Skip to content
2000
Volume 17, Issue 1
  • ISSN: 2589-9775
  • E-ISSN: 2589-9783

Abstract

The angiotensin-converting enzyme-2 (ACE-2) alters the pathophysiology of various fatal cardiovascular diseases, including ischemic heart disease, whereas angiotensin 1-7 (Ang 1–7) exerts a wide range of actions. The effects of ischemia-reperfusion (IR) injury include damage to myocardial tissue that initiates protease action, causing cardiac cell death. Angiotensin-II (Ang-II) contributes through the renin-angiotensin system (RAS) to the IR injury, whereas Ang 1–7 paradoxically exerts a protective effect through the same. Thus, the myocardial ischemic reperfusion injury (MIRI) may be altered by the RAS of the heart. This review paper focuses on ACE-2, angiotensin-converting enzyme (ACE), and Ang 1–7 regulation in the RAS of the heart in the pathophysiology of MIRI. The treatment in such conditions using ACE-2 activator, ACE inhibitor, and Ang-II antagonists may promote vascular functions as well as cardio-protection.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775280160240122065607
2024-01-31
2025-05-04
Loading full text...

Full text loading...

References

  1. Sreeniwas KumarA. SinhaN. Cardiovascular disease in India: A 360 degree overview.Med. J. Armed Forces India20207611310.1016/j.mjafi.2019.12.00532020960
    [Google Scholar]
  2. NagT. GhoshA. Cardiovascular disease risk factors in Asian Indian population: A systematic review.J. Cardiovasc. Dis. Res.20134422222824653585
    [Google Scholar]
  3. KontosM.C. DiercksD.B. KirkJ.D. Emergency department and office-based evaluation of patients with chest pain.Mayo Clin. Proc.201085328429910.4065/mcp.2009.056020194155
    [Google Scholar]
  4. GoyalA. AgrawalN. Ischemic preconditioning: Interruption of various disorders.J. Saudi Heart Assoc.201729211612710.1016/j.jsha.2016.09.00228373786
    [Google Scholar]
  5. FerdinandyP. HausenloyD.J. HeuschG. BaxterG.F. SchulzR. Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning.Pharmacol. Rev.20146641142117410.1124/pr.113.00830025261534
    [Google Scholar]
  6. CharlsonF.J. MoranA.E. FreedmanG. The contribution of major depression to the global burden of ischemic heart disease: A comparative risk assessment.BMC Med.201311125010.1186/1741‑7015‑11‑25024274053
    [Google Scholar]
  7. HeuschG. GershB.J. The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: A continual challenge.Eur. Heart J.2017381177478427354052
    [Google Scholar]
  8. PhilipF. BlackstoneE. KapadiaS.R. Impact of statins and beta-blocker therapy on mortality after coronary artery bypass graft surgery.Cardiovasc. Diagn. Ther.20155181625774344
    [Google Scholar]
  9. Gracia-SanchoJ. Casillas-RamírezA. PeraltaC. Molecular pathways in protecting the liver from ischaemia/reperfusion injury: A 2015 update.Clin. Sci. 2015129434536210.1042/CS2015022326014222
    [Google Scholar]
  10. JespersenN.R. YokotaT. StøttrupN.B. Pre‐ischaemic mitochondrial substrate constraint by inhibition of malate‐aspartate shuttle preserves mitochondrial function after ischaemia–reperfusion.J. Physiol.2017595123765378010.1113/JP27340828093764
    [Google Scholar]
  11. WuM.Y. YiangG.T. LiaoW.T. Current mechanistic concepts in ischemia and reperfusion injury.Cell. Physiol. Biochem.20184641650166710.1159/00048924129694958
    [Google Scholar]
