Skip to content
2000
Volume 17, Issue 1
  • ISSN: 2589-9775
  • E-ISSN: 2589-9783

Abstract

Background

(HM) and (PA), used traditionally for skin care, have been reported to upregulate the expression of intracellular antioxidant genes, thereby preventing melanoma and protecting fibroblast cell lines from Ultraviolet B (UVB)-induced intracellular oxidative stress.

Aims

This investigation aimed to identify major compounds in bioactive fractions using bioassay-guided fractionation.

Methods

The anti-inflammatory effect of fractions was determined by measuring their inhibitory activity on 15-lipoxygenase and nitric oxide (NO) in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. Additionally, the anti-aging efficacy of the fractions was determined by assessing the expression of markers for the aging process, ., expression of tyrosinase (), tyrosinase-related protein-1 (), procollagen type-1 (), and matrix metalloproteinase-1 () in UVB-induced photoaging in skin cell-lines. Furthermore, UHPLC-MS-based identification of the bioactive compounds from the most prominent fraction was also carried out.

Results

Hexane fraction of HM significantly inhibited ( < 0.05) the 15-lipoxygenase (IC = 46.80 µg/mL) and NO production (IC = 66.55 µg/mL), whereas hexane fraction of PA was effective ( < 0.05) in inhibiting 15-lipoxygenase activity (IC = 27.55 µg/mL). Furthermore, the hexane fraction of HM and methanol fraction of PA were significantly effective ( < 0.05) in reverting the UVB-mediated altered expressions of , , and . Furthermore, hexane fraction of HM revealed the presence of harunganin and betulinic acid, whereas vismion D, vismin, kenganthranol B, and bianthrone 1a were identified from the methanol fraction of PA.

Conclusion

Overall, the hexane fraction of HM and methanol fraction of PA displayed effective anti-aging activities, with additional anti-inflammatory effects.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775282636240307114735
2024-03-13
2025-05-05
Loading full text...

Full text loading...

