Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Background

Diabetes mellitus (DM), arising from pancreatic β-cell dysfunction and disrupted alpha-amylase secretion, manifests as hyperglycemia. Synthetic inhibitors of alpha-amylase like acarbose manage glucose but pose adverse effects, prompting interest in plant-derived alternatives rich in antioxidants and anti-inflammatory properties.

Objective

The current review investigates plant-based alpha-amylase inhibitors, exploring their potential therapeutic roles in managing DM. Focusing on their ability to modulate postprandial hyperglycemia by regulating alpha-amylase secretion, it assesses their efficacy, health benefits, and implications for diabetes treatment.

Methods

This review examines plant-derived alpha-amylase inhibitors as prospective diabetic mellitus treatments using PubMed, Google Scholar, and Scopus data.

Results

Plant-derived inhibitors, including , , and , exhibit anti-inflammatory and antioxidant properties, effectively reducing alpha-amylase levels in diabetic conditions. Such alpha-amylase inhibitors showed promising alternative treatment in managing diabetes with reduced adverse effects.

Conclusion

The current literature concludes that plant-derived alpha-amylase inhibitors present viable therapeutic avenues for diabetes management by modulating alpha-amylase secretion by regulating inflammatory, oxidative stress, and apoptotic mechanisms involved in the pathogenesis of diabetes. Further investigation into their formulations and clinical efficacy may reveal their more comprehensive diabetes therapeutic significance, emphasizing their potential impact on glucose regulation and overall health.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998304373240611110224
2024-07-02
2025-04-06
Loading full text...

Full text loading...

References

  1. HameedI. MasoodiS.R. MirS.A. NabiM. GhazanfarK. GanaiB.A. Type 2 diabetes mellitus: From a metabolic disorder to an inflammatory condition.World J. Diabetes20156459861210.4239/wjd.v6.i4.59825987957
    [Google Scholar]
  2. Del PratoS. BianchiC. DanieleG. Abnormalities of insulin secretion and β‐cell defects in type 2 diabetes.Textbook of Diabetes.2024722523710.1002/9781119697473.ch16
    [Google Scholar]
  3. MatsumotoN. OmagariD. Ushikoshi-NakayamaR. YamazakiT. InoueH. SaitoI. Hyperglycemia induces generation of reactive oxygen species and accelerates apoptotic cell death in salivary gland cells.Pathobiology202188323424110.1159/00051263933556940
    [Google Scholar]
  4. Pérez-RosP. Navarro-FloresE. Julián-RochinaI. Martínez-ArnauF.M. CauliO. Changes in salivary amylase and glucose in diabetes: A scoping review.Diagnostics202111345310.3390/diagnostics1103045333800850
    [Google Scholar]
  5. StandlE. KhuntiK. HansenT.B. SchnellO. The global epidemics of diabetes in the 21st century: Current situation and perspectives.Eur. J. Prev. Cardiol.2019262_suppl71410.1177/204748731988102131766915
    [Google Scholar]
  6. FouaniM. BassetC.A. JurjusA.R. LeoneL.G. TomaselloG. LeoneA. Salivary gland proteins alterations in the diabetic milieu.J. Mol. Histol.202152589390410.1007/s10735‑021‑09999‑534212290
    [Google Scholar]
  7. Castro-QuintasÁ. Palma-GudielH. San Martín-GonzálezN. CasoJ.R. LezaJ.C. FañanásL. Salivary secretory immunoglobulin A as a potential biomarker of psychosocial stress response during the first stages of life: A systematic review.Front. Neuroendocrinol.20237110108310.1016/j.yfrne.2023.10108337479062
    [Google Scholar]
  8. MoulléV.S. Autonomic control of pancreatic beta cells: What is known on the regulation of insulin secretion and beta-cell proliferation in rodents and humans.Peptides202214817070910.1016/j.peptides.2021.17070934896576
    [Google Scholar]
  9. SongE.A.C. ChungS.H. KimJ.H. Molecular mechanisms of saliva secretion and hyposecretion.Eur. J. Oral Sci.20241322e1296910.1111/eos.1296938192116
    [Google Scholar]
  10. SchamarekI. AndersL. ChakarounR.M. KovacsP. Rohde-ZimmermannK. The role of the oral microbiome in obesity and metabolic disease: Potential systemic implications and effects on taste perception.Nutr. J.20232212810.1186/s12937‑023‑00856‑737237407
    [Google Scholar]
  11. ChiblyA.M. AureM.H. PatelV.N. HoffmanM.P. Salivary gland function, development, and regeneration.Physiol. Rev.202210231495155210.1152/physrev.00015.202135343828
    [Google Scholar]
  12. PasupuletiVR ArigelaCS GanSH SalamSK KrishnanKT RahmanNA JeffreeMS A review on oxidative stress, diabetic complications, and the roles of honey polyphenols.Oxid. Med. Cell. Longev.20202020887817210.1155/2020/8878172
    [Google Scholar]
  13. LeeH. JoseP.A. Coordinated contribution of NADPH oxidase-and mitochondria-derived reactive oxygen species in metabolic syndrome and its implication in renal dysfunction.Front. Pharmacol.20211267007610.3389/fphar.2021.67007634017260
    [Google Scholar]
  14. BhattiJ.S. SehrawatA. MishraJ. SidhuI.S. NavikU. KhullarN. KumarS. BhattiG.K. ReddyP.H. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives.Free Radic. Biol. Med.202218411413410.1016/j.freeradbiomed.2022.03.01935398495
    [Google Scholar]
  15. LucK. Schramm-LucA. GuzikT.J. MikolajczykT.P. Oxidative stress and inflammatory markers in prediabetes and diabetes.J. Physiol. Pharmacol.201970632084643
    [Google Scholar]