  12. MontezanoA.C. TouyzR.M. Molecular mechanisms of hypertension-reactive oxygen species and antioxidants: A basic science update for the clinician.Can. J. Cardiol.201228328829510.1016/j.cjca.2012.01.01722445098
    [Google Scholar]
  13. Sharifi-RadM. Anil KumarN.V. ZuccaP. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases.Front. Physiol.20201169410.3389/fphys.2020.0069432714204
    [Google Scholar]
  14. RanaA.K. SinghD. Targeting glycogen synthase kinase-3 for oxidative stress and neuroinflammation: Opportunities, challenges and future directions for cerebral stroke management.Neuropharmacology201813912413610.1016/j.neuropharm.2018.07.00630017999
    [Google Scholar]
  15. LamendolaP. Di MonacoA. BaroneL. PisanelloC. LanzaG.A. CreaF. Mechanisms of myocardial cell protection from ischemia/reperfusion injury and potential clinical implications.G. Ital. Cardiol. 2009101283619292017
    [Google Scholar]
  16. PetrosilloG. Di VenosaN. MoroN. In vivo hyperoxic preconditioning protects against rat-heart ischemia/reperfusion injury by inhibiting mitochondrial permeability transition pore opening and cytochrome c release.Free Radic. Biol. Med.201150347748310.1016/j.freeradbiomed.2010.11.03021130864
    [Google Scholar]
  17. BainesC.P. The mitochondrial permeability transition pore and ischemia-reperfusion injury.Basic Res. Cardiol.2009104218118810.1007/s00395‑009‑0004‑819242640
    [Google Scholar]
  18. BrentnallM. Rodriguez-MenocalL. De GuevaraR.L. CeperoE. BoiseL.H. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis.BMC Cell Biol.20131413210.1186/1471‑2121‑14‑3223834359
    [Google Scholar]
  19. BrentnallM. WeirD.B. RongvauxA. MarcusA.I. BoiseL.H. Procaspase-3 regulates fibronectin secretion and influences adhesion, migration and survival independently of catalytic function.J. Cell Sci.2014127Pt 102217222624610949
    [Google Scholar]
  20. MessnerB. TürkcanA. PlonerC. LauferG. BernhardD. Cadmium overkill: Autophagy, apoptosis and necrosis signalling in endothelial cells exposed to cadmium.Cell. Mol. Life Sci.20167381699171310.1007/s00018‑015‑2094‑926588916
    [Google Scholar]
  21. CadenasS. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection.Free Radic. Biol. Med.2018117768910.1016/j.freeradbiomed.2018.01.02429373843
    [Google Scholar]
  22. HouangE.M. BartosJ. HackelB.J. Cardiac muscle membrane stabilization in myocardial reperfusion injury.JACC Basic Transl. Sci.20194227528710.1016/j.jacbts.2019.01.00931061929
    [Google Scholar]
  23. BagheriF. KhoriV. AlizadehA.M. KhalighfardS. KhodayariS. KhodayariH. Reactive oxygen species-mediated cardiac-reperfusion injury: Mechanisms and therapies.Life Sci.2016165435510.1016/j.lfs.2016.09.01327667751
    [Google Scholar]
  24. ZhengY. XuL. DongN. LiF. NLRP3 inflammasome: The rising star in cardiovascular diseases.Front. Cardiovasc. Med.2022992706110.3389/fcvm.2022.92706136204568
    [Google Scholar]
  25. MiuraT. TannoM. Mitochondria and GSK-3beta in cardioprotection against ischemia/reperfusion injury.Cardiovasc. Drugs Ther.201024325526310.1007/s10557‑010‑6234‑z20490903
    [Google Scholar]
  26. HalestrapA.P. Calcium, mitochondria and reperfusion injury: A pore way to die.Biochem. Soc. Trans.200634223223710.1042/BST034023216545083
    [Google Scholar]
  27. ThirupathiA. PinhoR.A. Effects of reactive oxygen species and interplay of antioxidants during physical exercise in skeletal muscles.J. Physiol. Biochem.201874335936710.1007/s13105‑018‑0633‑129713940