References

  1. HappiG.M. TianiG.L.M. GbetnkomB.Y.M. Phytochemistry and pharmacology of Harungana madagascariensis: Mini review.Phytochem. Lett.20203510311210.1016/j.phytol.2019.11.015
    [Google Scholar]
  2. TénéD.G. AbderamaneB. KamdemM.H.K. A new xanthonolignoid and other constituents of Psorospermum aurantiacum (Hypericaceae) stems with antibacterial and antioxidant activities.S. Afr. J. Bot.202215010611210.1016/j.sajb.2022.07.012
    [Google Scholar]
  3. EpifanoF. FioritoS. GenoveseS. Phytochemistry and pharmacognosy of the genus Psorospermum.Phytochem. Rev.201312467368410.1007/s11101‑013‑9274‑8
    [Google Scholar]
  4. ManjiaN.J. NjayouN.F. JoshiA. The anti-aging potential of medicinal plants in Cameroon - Harungana madagascariensis Lam. and Psorospermum aurantiacum Engl. prevent in vitro ultraviolet B light-induced skin damage.Eur. J. Integr. Med.20192910092510.1016/j.eujim.2019.05.011
    [Google Scholar]
  5. Lemba TomE.N. NyunaїN. DjaouroK.G. Mba MedouF. NankiaF.D. DimoT. Acute and subacute toxicity evaluation of the stem bark aqueous extract of harungana madagascariensis in rodents.J Adv Pharm Sci Technol20181486210.14302/issn.2328‑0182.japst‑18‑2341
    [Google Scholar]
  6. NiuC. AisaH.A. Upregulation of melanogenesis and tyrosinase activity: Potential agents for vitiligo.Molecules2017228130310.3390/molecules2208130328777326
    [Google Scholar]
  7. PapaccioF.D. ArinoA. CaputoS. BelleiB. Focus on the contribution of oxidative stress in skin aging.Antioxidants2022116112110.3390/antiox1106112135740018
    [Google Scholar]
  8. LiangY. SuW. WangF. Skin ageing: A progressive, multi-factorial condition demanding an integrated, multilayer-targeted remedy.Clin. Cosmet. Investig. Dermatol.2023161215122910.2147/CCID.S40876537192990
    [Google Scholar]
  9. SgarbieriV.C. PachecoM.T.B. Healthy human aging: Intrinsic and environmental factors.Braz. J. Food. Technol.201720e201700710.1590/1981‑6723.00717
    [Google Scholar]
  10. ZorinaA. ZorinV. KudlayD. KopninP. Molecular mechanisms of changes in homeostasis of the dermal extracellular matrix: Both involutional and mediated by ultraviolet radiation.Int. J. Mol. Sci.20222312665510.3390/ijms2312665535743097
    [Google Scholar]
  11. LowE. AlimohammadihaG. SmithL.A. How good is the evidence that cellular senescence causes skin ageing?Ageing Res. Rev.20217110145610.1016/j.arr.2021.10145634487917
    [Google Scholar]
  12. BasriD.F. LewL.C. MuralitharanR.V. NagapanT.S. GhazaliA.R. Pterostilbene inhibits the melanogenesis activity in UVB-irradiated B164A5 cells.Dose Response20211941559325821104765110.1177/1559325821104765134840540
    [Google Scholar]
  13. HushchaY. BloI. Oton-GonzalezL. microRNAs in the regulation of melanogenesis.Int. J. Mol. Sci.20212211610410.3390/ijms2211610434198907
    [Google Scholar]
  14. LeeB. MoonK.M. LeeB.S. Swertiajaponin inhibits skin pigmentation by dual mechanisms to suppress tyrosinase.Oncotarget2017856955309554110.18632/oncotarget.2091329221146
    [Google Scholar]
  15. VideiraI.F.S. MouraD.F.L. MaginaS. Mechanisms regulating melanogenesis.An. Bras. Dermatol.2013881768310.1590/S0365‑0596201300010000923539007
    [Google Scholar]
  16. HwangS.H. KimJ.H. ChoiE. ParkS.H. ChoJ.Y. Antioxidative and skin protective effects of Canarium subulatum methanol extract on keratinocytes.Evid. Based Complement. Alternat. Med.2021202111010.1155/2021/669283833777162
    [Google Scholar]
  17. ShinS.H. LeeY.H. RhoN.K. ParkK.Y. Skin aging from mechanisms to interventions: Focusing on dermal aging.Front. Physiol.202314119527210.3389/fphys.2023.119527237234413
    [Google Scholar]
  18. KhanA. WangG. ZhouF. Polydeoxyribonucleotide: A promising skin anti-aging agent.CJPRS20224418719310.1016/j.cjprs.2022.09.015
    [Google Scholar]
  19. RyuJ.Y. NaE.J. MMP expression alteration and MMP-1 production control by syringic acid via AP-1 mechanism.Biomed. Dermatol.2018211510.1186/s41702‑018‑0023‑x
    [Google Scholar]
  20. LiuY.J. LyuJ.L. KuoY.H. ChiuC.Y. WenK.C. ChiangH.M. The anti-melanogenesis effect of 3,4-dihydroxybenzalacetone through downregulation of melanosome maturation and transportation in B16F10 and human epidermal melanocytes.Int. J. Mol. Sci.2021226282310.3390/ijms2206282333802228
    [Google Scholar]