  16. ZhaoN. YuX. ZhuX. SongY. GaoF. YuB. QuA. Diabetes mellitus to accelerated atherosclerosis: Shared cellular and molecular mechanisms in glucose and lipid metabolism.J. Cardiovasc. Transl. Res.202317113315210.1007/s12265‑023‑10470‑x38091232
    [Google Scholar]
  17. ChoudhuryS. GhoshS. GuptaP. MukherjeeS. ChattopadhyayS. Inflammation-induced ROS generation causes pancreatic cell death through modulation of Nrf2/NF-κB and SAPK/JNK pathway.Free Radic. Res.201549111371138310.3109/10715762.2015.107501626189548
    [Google Scholar]
  18. RusetskayaN.Y. LoginovaN.Y. PokrovskayaE.P. ChesovskikhY.S. TitovaL.E. Redox regulation of the NLRP3-mediated inflammation and pyroptosis.Biomed. Khim.202369633335210.18097/pbmc2023690633338153050
    [Google Scholar]
  19. Nagoor MeeranM.F. GoyalS.N. SuchalK. SharmaC. PatilC.R. OjhaS.K. Pharmacological properties, molecular mechanisms, and pharmaceutical development of asiatic acid: A pentacyclic triterpenoid of therapeutic promise.Front. Pharmacol.2018989210.3389/fphar.2018.0089230233358
    [Google Scholar]
  20. PierzynowskiS.G. StierC. PierzynowskaK. Hypothesis that alpha-amylase evokes regulatory mechanisms originating in the pancreas, gut and circulation, which govern glucose/insulin homeostasis.World J. Diabetes20231491341134810.4239/wjd.v14.i9.134137771332
    [Google Scholar]
  21. MohajanD. MohajanH.K. Hypoglycaemia among diabetes patients: A preventive approach.J Innov Med Res202329293510.56397/JIMR/2023.09.05
    [Google Scholar]
  22. KhursheedR. SinghS.K. WadhwaS. KapoorB. GulatiM. KumarR. RamanunnyA.K. AwasthiA. DuaK. Treatment strategies against diabetes: Success so far and challenges ahead.Eur. J. Pharmacol.201986217262510.1016/j.ejphar.2019.17262531449807
    [Google Scholar]
  23. AgarwalP. GuptaR. Alpha-amylase inhibition can treat diabetes mellitus.Res. Rev. J. Med. Health Sci.20165418
    [Google Scholar]
  24. KaurN. KumarV. NayakS.K. WadhwaP. KaurP. SahuS.K. Alpha‐amylase as molecular target for treatment of diabetes mellitus: A comprehensive review.Chem. Biol. Drug Des.202198453956010.1111/cbdd.1390934173346
    [Google Scholar]
  25. DirirA.M. DaouM. YousefA.F. YousefL.F. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes.Phytochem. Rev.20222141049107910.1007/s11101‑021‑09773‑134421444
    [Google Scholar]
  26. BalasubramaniamV. LeeJ.C. NohM.F.M. AhmadS. BrownleeI.A. IsmailA. Alpha-amylase, antioxidant, and anti-inflammatory activities of Eucheuma denticulatum (N.L. Burman) F.S. Collins and Hervey.J. Appl. Phycol.20162831965197410.1007/s10811‑015‑0690‑6
    [Google Scholar]
  27. BanerjeeM. KhursheedR. YadavA.K. SinghS.K. GulatiM. PandeyD.K. PrabhakarP.K. KumarR. PorwalO. AwasthiA. KumariY. KaurG. AyinkamiyeC. PrasharR. MankotiaD. PandeyN.K. A systematic review on synthetic drugs and phytopharmaceuticals used to manage diabetes.Curr. Diabetes Rev.202016434035610.2174/157339981566619082216514131438829
    [Google Scholar]
  28. LiC. HuY. LiS. YiX. ShaoS. YuW. LiE. Biological factors controlling starch digestibility in human digestive system.Food Sci. Hum. Wellness202312235135810.1016/j.fshw.2022.07.037
    [Google Scholar]
  29. Kheirmand PariziM. AkbariH. Malek-MohamadiM. KakoeiS. In vitro and in vivo anti-diabetic effects of Marantodes pumilum and Rhinacanthus nasutus and their active compounds.Doctoral dissertationUniversity of Malaya2018
    [Google Scholar]
  30. LoizzoM.R. BonesiM. NabaviS.M. Sobarzo‐SánchezE. RastrelliL. TundisR. Hypoglycaemic effects of plants food constituents via inhibition of carbohydrate‐hydrolysing enzymes: From chemistry to future applications.Nat. Prod. Clin. Relev. Enzymes2017213516110.1002/9783527805921.ch6
    [Google Scholar]
  31. ChaudharyP. JanmedaP. DoceaA.O. YeskaliyevaB. Abdull RazisA.F. ModuB. CalinaD. Sharifi-RadJ. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases.Front Chem.202311115819810.3389/fchem.2023.115819837234200
    [Google Scholar]
  32. ZatteraleF. LongoM. NaderiJ. RacitiG.A. DesiderioA. MieleC. BeguinotF. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes.Front. Physiol.202010160710.3389/fphys.2019.0160732063863
    [Google Scholar]
  33. GálE. DolenšekJ. StožerA. CzakóL. ÉbertA. VengloveczV. Mechanisms of post-pancreatitis diabetes mellitus and cystic fibrosis-related diabetes: A review of preclinical studies.Front. Endocrinol.20211271504310.3389/fendo.2021.71504334566890
    [Google Scholar]
  34. LinY.C. ChangY.H. YangS.Y. WuK.D. ChuT.S. Update of pathophysiology and management of diabetic kidney disease.J. Formos. Med. Assoc.2018117866267510.1016/j.jfma.2018.02.00729486908
    [Google Scholar]
  35. ShahenV.A. GerbaixM. KoeppenkastropS. LimS.F. McFarlaneK.E. NguyenA.N.L. PengX.Y. WeissN.B. Brennan-SperanzaT.C. Multifactorial effects of hyperglycaemia, hyperinsulinemia and inflammation on bone remodelling in type 2 diabetes mellitus.Cytokine Growth Factor Rev.20205510911810.1016/j.cytogfr.2020.04.00132354674
    [Google Scholar]
  36. MoshapaF.T. Riches-SumanK. PalmerT.M. Therapeutic targeting of the proinflammatory IL-6-JAK/STAT signalling pathways responsible for vascular restenosis in type 2 diabetes mellitus.Cardiol. Res. Pract.2019201911510.1155/2019/984631230719343
    [Google Scholar]
  37. YangM. TianM. ZhangX. XuJ. YangB. YuJ. LiF. LiY. LiS. LiX. Role of the JAK2/STAT3 signaling pathway in the pathogenesis of type 2 diabetes mellitus with macrovascular complications.Oncotarget2017857969589696910.18632/oncotarget.1855529228585
    [Google Scholar]