    [Google Scholar]
  28. NeriM. RiezzoI. PascaleN. PomaraC. TurillazziE. Ischemia/reperfusion injury following acute myocardial infarction: A critical issue for clinicians and forensic pathologists.Mediators Inflamm.2017201711410.1155/2017/701839328286377
    [Google Scholar]
  29. Avtaar SinghS.S. Das DeS. Al-AdhamiA. SinghR. HopkinsP.M.A. CurryP.A. Primary graft dysfunction following lung transplantation: From pathogenesis to future frontiers.World J. Transplant.2023133588510.5500/wjt.v13.i3.5836968136
    [Google Scholar]
  30. HerringtonC.S. PrekkerM.E. ArringtonA.K. A randomized, placebo-controlled trial of aprotinin to reduce primary graft dysfunction following lung transplantation.Clin. Transplant.2011251909610.1111/j.1399‑0012.2010.01319.x20731686
    [Google Scholar]
  31. GrangerD.N. KvietysP.R. Reperfusion injury and reactive oxygen species: The evolution of a concept.Redox Biol.2015652455110.1016/j.redox.2015.08.02026484802
    [Google Scholar]
  32. KotylaP. Bimodal function of anti-TNF treatment: Shall we be concerned about anti-tnf treatment in patients with rheumatoid arthritis and heart failure?Int. J. Mol. Sci.2018196173910.3390/ijms1906173929895751
    [Google Scholar]
  33. ParaviciniT.M. TouyzR.M. NADPH oxidases, reactive oxygen species, and hypertension: Clinical implications and therapeutic possibilities.Diabetes Care200831Suppl. 2S170S18010.2337/dc08‑s24718227481
    [Google Scholar]
  34. MalekM. NematbakhshM. Renal ischemia/reperfusion injury: From pathophysiology to treatment.J. Renal Inj. Prev.201542202726060833
    [Google Scholar]
  35. JangH.R. RabbH. The innate immune response in ischemic acute kidney injury.Clin. Immunol.20091301415010.1016/j.clim.2008.08.01618922742
    [Google Scholar]
  36. SharfuddinA.A. MolitorisB.A. Pathophysiology of ischemic acute kidney injury.Nat. Rev. Nephrol.20117418920010.1038/nrneph.2011.1621364518
    [Google Scholar]
  37. de GrootH. RauenU. Ischemia-reperfusion injury: Processes in pathogenetic networks: A review.Transplant. Proc.200739248148410.1016/j.transproceed.2006.12.01217362763
    [Google Scholar]
  38. KhuranaS. VenkataramanK. HollingsworthA. PicheM. TaiT. Polyphenols: Benefits to the cardiovascular system in health and in aging.Nutrients20135103779382710.3390/nu510377924077237
    [Google Scholar]
  39. YuH. KalogerisT. KorthuisR.J. Reactive species-induced microvascular dysfunction in ischemia/reperfusion.Free Radic. Biol. Med.201913518219710.1016/j.freeradbiomed.2019.02.03130849489
    [Google Scholar]
  40. AjmaniP. YadavH.N. SinghM. SharmaP.L. Possible involvement of caveolin in attenuation of cardioprotective effect of ischemic preconditioning in diabetic rat heart.BMC Cardiovasc. Disord.20111114310.1186/1471‑2261‑11‑4321745415
    [Google Scholar]
  41. GuptaI. GoyalA. SinghN.K. YadavH.N. SharmaP.L. Hemin, a heme oxygenase-1 inducer, restores the attenuated cardioprotective effect of ischemic preconditioning in isolated diabetic rat heart.Hum. Exp. Toxicol.201736886787510.1177/096032711667316927738197
    [Google Scholar]
  42. HeuschG. Myocardial ischaemia–reperfusion injury and cardioprotection in perspective.Nat. Rev. Cardiol.2020171277378910.1038/s41569‑020‑0403‑y32620851
    [Google Scholar]