  21. SatoK. TakeiM. IyotaR. MuraokaY. NagashimaM. YoshimuraY. Indomethacin inhibits melanogenesis via down-regulation of Mitf mRNA transcription.Biosci. Biotechnol. Biochem.201781122307231310.1080/09168451.2017.139481229090638
    [Google Scholar]
  22. AlamM.B. BajpaiV.K. LeeJ. Inhibition of melanogenesis by jineol from Scolopendra subspinipes mutilans via MAP-Kinase mediated MITF downregulation and the proteasomal degradation of tyrosinase.Sci. Rep.2017714585810.1038/srep4585828393917
    [Google Scholar]
  23. Mfotie NjoyaE. NdemangouB. AkinyeluJ. MunveraA.M. In vitro antiproliferative, anti-inflammatory effects and molecular docking studies of natural compounds isolated from sarcocephalus pobeguinii (Hua Ex Pobég).In: Front pharmacol202314
    [Google Scholar]
  24. SugaA. NaritaT. ZhouL. SakagamiH. SatohK. WakabayashiH. Inhibition of NO production in LPS-stimulated mouse macrophage-like cells by benzo[b]cyclohept[e] [1,4]oxazine and 2-aminotropone derivatives.In Vivo200923569169719779102
    [Google Scholar]
  25. MohamedM.A.A. JungM. LeeS.M. LeeT.H. KimJ. Protective effect of Disporum sessile D.Don extract against UVB-induced photoaging via suppressing MMP-1 expression and collagen degradation in human skin cells.J. Photochem. Photobiol. B2014133737910.1016/j.jphotobiol.2014.03.00224705373
    [Google Scholar]
  26. BravoK. DuqueL. FerreresF. MorenoD.A. OsorioE. Passiflora tarminiana fruits reduce UVB-induced photoaging in human skin fibroblasts.J. Photochem. Photobiol. B2017168788810.1016/j.jphotobiol.2017.01.02328189068
    [Google Scholar]
  27. TchakamP.D. LungaP.K. KowaT.K. Antimicrobial and antioxidant activities of the extracts and compounds from the leaves of Psorospermum aurantiacum Engl. and Hypericum lanceolatum Lam.BMC Complement. Altern. Med.201212113610.1186/1472‑6882‑12‑13622916964
    [Google Scholar]
  28. LinT.K. ZhongL. SantiagoJ. Anti-inflammatory and skin barrier repair effects of topical application of some plant oils.Int. J. Mol. Sci.20171917010.3390/ijms1901007029280987
    [Google Scholar]
  29. BaechleJ.J. ChenN. MakhijaniP. WinerS. FurmanD. WinerD.A. Chronic inflammation and the hallmarks of aging.Mol. Metab.20237410175510.1016/j.molmet.2023.10175537329949
    [Google Scholar]
  30. YimM.J. LeeJ.M. ChoiG. Anti-inflammatory potential of carpomitra costata ethanolic extracts via inhibition of NF- κ B and AP-1 activation in LPS-stimulated RAW264.7 macrophages.Evid. Based Complement. Alternat. Med.2018201811110.1155/2018/691451429681981
    [Google Scholar]
  31. ManM.Q. WakefieldJ.S. MauroT.M. EliasP.M. Role of nitric oxide in regulating epidermal permeability barrier function.Exp. Dermatol.202231329029810.1111/exd.1447034665906
    [Google Scholar]
  32. LeeS. ParkC.Y. Nitric oxide: An old drug but with new horizons in ophthalmology—a narrative review.Ann. Transl. Med.20231110352210.21037/atm‑22‑563437675299
    [Google Scholar]
  33. LeeC.H. ChoiE.Y. Macrophages and inflammation.J. Rheum. Dis.2018251111810.4078/jrd.2018.25.1.1132825228
    [Google Scholar]
  34. JomovaK. RaptovaR. AlomarS.Y. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging.Arch. Toxicol.202397102499257410.1007/s00204‑023‑03562‑937597078
    [Google Scholar]
  35. WangZ. GuanY. YangR. LiJ. WangJ. JiaA.Q. Anti-inflammatory activity of 3-cinnamoyltribuloside and its metabolomic analysis in LPS-activated RAW 264.7 cells.BMC Complement Med Ther202020132910.1186/s12906‑020‑03115‑y33138805
    [Google Scholar]
  36. YaoY.D. ShenX.Y. MachadoJ. Nardochinoid B inhibited the activation of RAW264.7 macrophages stimulated by lipopolysaccharide through activating the Nrf2/HO-1 pathway.Molecules20192413248210.3390/molecules2413248231284554
    [Google Scholar]
  37. ShiJ. LiH. LiangS. Selected lactobacilli strains inhibit inflammation in LPS-induced RAW264.7 macrophages by suppressing the TLR4-mediated NF-κB and MAPKs activation.Food Sci Technol202242e10762110.1590/fst.107621
    [Google Scholar]
  38. TallimaH. El RidiR. Arachidonic acid: Physiological roles and potential health benefits – A review.J. Adv. Res.201811334110.1016/j.jare.2017.11.00430034874
    [Google Scholar]
  39. WangB. WuL. ChenJ. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets.Signal Transduct. Target. Ther.2021619410.1038/s41392‑020‑00443‑w33637672
    [Google Scholar]