  38. BakoH.Y. IbrahimM.A. IsahM.S. IbrahimS. Inhibition of JAK-STAT and NF-κB signalling systems could be a novel therapeutic target against insulin resistance and type 2 diabetes.Life Sci.201923911704510.1016/j.lfs.2019.11704531730866
    [Google Scholar]
  39. AlamF. ShafiqueZ. AmjadS.T. Bin AsadM.H.H. Enzymes inhibitors from natural sources with antidiabetic activity: A review.Phytother. Res.2019331415410.1002/ptr.621130417583
    [Google Scholar]
  40. JežekP. JabůrekM. Plecitá-HlavatáL. Contribution of oxidative stress and impaired biogenesis of pancreatic β-cells to type 2 diabetes.Antioxid. Redox Signal.2019311072275110.1089/ars.2018.765630450940
    [Google Scholar]
  41. NewsholmeP. KeaneK.N. CarlessiR. CruzatV. Oxidative stress pathways in pancreatic β-cells and insulin-sensitive cells and tissues: Importance to cell metabolism, function, and dysfunction.Am. J. Physiol. Cell Physiol.20193173C420C43310.1152/ajpcell.00141.201931216193
    [Google Scholar]
  42. NewsholmeP. CruzatV.F. KeaneK.N. CarlessiR. de BittencourtP.I.H.Jr Molecular mechanisms of ROS production and oxidative stress in diabetes.Biochem. J.2016473244527455010.1042/BCJ20160503C27941030
    [Google Scholar]
  43. JahandidehF. WuJ. A review on mechanisms of action of bioactive peptides against glucose intolerance and insulin resistance.Food Sci. Hum. Wellness20221161441145410.1016/j.fshw.2022.06.001
    [Google Scholar]
  44. DimitriadisG.D. MaratouE. KountouriA. BoardM. LambadiariV. Regulation of postabsorptive and postprandial glucose metabolism by insulin-dependent and insulin-independent mechanisms: An integrative approach.Nutrients202113115910.3390/nu1301015933419065
    [Google Scholar]
  45. StringerD.M. ZahradkaP. TaylorC.G. Glucose transporters: Cellular links to hyperglycemia in insulin resistance and diabetes.Nutr. Rev.201573314015410.1093/nutrit/nuu01226024537
    [Google Scholar]
  46. BhandariR. KaurJ. KaurS. KuhadA. The Nrf2 pathway in psychiatric disorders: Pathophysiological role and potential targeting.Expert Opin. Ther. Targets202125211513910.1080/14728222.2021.188714133557652
    [Google Scholar]
  47. CaiatiC. StancaA. LeperaM.E. Free radicals and obesity-related chronic inflammation contrasted by antioxidants: A new perspective in coronary artery disease.Metabolites202313671210.3390/metabo1306071237367870
    [Google Scholar]
  48. DavidJA RifkinWJ RabbaniPS CeradiniDJ The Nrf2/Keap1/ARE pathway and oxidative stress as a therapeutic target in type II diabetes mellitus.J. Diabetes Res.201720174826724
    [Google Scholar]
  49. DinićS. Arambašić JovanovićJ. UskokovićA. MihailovićM. GrdovićN. TolićA. RajićJ. ĐorđevićM. VidakovićM. Oxidative stress-mediated beta cell death and dysfunction as a target for diabetes management.Front. Endocrinol.202213100637610.3389/fendo.2022.100637636246880
    [Google Scholar]
  50. EguchiN. VaziriN.D. DafoeD.C. IchiiH. The role of oxidative stress in pancreatic β cell dysfunction in diabetes.Int. J. Mol. Sci.2021224150910.3390/ijms2204150933546200
    [Google Scholar]
  51. AjayiA.M. AdedapoA.D.A. BadakiV.B. OyagbemiA.A. AdedapoA.A. Chrysophyllum albidum fruit ethanol extract ameliorates hyperglycaemia and elevated blood pressure in streptozotocin-induced diabetic rats through modulation of oxidative stress, NF-κB and PPAR-γ.Biomed. Pharmacother.202114111187910.1016/j.biopha.2021.11187934225016
    [Google Scholar]
  52. AnsariM.A. ChauhanW. ShoaibS. AlyahyaS.A. AliM. AshrafH. AlomaryM.N. Al-SuhaimiE.A. Emerging therapeutic options in the management of diabetes: Recent trends, challenges and future directions.Int. J. Obes.202347121179119910.1038/s41366‑023‑01369‑337696926
    [Google Scholar]
  53. SatpalD. KaurJ. BhadariyaV. SharmaK. Actinidia deliciosa (Kiwi fruit): A comprehensive review on the nutritional composition, health benefits, traditional utilization, and commercialization.J. Food Process. Preserv.2021456e1558810.1111/jfpp.15588
    [Google Scholar]
  54. Pérez-BurilloS. OliverasM.J. QuesadaJ. Rufián-HenaresJ.A. PastorizaS. Relationship between composition and bioactivity of persimmon and kiwifruit.Food Res. Int.201810546147210.1016/j.foodres.2017.11.02229433237
    [Google Scholar]
  55. GanesanK. ChungS.K. VanamalaJ. XuB. Causal relationship between diet-induced gut microbiota changes and diabetes: A novel strategy to transplant Faecalibacterium prausnitzii in preventing diabetes.Int. J. Mol. Sci.20181912372010.3390/ijms1912372030467295
    [Google Scholar]
  56. KhaterS.I. MohamedA.A.R. ArishaA.H. EbraheimL.L.M. El-MandrawyS.A.M. NassanM.A. MohammedA.T. AbdoS.A. Stabilized-chitosan selenium nanoparticles efficiently reduce renal tissue injury and regulate the expression pattern of aldose reductase in the diabetic-nephropathy rat model.Life Sci.202127911967410.1016/j.lfs.2021.11967434081992
    [Google Scholar]
  57. El AzabE.F. AlakilliS.Y.M. SalehA.M. AlhassanH.H. AlanaziH.H. GhanemH.B. YousifS.O. AlrubH.A. AnberN. ElfakiE.M. HamzaA. AbdulmalekS. Actinidia deliciosa extract as a promising supplemental agent for hepatic and renal complication-associated type 2 diabetes (in vivo and in silico-based studies).Int. J. Mol. Sci.202324181375910.3390/ijms24181375937762060
    [Google Scholar]
  58. NaoomA.Y. KangW. GhanemN.F. Abdel-DaimM.M. El-DemerdashF.M. Actinidia deliciosa as a complemental therapy against nephropathy and oxidative stress in diabetic rats.Food Sci. Hum. Wellness20231261981199010.1016/j.fshw.2023.03.019