  43. HausenloyD.J. BotkerH.E. EngstromT. Targeting reperfusion injury in patients with ST-segment elevation myocardial infarction: Trials and tribulations.Eur. Heart J.2017381393594127118196
    [Google Scholar]
  44. MinasianS.M. GalagudzaM.M. DmitrievY.V. KarpovA.A. VlasovT.D. Preservation of the donor heart: From basic science to clinical studies.Interact. Cardiovasc. Thorac. Surg.201520451051910.1093/icvts/ivu43225538253
    [Google Scholar]
  45. JonecovaZ. TothS. MarettaM. Protective effect of ischemic preconditioning on the jejunal graft mucosa injury during cold preservation.Exp. Mol. Pathol.201599222923510.1016/j.yexmp.2015.06.02026123930
    [Google Scholar]
  46. PagliaroP. PennaC. Rethinking the renin-angiotensin system and its role in cardiovascular regulation.Cardiovasc. Drugs Ther.2005191778710.1007/s10557‑005‑6900‑815883759
    [Google Scholar]
  47. PennaC. TullioF. MoroF. FolinoA. MerlinoA. PagliaroP. Effects of a protocol of ischemic postconditioning and/or captopril in hearts of normotensive and hypertensive rats.Basic Res. Cardiol.2010105218119210.1007/s00395‑009‑0075‑620012872
    [Google Scholar]
  48. FerdinandyP. AndreadouI. BaxterG.F. Interaction of cardiovascular nonmodifiable risk factors, comorbidities and comedications with ischemia/reperfusion injury and cardioprotection by pharmacological treatments and ischemic conditioning.Pharmacol. Rev.202375115921610.1124/pharmrev.121.00034836753049
    [Google Scholar]
  49. NankivellB.J. KuypersD.R.J. Diagnosis and prevention of chronic kidney allograft loss.Lancet201137898001428143710.1016/S0140‑6736(11)60699‑522000139
    [Google Scholar]
  50. RandhawaP.K. BaliA. JaggiA.S. RIPC for multiorgan salvage in clinical settings: Evolution of concept, evidences and mechanisms.Eur. J. Pharmacol.201574631733210.1016/j.ejphar.2014.08.01625176179
    [Google Scholar]
  51. PüchelJ. SitterM. KrankeP. PecksU. Procedural techniques to control postpartum hemorrhage.Baillieres. Best Pract. Res. Clin. Anaesthesiol.2022363-437138210.1016/j.bpa.2022.09.00236513432
    [Google Scholar]
  52. GuoL. SunG. WangG. NingW. ZhaoK. Soluble P-selectin promotes acute myocardial infarction onset but not severity.Mol. Med. Rep.20151132027203310.3892/mmr.2014.291725384966
    [Google Scholar]
  53. WeilB.R. NeelameghamS. Selectins and immune cells in acute myocardial infarction and post-infarction ventricular remodeling: Pathophysiology and novel treatments.Front. Immunol.20191030010.3389/fimmu.2019.0030030873166
    [Google Scholar]
  54. OhK.S. SeoH.W. YiK.Y. LeeS. YooS. LeeB.H. Effects of KR‐33028, a novel Na +/H + exchanger‐1 inhibitor, on ischemia and reperfusion‐induced myocardial infarction in rats and dogs.Fundam. Clin. Pharmacol.200721325526310.1111/j.1472‑8206.2007.00491.x17521294
    [Google Scholar]
  55. Simões e SilvaA.C. TeixeiraM.M. ACE inhibition, ACE2 and angiotensin-(1⿿7) axis in kidney and cardiac inflammation and fibrosis.Pharmacol. Res.201610715416210.1016/j.phrs.2016.03.01826995300
    [Google Scholar]
  56. LimaC.T. SilvaJ.C.S. ViegasK.A.S. Increase in vascular injury of sodium overloaded mice may be related to vascular angiotensin modulation.PLoS One2015106e012814110.1371/journal.pone.012814126030299
    [Google Scholar]
  57. De ResendeM.M. MillJ.G. Effect of high salt intake on local renin-angiotensin system and ventricular dysfunction following myocardial infarction in rats.Clin. Exp. Pharmacol. Physiol.200734427427910.1111/j.1440‑1681.2007.04556.x17324137