  40. VoN.N.Q. NomuraY. MuranakaT. FukushimaE.O. Structure–activity relationships of pentacyclic triterpenoids as inhibitors of cyclooxygenase and lipoxygenase enzymes.J. Nat. Prod.201982123311332010.1021/acs.jnatprod.9b0053831774676
    [Google Scholar]
  41. GuimarãesF.R. Sales-CamposH. NardiniV. The inhibition of 5-Lipoxygenase (5-LO) products leukotriene B4 (LTB 4) and cysteinyl leukotrienes (cysLTs) modulates the inflammatory response and improves cutaneous wound healing.Clin. Immunol.2018190748310.1016/j.clim.2017.08.02228965882
    [Google Scholar]
  42. OuZ. ZhaoJ. ZhuL. Anti-inflammatory effect and potential mechanism of betulinic acid on λ-carrageenan-induced paw edema in mice.Biomed. Pharmacother.201911810934710.1016/j.biopha.2019.10934731545273
    [Google Scholar]
  43. CostaE.F. MagalhãesW.V. Di StasiL.C. Recent advances in herbal-derived products with skin anti-aging properties and cosmetic applications.Molecules20222721751810.3390/molecules2721751836364354
    [Google Scholar]
  44. LouH. LiH. ZhangS. LuH. ChenQ. A review on preparation of betulinic acid and its biological activities.Molecules20212618558310.3390/molecules2618558334577056
    [Google Scholar]
  45. MirandaR.S. de JesusB.S.M. da Silva LuizS.R. Antiinflammatory activity of natural triterpenes—An overview from 2006 to 2021.Phytother. Res.20223641459150610.1002/ptr.735935229374
    [Google Scholar]
  46. RendaG. Gökkayaİ. ŞöhretoğluD. Immunomodulatory properties of triterpenes.Phytochem. Rev.202221253756310.1007/s11101‑021‑09785‑x34812259
    [Google Scholar]
  47. HanY. YuanC. ZhouX. Anti-inflammatory activity of three triterpene from Hippophae rhamnoides L. in lipopolysaccharide-stimulated RAW264.7 cells.Int. J. Mol. Sci.202122211200910.3390/ijms22211200934769438
    [Google Scholar]
  48. Romero-EstradaA. Maldonado-MagañaA. González-ChristenJ. Anti-inflammatory and antioxidative effects of six pentacyclic triterpenes isolated from the Mexican copal resin of Bursera copallifera.BMC Complement. Altern. Med.201616142210.1186/s12906‑016‑1397‑127784308
    [Google Scholar]
  49. KarapetsasA. VoulgaridouG.P. IliadiD. Honey extracts exhibit cytoprotective properties against UVB-induced photodamage in human experimental skin models.Antioxidants20209756610.3390/antiox907056632629798
    [Google Scholar]
  50. ChoiJ.K. KwonO.Y. LeeS.H. Kaempferide prevents photoaging of ultraviolet-B irradiated NIH-3T3 cells and mouse skin via regulating the reactive oxygen species-mediated signalings.Antioxidants20221211110.3390/antiox1201001136670873
    [Google Scholar]
  51. CruzA.M. GonçalvesM.C. MarquesM.S. VeigaF. Paiva-SantosA.C. PiresP.C. In vitro models for anti-aging efficacy assessment: A critical update in dermocosmetic research.Cosmetics20231026610.3390/cosmetics10020066
    [Google Scholar]
  52. HibbertS.A. WatsonR.E.B. GriffithsC.E.M. GibbsN.K. SherrattM.J. Selective proteolysis by matrix metalloproteinases of photo-oxidised dermal extracellular matrix proteins.Cell. Signal.20195419119910.1016/j.cellsig.2018.11.02430521860
    [Google Scholar]
  53. RyuT.K. RohE. ShinH.S. KimJ.E. Inhibitory effect of lotusine on solar UV-induced matrix metalloproteinase-1 expression.Plants202211677310.3390/plants1106077335336655
    [Google Scholar]
  54. JungJ.M. KwonO.Y. ChoiJ.K. LeeS.H. Alpinia officinarum Rhizome ameliorates the UVB induced photoaging through attenuating the phosphorylation of AKT and ERK.BMC Complement Med Ther202222123210.1186/s12906‑022‑03707‑w36123596
    [Google Scholar]
  55. Del BinoS. DuvalC. BernerdF. Clinical and biological characterization of skin pigmentation diversity and its consequences on UV impact.Int. J. Mol. Sci.2018199266810.3390/ijms1909266830205563
    [Google Scholar]
  56. SolanoF. On the metal cofactor in the tyrosinase family.Int. J. Mol. Sci.201819263310.3390/ijms1902063329473882
    [Google Scholar]
  57. WagatsumaT. SuzukiE. ShiotsuM. Pigmentation and TYRP1 expression are mediated by zinc through the early secretory pathway-resident ZNT proteins.Commun. Biol.20236140310.1038/s42003‑023‑04640‑537072620
    [Google Scholar]
  58. JoH.J. OhJ.H. KaradenizF. SeoY. KongC.S. Evaluation and comparison of the antimelanogenic properties of different solvent fractionated cnidium japonicum extracts in B16F10 murine melanoma cells.Prev. Nutr. Food Sci.202227444845610.3746/pnf.2022.27.4.44836721746
    [Google Scholar]