    [Google Scholar]
  59. KumariS. SainiR. BhatnagarA. MishraA. Exploring plant-based alpha-glucosidase inhibitors: Promising contenders for combatting type-2 diabetes.Arch. Physiol. Biochem.202311610.1080/13813455.2023.226216737767958
    [Google Scholar]
  60. DasG. ShinH.S. NingthoujamS.S. TalukdarA.D. UpadhyayaH. TundisR. DasS.K. PatraJ.K. Systematics, phytochemistry, biological activities and health promoting effects of the plants from the subfamily bombacoideae (family Malvaceae).Plants202110465110.3390/plants1004065133805546
    [Google Scholar]
  61. EbaidH. BashandyS.A.E. AlhazzaI.M. HassanI. Al-TamimiJ. Efficacy of a methanolic extract of Adansonia digitata leaf in alleviating hyperglycemia, hyperlipidemia, and oxidative stress of diabetic rats.BioMed Res. Int.2019201911010.1155/2019/283515230984778
    [Google Scholar]
  62. IrondiE.A. AkintundeJ.K. AgboolaS.O. BoligonA.A. AthaydeM.L. Blanching influences the phenolics composition, antioxidant activity, and inhibitory effect of Adansonia digitata leaves extract on α ‐amylase, α ‐glucosidase, and aldose reductase.Food Sci. Nutr.20175223324210.1002/fsn3.38628265358
    [Google Scholar]
  63. OkorieP. AguF. AniC. AlozieI. NworguC. AnyaejiP. UgwuP. UzoigweJ. IgweU. EjimN. NwachukwuD. The effect of aqueous leaf extract of Adansonia digitata (baobab) on diabetes mellitus and the anterior pituitary of adult male wistar rats.J. Diabetes Endocrinol.2019103182910.5897/JDE2019.0131
    [Google Scholar]
  64. MarroquiL. Perez-SernaA.A. Babiloni-ChustI. Dos SantosR.S. Type I interferons as key players in pancreatic β-cell dysfunction in type 1 diabetes.Int. Rev. Cell Mol. Biol.202135918010.1016/bs.ircmb.2021.02.01133832648
    [Google Scholar]
  65. ScerboD.A. Pathways for kidney triglyceride accumulation.Columbia University2018
    [Google Scholar]
  66. RohiniC.K. RajeshY.C. Ethnopharmacology, phytochemistry and pharmacology of Adenanthera pavonina L. (Mimosaceae).Res. J. Pharmacol. Pharmacodyn.201911414014610.5958/2321‑5836.2019.00025.9
    [Google Scholar]
  67. SultanaS. AliM. MirS.R. Chemical constituents from the leaves of Adenanthera pavonina and Erythrina variegata and roots of Heliotropium eichwaldii.Int. J. Adv. Pharm. Med. Bioallied Sci.201754217224
    [Google Scholar]
  68. Beenish EhsanBE Muhammad QasimMQ MasoudMS Therapeutic potential of herbs against diabetes.Pure Appl. Biol.201324138147
    [Google Scholar]
  69. MeloR.C. GeronçoM.S. SousaR.W.R. RamosL.P.S. AraújoF.P. RibeiroA.B. FerreiraP.M.P. OsajimaJ.A. CostaM.P. Biopolymer from Adenanthera pavonina L. seeds: characterization, photostability, antioxidant activity, and biotoxicity evaluation.Int. J. Polym. Sci.201820181710.1155/2018/1385830
    [Google Scholar]
  70. YumitaA. HananiE. AgustinaA. DamayantiF. PrianiK.N. FadilaS.N. Total phenolic content and antioxidant activities of leaves and bark extract of Adenanthera pavonina L.Nat. Prod. Sci.2023291243010.20307/nps.2023.29.1.24
    [Google Scholar]
  71. PisoschiA.M. PopA. IordacheF. StancaL. PredoiG. SerbanA.I. Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status.Eur. J. Med. Chem.202120911289110.1016/j.ejmech.2020.11289133032084
    [Google Scholar]
  72. MehtaS. SharmaA.K. SinghR.K. Pharmacological activities and molecular mechanisms of pure and crude extract of Andrographis paniculata: An update.Phytomed. Plus20211410008510.1016/j.phyplu.2021.100085
    [Google Scholar]
  73. ZhangS. HuangF. TianW. LaiJ. QianL. HongW. ChenH. LiL. Andrographolide promotes pancreatic duct cells differentiation into insulin-producing cells by targeting PDX-1.Biochem. Pharmacol.202017411378510.1016/j.bcp.2019.11378531887289
    [Google Scholar]
  74. WangT. WangJ. HuX. HuangX. ChenG.X. Current understanding of glucose transporter 4 expression and functional mechanisms.World J. Biol. Chem.2020113769810.4331/wjbc.v11.i3.7633274014
    [Google Scholar]
  75. LiangE LiuX DuZ YangR ZhaoY Andrographolide ameliorates diabetic cardiomyopathy in mice by blockage of oxidative damage and nf-κb-mediated inflammationOxid. Med. Cell. Longev.201820189086747
    [Google Scholar]
  76. JaiyesimiK.F. AgunbiadeO.S. AjiboyeB.O. AfolabiO.B. Polyphenolic-rich extracts of Andrographis paniculata mitigate hyperglycemia via attenuating β-cell dysfunction, pro-inflammatory cytokines and oxidative stress in alloxan-induced diabetic Wistar albino rat.J. Diabetes Metab. Disord.20201921543155610.1007/s40200‑020‑00690‑233553038
    [Google Scholar]
  77. ChérifA.A. HoundonougboJ.S.H. IdohouR. MensahS. AzihouA.F. Avocèvou-AyissoC. AssogbadjoA.E. SinsinB. Towards sustainable conservation and domestication of Balanites aegyptiaca L. (Zygophyllaceae) in Africa: Progress and challenges.J. Arid Environ.202321810505310.1016/j.jaridenv.2023.105053
    [Google Scholar]
  78. Al-ThobaitiSA Abu ZeidIM Medicinal properties of desert date plants (Balanites aegyptiaca)-an overview.Global J. Pharmacol.20181210112
    [Google Scholar]
  79. ZakyA.S. KandeilM. Abdel-GabbarM. FahmyE.M. AlmehmadiM.M. AliT.M. AhmedO.M. The antidiabetic effects and modes of action of the Balanites aegyptiaca fruit and seed aqueous extracts in NA/STZ-induced diabetic rats.Pharmaceutics202214226310.3390/pharmaceutics1402026335213996
    [Google Scholar]
  80. KanJ. VelliquetteR.A. GrannK. BurnsC.R. ScholtenJ. TianF. ZhangQ. GuiM. A novel botanical formula prevents diabetes by improving insulin resistance.BMC Complement. Altern. Med.201717135210.1186/s12906‑017‑1848‑328679380