    [Google Scholar]
  58. PaulM. Poyan MehrA. KreutzR. Physiology of local renin-angiotensin systems.Physiol. Rev.200686374780310.1152/physrev.00036.200516816138
    [Google Scholar]
  59. IwataM. CowlingR.T. YeoS.J. GreenbergB. Targeting the ACE2–Ang-(1–7) pathway in cardiac fibroblasts to treat cardiac remodeling and heart failure.J. Mol. Cell. Cardiol.201151454254710.1016/j.yjmcc.2010.12.00321147120
    [Google Scholar]
  60. HammingI. TimensW. BulthuisM.L.C. LelyA.T. NavisG.J. van GoorH. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis.J. Pathol.2004203263163710.1002/path.157015141377
    [Google Scholar]
  61. ShiL. MaoC. XuZ. ZhangL. Angiotensin-converting enzymes and drug discovery in cardiovascular diseases.Drug Discov. Today2010159-1033234110.1016/j.drudis.2010.02.00320170743
    [Google Scholar]
  62. RyuW.S. KimS.W. KimC.J. Overview of the renin-angiotensin system.Korean Circ. J.2007373919610.4070/kcj.2007.37.3.91
    [Google Scholar]
  63. HaydenM.R. SowersK.M. PulakatL. Possible mechanisms of local tissue renin-angiotensin system activation in the cardiorenal metabolic syndrome and type 2 diabetes mellitus.Cardiorenal Med.20111319321010.1159/00032992622096455
    [Google Scholar]
  64. SabharwalR. ChapleauM.W. Autonomic, locomotor and cardiac abnormalities in a mouse model of muscular dystrophy: Targeting the renin–angiotensin system.Exp. Physiol.201499462763110.1113/expphysiol.2013.07433624334334
    [Google Scholar]
  65. GutteH. OxbølJ. KristoffersenU.S. MortensenJ. KjærA. Gene expression of ANP, BNP and ET-1 in the heart of rats during pulmonary embolism.PLoS One201056e1111110.1371/journal.pone.001111120559433
    [Google Scholar]
  66. MarangoniR.A. SantosR.A. PiccoloC. Deficient prolylcarboxypeptidase gene and protein expression in left ventricles of spontaneously hypertensive rats (SHR).Peptides201461697410.1016/j.peptides.2014.08.01625218829
    [Google Scholar]
  67. SparksM.A. CrowleyS.D. GurleyS.B. MirotsouM. CoffmanT.M. Classical renin-angiotensin system in kidney physiology.Compr. Physiol.2014431201122810.1002/cphy.c13004024944035
    [Google Scholar]
  68. GonsalezS.R. FerrãoF.M. SouzaA.M. LoweJ. MorcilloL.S.L. Inappropriate activity of local renin-angiotensin-aldosterone system during high salt intake: Impact on the cardio-renal axis.J. Bras. Nefrol.201840217017810.1590/2175‑8239‑jbn‑366129944159
    [Google Scholar]
  69. HuskováZ. KopkanL. ČervenkováL. Intrarenal alterations of the angiotensin‐converting enzyme type 2/angiotensin 1–7 complex of the renin‐angiotensin system do not alter the course of malignant hypertension in Cyp1a1‐Ren‐2 transgenic rats.Clin. Exp. Pharmacol. Physiol.201643443844910.1111/1440‑1681.1255326833491
    [Google Scholar]
  70. SatouR. Gonzalez-VillalobosR.A. JAK-STAT and the renin-angiotensin system.JAK-STAT20121425025610.4161/jkst.2272924058780
    [Google Scholar]
  71. RoshanovP.S. RochwergB. PatelA. Withholding versus continuing angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers before noncardiac surgery: An analysis of the vascular events in noncardiac surgery patients cohort evaluation prospective cohort.Anesthesiology20171261162710.1097/ALN.000000000000140427775997
    [Google Scholar]
