Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

The human body is a complex ecosystem that thrives on symbiosis. It is estimated that around 10^14 commensal microorganisms inhabit the human body, with the gut microbiota being one of the most diverse and complex populations of bacteria. This community is thought to comprise over a thousand different species that play a crucial role in the development of critical human diseases such as cancer, obesity, diabetes, mental depression, hypertension, and others. The gut microbiota has been identified as one of the most recent contributors to these metabolic disorders. With the emergence of inexpensive and high-performance sequence technology, our understanding of the function of the intestinal microbiome in host metabolism regulation and the development of (cardio) metabolic diseases has increased significantly. The symbiotic relationship between the gut microbiota and the host is essential for properly developing the human metabolic system. However, if this balance is disrupted by various factors such as infection, diet, exercise, sleep patterns, or exposure to antibiotics, it can lead to the development of various diseases in the body, including obesity and diabetes type 1 and 2. While many approaches and medications have been developed globally to treat these diseases, none have proven to be entirely effective, and many show side effects. Therefore, scientists believe that treating the gut microbiota using tried-and-true methods is the best option for combating obesity and diabetes. In this study, we aim to identify several feasible ways and prospects for gut microbiota therapy that can shape a new format for the treatment of obesity and diabetes.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/1573399820666230515115307
2024-03-01
2025-01-01
Loading full text...

Full text loading...

/content/journals/cdr/10.2174/1573399820666230515115307
Loading

  • Article Type:
    Review Article
Keyword(s): bacteriology; diabetes; Gut-microbiota; intestine; microbiology; obesity; treatment
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test