    [Google Scholar]
  81. SainiN. SirohiR. KaurP. WadhwaP. SainiN. SahuS.K. Role of phytoconstituents as natural α-amylase inhibitors: A review.AIP Conf. Proc.20232800020270 10.1063/5.0168944
    [Google Scholar]
  82. ChoudhuryH. PandeyM. HuaC.K. MunC.S. JingJ.K. KongL. ErnL.Y. AshrafN.A. KitS.W. YeeT.S. PichikaM.R. GorainB. KesharwaniP. An update on natural compounds in the remedy of diabetes mellitus: A systematic review.J. Tradit. Complement. Med.20188336137610.1016/j.jtcme.2017.08.01229992107
    [Google Scholar]
  83. IbrahimM. ParveenB. ZahiruddinS. GautamG. ParveenR. KhanM.A. GuptaA. AhmadS. Analysis of polyphenols in Aegle marmelos leaf and ameliorative efficacy against diabetic mice through restoration of antioxidant and anti‐inflammatory status.J. Food Biochem.2022464e1385210.1111/jfbc.1385234250628
    [Google Scholar]
  84. ChaurasiyaA.H. JaiswalM.R. BayatigeriS. KaharS. TiwariS. UnnikrishnanA.G. KulkarniM.J. Elevated level of glycated KQTALVELVK peptide of albumin is associated with the risk of diabetic nephropathy.ACS Omega2023823206542066010.1021/acsomega.3c0121937332825
    [Google Scholar]
  85. AlliK. ThirupathiA.T. RaoK.N. BegumA. AgeyS. DuttR. Antidiabetic activity of the methanolic extract of the leaves of Basella rubra L. against alloxan induced diabetes in albino rats.World J. Pharm. Pharm. Sci.201761295130810.20959/wjpps20174‑8896
    [Google Scholar]
  86. AjiboyeB.O. DiayiA. AgunbiadeS.O. AkinyemiA.J. AdewaleO.B. OjoO.A. Ameliorating activity of polyphenolic-rich extracts of Basella rubra L. leaves on pancreatic β-cell dysfunction in streptozotocin-induced diabetic rats.J. Complement. Integr. Med.202219233534410.1515/jcim‑2020‑030433962509
    [Google Scholar]
  87. SharmaS. KatochV. KumarS. ChatterjeeS. Functional relationship of vegetable colors and bioactive compounds: Implications in human health.J. Nutr. Biochem.20219210861510.1016/j.jnutbio.2021.10861533705954
    [Google Scholar]
  88. KumarB.R. AnupamA. ManchikantiP. RameshbabuA.P. DasguptaS. DharaS. Identification and characterization of bioactive phenolic constituents, anti-proliferative, and anti-angiogenic activity of stem extracts of Basella alba and rubra. J. Food Sci. Technol.20185551675168410.1007/s13197‑018‑3079‑029666520
    [Google Scholar]
  89. AhmadM. ButtM.A. ZhangG. SultanaS. TariqA. ZafarM. Bergenia ciliata: A comprehensive review of its traditional uses, phytochemistry, pharmacology and safety.Biomed. Pharmacother.20189770872110.1016/j.biopha.2017.10.14129102914
    [Google Scholar]
  90. HussainA. KanthM. ShrivastvaP.K. SharmaM. TripathJ. KhanM.A. Phytochemical analysis of the rhizomes of Bergenia ciliata (How) Sternb.J. Drug Deliv. Ther.201993412416
    [Google Scholar]
  91. SapkotaB.K. KhadayatK. SharmaK. RautB.K. AryalD. ThapaB.B. ParajuliN. Phytochemical analysis and antioxidant and antidiabetic activities of extracts from Bergenia ciliata, Mimosa pudica, and Phyllanthus emblica.Adv. Pharmacol. Pharm. Sci.2022202211110.1155/2022/492982435845257
    [Google Scholar]
  92. HuangL.H. LiuC.Y. WangL.Y. HuangC.J. HsuC.H. Effects of green tea extract on overweight and obese women with high levels of low density-lipoprotein-cholesterol (LDL-C): A randomised, double-blind, and cross-over placebo-controlled clinical trial.BMC Complement. Altern. Med.201818129410.1186/s12906‑018‑2355‑x30400924
    [Google Scholar]
  93. ShangA. LiJ. ZhouD.D. GanR.Y. LiH.B. Molecular mechanisms underlying health benefits of tea compounds.Free Radic. Biol. Med.202117218120010.1016/j.freeradbiomed.2021.06.00634118386
    [Google Scholar]
  94. FallaN.M. DemasiS. CaserM. ScariotV. Phytochemical profile and antioxidant properties of italian green tea, a new high quality niche product.Horticulturae2021759110.3390/horticulturae7050091
    [Google Scholar]
  95. RousseauxCG Herbal remedies. In: InHaschek and Rousseaux's Handbook of Toxicologic Pathology.Academic Press2023318330310.1016/B978‑0‑443‑16153‑7.00004‑6
    [Google Scholar]
  96. Murugan ThulasiM. Kokkuvayil VasuR. Menispermaceae family of plants and its action against infectious diseases: A review.Mapana Journal of Sciences2020192337110.12723/mjs.53.4
    [Google Scholar]
  97. PandaN. MishraB. KarN.R. PanigrahiS.P. DashR.N. GangopadhyayA. Phytochemical constituent and its pharmacological application of various Types of chemical compounds present in Cocculus hirsutus (L.) Diels.J. Posit. Sch. Psychol.2022689921000
    [Google Scholar]
  98. ChallaS. JyothiK.N. HemalathaP. Evaluation of α-amylase inhibitory potential of three medicinally important traditional wild food plants of India.Int. J. Green Pharm.2011529510.4103/0973‑8258.85158
    [Google Scholar]
  99. LogeshR. DasN. Adhikari-DevkotaA. DevkotaH.P. Cocculus hirsutus (L.) W. Theob.(Menispermaceae): A review on traditional uses, phytochemistry and pharmacological activities.Medicines20207116910.3390/medicines711006933182572
    [Google Scholar]
  100. ChanE.W. TanL.N. WongS.K. Phytochemistry and pharmacology of Lagerstroemia speciosa: A natural remedy for diabetes.Int. J. Herb. Med.201422100105
    [Google Scholar]
  101. YinH. YangX. LiuS. ZengJ. ChenS. ZhangS. LiuY. ZhaoY.T. Total flavonoids from Lagerstroemia speciosa (L.) Pers inhibits TNF-α-induced insulin resistance and inflammatory response in 3T3-L1 adipocytes via MAPK and NF-кB signaling pathways.Food Sci. Technol.202242e4522210.1590/fst.45222