  72. MinL.J. MogiM. LiJ.M. IwanamiJ. IwaiM. HoriuchiM. Aldosterone and angiotensin II synergistically induce mitogenic response in vascular smooth muscle cells.Circ. Res.200597543444210.1161/01.RES.0000180753.63183.9516081869
    [Google Scholar]
  73. ZhangY. GriendlingK.K. DikalovaA. OwensG.K. TaylorW.R. Vascular hypertrophy in angiotensin II-induced hypertension is mediated by vascular smooth muscle cell-derived H2O2.Hypertension200546473273710.1161/01.HYP.0000182660.74266.6d16172434
    [Google Scholar]
  74. Ushio-FukaiM. ZuoL. IkedaS. TojoT. PatrushevN.A. AlexanderR.W. cAbl tyrosine kinase mediates reactive oxygen species- and caveolin-dependent AT1 receptor signaling in vascular smooth muscle: role in vascular hypertrophy.Circ. Res.200597882983610.1161/01.RES.0000185322.46009.F516151024
    [Google Scholar]
  75. WarnerF.J. LewR.A. SmithA.I. LambertD.W. HooperN.M. TurnerA.J. Angiotensin-converting enzyme 2 (ACE2), but not ACE, is preferentially localized to the apical surface of polarized kidney cells.J. Biol. Chem.200528047393533936210.1074/jbc.M50891420016166094
    [Google Scholar]
  76. JiangT. GaoL. LuJ. ZhangY.D. ACE2-Ang-(1-7)-Mas axis in brain: A potential target for prevention and treatment of ischemic stroke.Curr. Neuropharmacol.201311220921710.2174/1570159X1131102000723997755
    [Google Scholar]
  77. SamavatiL. UhalB.D. ACE2, much more than just a receptor for SARS-COV-2.Front. Cell. Infect. Microbiol.20201031710.3389/fcimb.2020.0031732582574
    [Google Scholar]
  78. GheblawiM. WangK. ViveirosA. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system.Circ. Res.2020126101456147410.1161/CIRCRESAHA.120.31701532264791
    [Google Scholar]
  79. ForresterS.J. BoozG.W. SigmundC.D. Angiotensin II signal transduction: An update on mechanisms of physiology and pathophysiology.Physiol. Rev.20189831627173810.1152/physrev.00038.201729873596
    [Google Scholar]
  80. SolomonS.D. PfefferM.A. The decreasing incidence of left ventricular remodeling following myocardial infarction.Basic Res. Cardiol.1997922616510.1007/BF008055619166980
    [Google Scholar]
  81. ZhangT. MaC. ZhangZ. ZhangH. HuH. NF‐κB signaling in inflammation and cancer.MedComm20212461865310.1002/mco2.10434977871
    [Google Scholar]
  82. EhringT. BaumgartD. KrajcarM. HümmelgenM. KompaS. HeuschG. Attenuation of myocardial stunning by the ACE inhibitor ramiprilat through a signal cascade of bradykinin and prostaglandins but not nitric oxide.Circulation19949031368138510.1161/01.CIR.90.3.13688087948
    [Google Scholar]
  83. FrangogiannisN.G. Transforming growth factor–β in tissue fibrosis.J. Exp. Med.20202173e2019010310.1084/jem.2019010332997468
    [Google Scholar]
  84. Sousa-LopesA. de FreitasR.A. CarneiroF.S. Angiotensin (1-7) inhibits Ang II-mediated ERK1/2 activation by stimulating MKP-1 activation in vascular smooth muscle cells.Int. J. Mol. Cell. Med.202091506132832484
    [Google Scholar]
  85. JalowyA. SchulzR. DörgeH. BehrendsM. HeuschG. Infarct size reduction by AT1-receptor blockade through a signal cascade of AT2-receptor activation, bradykinin and prostaglandins in pigs.J. Am. Coll. Cardiol.19983261787179610.1016/S0735‑1097(98)00441‑09822110
    [Google Scholar]
  86. DörgeH. BehrendsM. SchulzR. JalowyA. HeuschG. Attenuation of myocardial stunning by the AT 1 receptor antagonist candesartan.Basic Res. Cardiol.199994320821410.1007/s00395005014410424239