  59. LiJ. FengL. LiuL. Recent advances in the design and discovery of synthetic tyrosinase inhibitors.Eur. J. Med. Chem.202122411374410.1016/j.ejmech.2021.11374434365131
    [Google Scholar]
  60. LeeA. KimJ.Y. HeoJ. The inhibition of melanogenesis via the PKA and ERK signaling pathways by chlamydomonas reinhardtii extract in B16F10 melanoma cells and artificial human skin equivalents.J. Microbiol. Biotechnol.201828122121213810.4014/jmb.1810.10008
    [Google Scholar]
  61. CaoC. XiaoZ. TongH. LiuY. WuY. GeC. Oral intake of chicken bone collagen peptides anti-skin aging in mice by regulating collagen degradation and synthesis, inhibiting inflammation and activating lysosomes.Nutrients2022148162210.3390/nu1408162235458184
    [Google Scholar]
  62. Jabłońska-TrypućA MatejczykM RosochackiS. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs J Enzyme Inhib Med Chem201631sup11778310.3109/14756366.2016.116162027028474
    [Google Scholar]
  63. JungH. LeeE. LeeT. ChoM.H. The methoxyflavonoid isosakuranetin suppresses UV-B-induced matrix metalloproteinase-1 expression and collagen degradation relevant for skin photoaging.Int. J. Mol. Sci.2016179144910.3390/ijms1709144927598131
    [Google Scholar]
  64. KimK.Y. LeeE.J. WhangW.K. ParkC.H. In vitro and in vivo anti-aging effects of compounds isolated from Artemisia iwayomogi.J. Anal. Sci. Technol.20191013510.1186/s40543‑019‑0193‑1
    [Google Scholar]
  65. QianW. LiuW. ZhuD. Natural skin whitening compounds for the treatment of melanogenesis. (Review)Exp. Ther. Med.202020117318510.3892/etm.2020.868732509007
    [Google Scholar]
  66. ZolghadriS. BeygiM. MohammadT.F. Targeting tyrosinase in hyperpigmentation: Current status, limitations and future promises.Biochem. Pharmacol.202321211557410.1016/j.bcp.2023.11557437127249
    [Google Scholar]
  67. PillaiyarT. ManickamM. NamasivayamV. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors.J. Enzyme Inhib. Med. Chem.201732140342510.1080/14756366.2016.125688228097901
    [Google Scholar]
  68. DengM. LiD. ZhangY. Protective effect of crocin on ultraviolet B induced dermal fibroblast photoaging.Mol. Med. Rep.20181821439144610.3892/mmr.2018.915029901204
    [Google Scholar]
  69. ZduńskaK. DanaA. KolodziejczakA. RotsztejnH. Antioxidant properties of ferulic acid and its possible application.Skin Pharmacol. Physiol.201831633233610.1159/00049175530235459
    [Google Scholar]
  70. SurgetG. Stiger-PouvreauV. Le LannK. Structural elucidation, in vitro antioxidant and photoprotective capacities of a purified polyphenolic-enriched fraction from a saltmarsh plant.J. Photochem. Photobiol. B2015143526010.1016/j.jphotobiol.2014.12.01825600264
    [Google Scholar]
  71. OliveiraF.G.S. VerasB.O. SilvaA.P.S.A. Photoprotective activity and HPLC-MS-ESI-IT profile of flavonoids from the barks of Hymenaea martiana Hayne (Fabaceae): development of topical formulations containing the hydroalcoholic extract.Biotechnol. Biotechnol. Equip.202135150451610.1080/13102818.2021.1901607
    [Google Scholar]
  72. ChunhakantS. ChaicharoenpongC. Antityrosinase, antioxidant, and cytotoxic activities of phytochemical constituents from Manilkara zapota L. bark.Molecules20192415279810.3390/molecules2415279831370334
    [Google Scholar]
  73. RafiqM. NazirY. AshrafZ. Synthesis, computational studies, tyrosinase inhibitory kinetics and antimelanogenic activity of hydroxy substituted 2-[(4-acetylphenyl)amino]-2-oxoethyl derivatives.J. Enzyme Inhib. Med. Chem.20193411562157210.1080/14756366.2019.1654468
    [Google Scholar]
  74. ChoiI. ParkY. RyuI.Y. In silico and in vitro insights into tyrosinase inhibitors with a 2-thioxooxazoline-4-one template.Comput. Struct. Biotechnol. J.202119375010.1016/j.csbj.2020.12.00133363708
    [Google Scholar]
  75. Drąg-ZalesińskaM. RembiałkowskaN. BorskaS. A new betulin derivative stimulates the synthesis of collagen in human fibroblasts stronger than its precursor.In Vivo20193341087109310.21873/invivo.1157731280196
    [Google Scholar]
  76. WeberL.A. MeißnerJ. DelarocqueJ. Betulinic acid shows anticancer activity against equine melanoma cells and permeates isolated equine skin in vitro.BMC Vet. Res.20201614410.1186/s12917‑020‑2262‑532024502
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775282636240307114735
Loading
/content/journals/cdrr/10.2174/0125899775282636240307114735
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test