    [Google Scholar]
  102. WooE.R. PiaoM.S. Antioxidative constituents fromlycopus lucidus.Arch. Pharm. Res.200427217317610.1007/BF0298010215022718
    [Google Scholar]
  103. LuY. HuangJ. LiY. MaT. SangP. WangW. GaoC. Variation in nutritional compositions, antioxidant activity and microstructure of Lycopus lucidus Turcz. root at different harvest times.Food Chem.20151839110010.1016/j.foodchem.2015.03.03325863615
    [Google Scholar]
  104. LiuJ. BhuvanagiriS. QuX. The protective effects of lycopus lucidus turcz in diabetic retinopathy and its possible mechanisms.Artif. Cells Nanomed. Biotechnol.20194712900290810.1080/21691401.2019.164023031307239
    [Google Scholar]
  105. LeeY.J. KangD.G. KimJ.S. LeeH.S. Lycopus lucidus inhibits high glucose-induced vascular inflammation in human umbilical vein endothelial cells.Vascul. Pharmacol.2008481384610.1016/j.vph.2007.11.00418083068
    [Google Scholar]
  106. PaudelKR PanthN Phytochemical profile and biological activity of Nelumbo nucifera.Evid. Based Complement. Alternat. Med.20152015789124
    [Google Scholar]
  107. LiaoC.H. LinJ.Y. Lotus (Nelumbo nucifera Gaertn) plumule polysaccharide protects the spleen and liver from spontaneous inflammation in non-obese diabetic mice by modulating pro-/anti-inflammatory cytokine gene expression.Food Chem.2011129224525210.1016/j.foodchem.2011.03.10330634222
    [Google Scholar]
  108. XuH. WangC. GongL. Hypoglycemic activity in vivo and in vitro of the Lotus (Nelumbo nucifera Gaertn.) seed skin (testa) phenolic-rich extracts.Food Chem. X20242210128210.1016/j.fochx.2024.10128238550890
    [Google Scholar]
  109. ChenH.W. YangM.Y. HungT.W. ChangY.C. WangC.J. Nelumbo nucifera leaves extract attenuate the pathological progression of diabetic nephropathy in high-fat diet-fed and streptozotocin-induced diabetic rats.Yao Wu Shi Pin Fen Xi201927373674831324289
    [Google Scholar]
  110. SrikanthM. SwethaT. VeereshB. Phytochemistry and pharmacology of Oxalis corniculata Linn.: A review.Int. J. Pharm. Sci. Res.20123114077
    [Google Scholar]
  111. KabachI. BouchmaaN. ZouaouiZ. EnnouryA. El AsriS. LaabarA. OumeslakhtL. CacciolaF. El MajdoubY.O. MondelloL. ZyadA. NhiriN. NhiriM. Ben MridR. Phytochemical profile and antioxidant capacity, α-amylase and α-glucosidase inhibitory activities of Oxalis pes-caprae extracts in alloxan-induced diabetic mice.Biomed. Pharmacother.202316011439310.1016/j.biopha.2023.11439336774725
    [Google Scholar]
  112. López-LázaroM. Distribution and biological activities of the flavonoid luteolin.Mini Rev. Med. Chem.200991315910.2174/13895570978700171219149659
    [Google Scholar]
  113. LiaoX.Y. XuH.M. FengP. WangY.X. HuangJ.Y. Evaluation of oxalis corymbosa extracts from different plant parts and seasons as a potential source of antioxidants.Curr. Top. Nutraceutical Res.2019171
    [Google Scholar]
  114. BasharyR. VyasM. NayakS.K. SutteeA. VermaS. NarangR. KhatikG.L. An insight of alpha-amylase inhibitors as a valuable tool in the management of type 2 diabetes mellitus.Curr. Diabetes Rev.202016211713610.2174/18756417OTg5lMTI0TcVY31237215
    [Google Scholar]
  115. SarikurkcuC. UrenM.C. TepeB. CengizM. KocakM.S. Phlomis armeniaca: Phenolic compounds, enzyme inhibitory and antioxidant activities.Ind. Crops Prod.2015789510110.1016/j.indcrop.2015.10.016
    [Google Scholar]
  116. EskandaniM. Babak BahadoriM. ZenginG. DinparastL. BahadoriS. Novel natural agents from Lamiaceae family: An evaluation on toxicity and enzyme inhibitory potential linked to diabetes mellitus.Curr. Bioact. Compd.2016121343810.2174/1573407212666151231183118
    [Google Scholar]
  117. SarikurkcuC. UrenM.C. KocakM.S. CengizM. TepeB. Chemical composition, antioxidant, and enzyme inhibitory activities of the essential oils of three Phlomis species as well as their fatty acid compositions.Food Sci. Biotechnol.201625368769310.1007/s10068‑016‑0120‑930263324
    [Google Scholar]
  118. BaillyC. Forsythosides as essential components of Forsythia -based traditional chinese medicines used to treat inflammatory diseases and COVID-19.World J. Tradit. Chin. Med.20228112010.4103/wjtcm.WJTCM_36_21
    [Google Scholar]
  119. RasheedM.U. NaqviS.A.R. RasoolN. ShahS.A.A. ZakariaZ.A. Anti-diabetic and cytotoxic evaluation of phlomis stewartii plant phytochemicals on cigarette smoke inhalation and alloxan-induced diabetes in wistar rats.Metabolites20221211113310.3390/metabo1211113336422273
    [Google Scholar]
  120. NisarM. HeJ. AhmedA. YangY. LiM. WanC. Chemical components and biological activities of the genus Phyllanthus: A review of the recent literature.Molecules20182310256710.3390/molecules2310256730297661
    [Google Scholar]
  121. Sèlidji EugèneA. Danda AminaM. MachioudS.M. FélixG. RodrigueA. Abdou MadjidA. LatifouL. LamineB.M. SeriB. Akhtar KhanN. Molecular mechanisms of hypoglycemic and antioxidative effects of Phyllanthus amarus on streptozotocin-induced diabetic rats.J. Endocrinol. Diabetes20185411610.15226/2374‑6890/5/4/001112
    [Google Scholar]
  122. AhmadB. HafeezN. RaufA. BashirS. LinfangH. RehmanM. MubarakM.S. UddinM.S. BawazeerS. ShariatiM.A. DagliaM. WanC. RengasamyK.R.R. Phyllanthus emblica: A comprehensive review of its therapeutic benefits.S. Afr. J. Bot.202113827831010.1016/j.sajb.2020.12.028
    [Google Scholar]