    [Google Scholar]
  87. AlQudahM. HaleT.M. CzubrytM.P. Targeting the renin-angiotensin-aldosterone system in fibrosis.Matrix Biol.202091-929210810.1016/j.matbio.2020.04.00532422329
    [Google Scholar]
  88. OngS.B. Hernández-ReséndizS. Crespo-AvilanG.E. Inflammation following acute myocardial infarction: Multiple players, dynamic roles, and novel therapeutic opportunities.Pharmacol. Ther.2018186738710.1016/j.pharmthera.2018.01.00129330085
    [Google Scholar]
  89. BabikerF. Al-JarallahA. JosephS. The interplay between the renin angiotensin system and pacing postconditioning induced cardiac protection.PLoS One20161111e016577710.1371/journal.pone.016577727814397
    [Google Scholar]
  90. MeierP. MaillardM. BurnierM. The future of angiotensin II inhibition in cardiovascular medicine.Curr. Drug Targets Cardiovasc. Haematol. Disord.200551153010.2174/156800605300499415720221
    [Google Scholar]
  91. QiY. ZhangJ. Cole-JeffreyC.T. Diminazene aceturate enhances angiotensin-converting enzyme 2 activity and attenuates ischemia-induced cardiac pathophysiology.Hypertension201362474675210.1161/HYPERTENSIONAHA.113.0133723959549
    [Google Scholar]
  92. CastardeliC. SartórioC.L. PimentelE.B. ForechiL. MillJ.G. The ACE 2 activator diminazene aceturate (DIZE) improves left ventricular diastolic dysfunction following myocardial infarction in rats.Biomed. Pharmacother.201810721221810.1016/j.biopha.2018.07.17030092400
    [Google Scholar]
  93. MartínezL.A. Villalobos-MolinaR. Early and chronic captopril or Losartan therapy reduces infarct size and avoids congestive heart failure after myocardial infarction in rats.Arch. Med. Res.200334535736110.1016/S0188‑4409(03)00076‑614602500
    [Google Scholar]
  94. PagliaroP. PennaC. ACE/ACE2 ratio: A key also in 2019 coronavirus disease (Covid-19)?Front. Med.2020733510.3389/fmed.2020.0033532626721
    [Google Scholar]
  95. HuangJ. TangX. LiangX. The effects of 17-methoxyl-7-hydroxy-benzene-furanchalcone on pressure overload-induced cardiac remodeling in rats and the endothelial mechanisms based on PGI2.Cell. Physiol. Biochem.20153631004101410.1159/00043027426112123
    [Google Scholar]
  96. XueB. ZhangY. JohnsonA.K. Interactions of the brain renin-angiotensin-system (RAS) and inflammation in the sensitization of hypertension.Front. Neurosci.20201465010.3389/fnins.2020.0065032760236
    [Google Scholar]
  97. BusseL.W. ChowJ.H. McCurdyM.T. KhannaA.K. COVID-19 and the RAAS—a potential role for angiotensin II?Crit. Care202024113610.1186/s13054‑020‑02862‑132264922
    [Google Scholar]
  98. SinghA.K. GuptaR. MisraA. Comorbidities in COVID-19: Outcomes in hypertensive cohort and controversies with renin angiotensin system blockers.Diabetes Metab. Syndr.202014428328710.1016/j.dsx.2020.03.01632283499
    [Google Scholar]
  99. PennaC. MercurioV. TocchettiC.G. PagliaroP. Sex‐related differences in COVID‐19 lethality.Br. J. Pharmacol.2020177194375438510.1111/bph.1520732698249
    [Google Scholar]
  100. CiagliaE. VecchioneC. PucaA.A. COVID-19 infection and circulating ACE2 levels: Protective role in women and children.Front Pediatr.2020820610.3389/fped.2020.0020632391299
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775280160240122065607
Loading
/content/journals/cdrr/10.2174/0125899775280160240122065607
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test