalM. RamzyS. Quantitative analysis of two COVID-19 antiviral agents, favipiravir and remdesivir, in spiked human plasma using spectrophotometric methods; greenness evaluation.BMC Chem.20231715810.1186/s13065‑023‑00967‑637328879
    [Google Scholar]
  73. ItigimathaN. ChadchanK.S. YallurB.C. HadagaliM.D. New analytical methods for the determination of new anti-viral drug favipiravir: A potential therapeutic drug against Covid-19 Virus, in bulk and dosage forms.Pharm. Chem. J.202356101419142510.1007/s11094‑023‑02807‑236683827
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775309331240607105830
Loading
/content/journals/cdrr/10.2174/0125899775309331240607105830
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): CMV; Ganciclovir; green chemistry; green solvents; herpesviridae; quality control
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test