  123. HarikrishnanH. JantanI. HaqueM.A. KumolosasiE. Anti-inflammatory effects of Phyllanthus amarus Schum. & Thonn. through inhibition of NF-κB, MAPK, and PI3K-Akt signaling pathways in LPS-induced human macrophages.BMC Complement. Altern. Med.201818122410.1186/s12906‑018‑2289‑330045725
    [Google Scholar]
  124. SadeerN.B. RocchettiG. SenizzaB. MontesanoD. ZenginG. UysalA. JeewonR. LuciniL. MahomoodallyM.F. Untargeted metabolomic profiling, multivariate analysis and biological evaluation of the true mangrove (Rhizophora mucronata Lam.).Antioxidants201981048910.3390/antiox810048931623170
    [Google Scholar]
  125. AdhikariA. RayM. DasA. SurT. Antidiabetic and antioxidant activity of Rhizophora mucronata leaves (Indian sundarban mangrove): An in vitro and in vivo study.Ayu2016371768110.4103/ayu.AYU_182_1528827960
    [Google Scholar]
  126. TrinhB.T.D. StaerkD. JägerA.K. Screening for potential α-glucosidase and α-amylase inhibitory constituents from selected Vietnamese plants used to treat type 2 diabetes.J. Ethnopharmacol.201618618919510.1016/j.jep.2016.03.06027041401
    [Google Scholar]
  127. WangX. LiJ. ShangJ. BaiJ. WuK. LiuJ. YangZ. OuH. ShaoL. Metabolites extracted from microorganisms as potential inhibitors of glycosidases (α-glucosidase and α-amylase): A review.Front. Microbiol.202213105086910.3389/fmicb.2022.105086936466660
    [Google Scholar]
  128. JaghthmiO. ZeidI. GhamdiK. HebaH. AhmadM. Antihyperglycemic, antioxidant and antiapoptotic effect of rhizophora mucronata and avicennia marina in streptozotocin-induced diabetic rats.Med. Arh.202074642142710.5455/medarh.2020.74.421‑42733603265
    [Google Scholar]
  129. AmbasthaS. KumariA. OraonV. PatnaikA. SharanL. Pharmacological review on Sesbania grandiflora (Linn).Int. J. Botany Studies.202272259268
    [Google Scholar]
  130. PanigrahiG PandaC PatraA. Extract of sesbania grandiflora ameliorates hyperglycemia in high fat diet-streptozotocin induced experimental diabetes mellitus.Scientifica201620164083568
    [Google Scholar]
  131. JanarnyG. GunathilakeK.D.P.P. RanaweeraK.K.D.S. Nutraceutical potential of dietary phytochemicals in edible flowers—A review.J. Food Biochem.2021454e1364210.1111/jfbc.1364233533514
    [Google Scholar]
  132. RamasubbuK. PadmanabhanS. Al-GhanimK.A. NicolettiM. GovindarajanM. SachivkinaN. RajeswariV.D. Green synthesis of copper oxide nanoparticles using sesbania grandiflora leaf extract and their evaluation of anti-diabetic, cytotoxic, anti-microbial, and anti-inflammatory properties in an in-vitro approach.Fermentation20239433210.3390/fermentation9040332
    [Google Scholar]
  133. RaoBS SaisreeS SrinivasuluN SudhakaraG MallaiahP RameshB KumariDS Effect of Sesbania grandiflora methanolic leaf extract on in vitro studies of α-amylase, glucose uptake in muscle and adipose tissue of male Sprague Dawley rat model.IJRAR201853276280
    [Google Scholar]
  134. NaeemN. NadeemF. AzeemM.W. DharmadasaR.M. Tamarindus indica–A review of explored potentials.Int. J. Chem. Biochem. Sci.201720171298106
    [Google Scholar]
  135. KrishnaR.N. AnithaR. EzhilarasanD. Aqueous extract of Tamarindus indica fruit pulp exhibits antihyperglycaemic activity.Avicenna J. Phytomed.202010544044732995322
    [Google Scholar]
  136. TekouF.A. WoumboC.Y. KemtsopM.P. DzoyemJ.P. KuateD. TodemD. The antidiabetic activity of combining the aqueous extracts of vernonia amygdalina leaves and tamarindus indica fruit pulp in streptozotocin-induced wistar rats.Cureus20231510e4680710.7759/cureus.4680737954696
    [Google Scholar]
  137. BorquayeL.S. DoetseM.S. BaahS.O. MensahJ.A. Anti-inflammatory and anti-oxidant activities of ethanolic extracts of Tamarindus indica L. (Fabaceae).Cogent Chem.202061174340310.1080/23312009.2020.1743403
    [Google Scholar]
  138. BhadoriyaS.S. GaneshpurkarA. BhadoriyaR.P.S. SahuS.K. PatelJ.R. Antidiabetic potential of polyphenolic-rich fraction of Tamarindus indica seed coat in alloxan-induced diabetic rats.J. Basic Clin. Physiol. Pharmacol.2018291374510.1515/jbcpp‑2016‑019328888089
    [Google Scholar]
  139. ChoiMJ KimYR Anti-allergic effect of fermented extracts of medicinal plants andrographis paniculate, salvia plebeia R. Br., canavalia gladiate, eleuthorococcus senticosus, ulmus davidiana var. japonica, and clerodendrum trichotomum thunb. ex murray.Microbiol. Biotechnol. Lett.2022504512521
    [Google Scholar]
  140. ShirosakiM. KoyamaT. YazawaK. Anti-hyperglycemic activity of kiwifruit leaf (Actinidia deliciosa) in mice.Biosci. Biotechnol. Biochem.20087241099110210.1271/bbb.7070418391441
    [Google Scholar]
  141. PandhareR. SangameswaranB. Extract of Adenanthera pavonina L. seed reduces development of diabetic nephropathy in streptozotocin-induced diabetic rats.Avicenna J. Phytomed.20122423324225050253
    [Google Scholar]
  142. QiaoS. LiuR. LvC. MiaoY. YueM. TaoY. WeiZ. XiaY. DaiY. Bergenin impedes the generation of extracellular matrix in glomerular mesangial cells and ameliorates diabetic nephropathy in mice by inhibiting oxidative stress via the mTOR/β-TrcP/Nrf2 pathway.Free Radic. Biol. Med.201914511813510.1016/j.freeradbiomed.2019.09.00331494242
    [Google Scholar]
  143. GomesA. VedasiromoniJ.R. DasM. SharmaR.M. GangulyD.K. Anti-hyperglycemic effect of black tea (Camellia sinensis) in rat.J. Ethnopharmacol.199545322322610.1016/0378‑8741(95)01223‑Z7623488
    [Google Scholar]
  144. SahaB.K. BhuiyanM.N.H. MazumderK. HaqueK.M.F. Hypoglycemic activity of Lagerstroemia speciosa L. extract on streptozotocin-induced diabetic rat: Underlying mechanism of action.Bangladesh J. Pharmacol.200942798310.3329/bjp.v4i2.1539
    [Google Scholar]
  145. ShadAA AsmatS BakhtJ DinAU Screening of Aerva javanica and Linum ustitatissimum for their anti-diabetic and anti-oxidant activity.Pak. J. Pharm. Sci.20173016773
    [Google Scholar]
  146. WangY. WangH. ZhouB. YueZ. The complete chloroplast genomes of Lycopus lucidus and Agastache rugosa, two herbal species in tribe Mentheae of Lamiaceae family.Mitochondrial DNA B Resour.202161899010.1080/23802359.2020.184761733521278
    [Google Scholar]
  147. MekbibY. HuangS.X. NgaregaB.K. LiZ.Z. ShiT. OuK.F. LiangY.T. ChenJ.M. YangX.Y. The level of genetic diversity and differentiation of tropical lotus, Nelumbo nucifera Gaertn. (Nelumbonaceae) from Australia, India, and Thailand.Bot. Stud.20206111510.1186/s40529‑020‑00293‑332415549
    [Google Scholar]
  148. KarakasF.P. TurkerA.U. Improvement of shoot proliferation and comparison of secondary metabolites in shoot and callus cultures of Phlomis armeniaca by LC-ESI-MS/MS analysis.In vitro Cell. Dev. Biol. Plant201652660861810.1007/s11627‑016‑9792‑3
    [Google Scholar]
  149. AdeneyeA.A. The leaf and seed aqueous extract of Phyllanthus amarus improves insulin resistance diabetes in experimental animal studies.J. Ethnopharmacol.2012144370571110.1016/j.jep.2012.10.01723085308
    [Google Scholar]
  150. VittayaL. CharoendatU. JanyongS. Ui-engJ. LeesakulN. Comparative analyses of saponin, phenolic, and flavonoid contents in various parts of Rhizophora mucronata and Rhizophora apiculata and their growth inhibition of aquatic pathogenic bacteria.J. Appl. Pharm. Sci.2022121111112110.7324/JAPS.2022.121113
    [Google Scholar]
  151. DangeS. JadhavR. VikheS. Phytochemical and pharmacological review of Sesbania grandiflora.Asian J. Pharm. Tech.2022121202410.52711/2231‑5713.2022.00004
    [Google Scholar]
  152. MaitiR. JanaD. DasU.K. GhoshD. Antidiabetic effect of aqueous extract of seed of Tamarindus indica in streptozotocin-induced diabetic rats.J. Ethnopharmacol.2004921859110.1016/j.jep.2004.02.00215099853
    [Google Scholar]
  153. FerrazC.R. CarvalhoT.T. ManchopeM.F. ArteroN.A. Rasquel-OliveiraF.S. FattoriV. CasagrandeR. VerriW.A.Jr Therapeutic potential of flavonoids in pain and inflammation: mechanisms of action, pre-clinical and clinical data, and pharmaceutical development.Molecules202025376210.3390/molecules2503076232050623
    [Google Scholar]
  154. Leyva-LópezN. Gutierrez-GrijalvaE. Ambriz-PerezD. HerediaJ. Flavonoids as cytokine modulators: A possible therapy for inflammation-related diseases.Int. J. Mol. Sci.201617692110.3390/ijms1706092127294919
    [Google Scholar]
  155. de SouzaM.C. VieiraA.J. BeserraF.P. PellizzonC.H. NóbregaR.H. RozzaA.L. Gastroprotective effect of limonene in rats: Influence on oxidative stress, inflammation and gene expression.Phytomedicine201953374210.1016/j.phymed.2018.09.02730668410
    [Google Scholar]
  156. SahukariR. PunabakaJ. BhashaS. GanjikuntaV.S. RamuduS.K. KesireddyS.R. Plant compounds for the treatment of diabetes, a metabolic disorder: NF-κB as a therapeutic target.Curr. Pharm. Des.202026394955496910.2174/138161282666620073022103532744961
    [Google Scholar]
  157. SongB.R. AlamM.B. LeeS.H. Terpenoid-rich extract of Dillenia indica L. bark displays antidiabetic action in insulin-resistant C2C12 cells and STZ-induced diabetic mice by attenuation of oxidative stress.Antioxidants2022117122710.3390/antiox1107122735883721
    [Google Scholar]
  158. GodavariA. AmuthaK. MoorthiN.M. In-vitro hypoglycemic effect of Foeniculum vulgare Mill. Seeds on the carbohydrate hydrolysing enzymes, alpha-amylase and alpha-glucosidase.Int. J. Pharm. Sci. Res.201891044414445
    [Google Scholar]
  159. AkshathaJ.V. In silico docking studies of α-amylase inhibitors from the anti-diabetic plant Leucas ciliata Benth. and an endophyte, Streptomyces longisporoflavus.BioTech20211116
    [Google Scholar]
  160. JhongC.H. RiyaphanJ. LinS.H. ChiaY.C. WengC.F. Screening alpha‐glucosidase and alpha‐amylase inhibitors from natural compounds by molecular docking in silico .Biofactors201541424225110.1002/biof.121926154585
    [Google Scholar]
  161. Aispuro-PérezA. López-ÁvalosJ. García-PáezF. Montes-AvilaJ. Picos-CorralesL.A. Ochoa-TeránA. BastidasP. MontañoS. Calderón-ZamoraL. Osuna-MartínezU. Sarmiento-SánchezJ.I. Synthesis and molecular docking studies of imines as α-glucosidase and α-amylase inhibitors.Bioorg. Chem.20209410349110.1016/j.bioorg.2019.10349131818480
    [Google Scholar]
  162. AnigboroA.A. AvwiorokoO.J. OhwokevwoO.A. PessuB. TonukariN.J. Phytochemical profile, antioxidant, α-amylase inhibition, binding interaction and docking studies of Justicia carnea bioactive compounds with α-amylase.Biophys. Chem.202126910652910.1016/j.bpc.2020.10652933360111
    [Google Scholar]
  163. HuaF. ZhouP. WuH.Y. ChuG.X. XieZ.W. BaoG.H. Inhibition of α-glucosidase and α-amylase by flavonoid glycosides from Lu’an GuaPian tea: Molecular docking and interaction mechanism.Food Funct.2018984173418310.1039/C8FO00562A29989631
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998304373240611110224
Loading
/content/journals/cdr/10.2174/0115733998304373240611110224
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): alpha-amylase; Diabetes; flavonoids; inflammation; oxidative stress; phytoconstituents
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test