Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

The epidemic of diabetes continues to be an increasing problem, and there is a need for new therapeutic strategies. There are several promising drugs and molecules in synthetic medicinal chemistry that are developing for diabetes. In addition to this approach, extensive studies with gene and cell therapies are being conducted. Gene therapy is an existing approach in treating several diseases, such as cancer, autoimmune diseases, heart disease and diabetes. Several reports have also suggested that stem cells have the differentiation capability to functional pancreatic beta cell development and , with the utility to treat diabetes and prevent the progression of diabetes-related complications. In this current review, we have focused on the different types of cell therapies and vector-based gene therapy in treating or preventing diabetes.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998292392240425122326
2024-05-13
2025-05-05
Loading full text...

Full text loading...

References

  1. ChoN.H. ShawJ.E. KarurangaS. HuangY. da Rocha FernandesJ.D. OhlroggeA.W. MalandaB. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045.Diabetes Res. Clin. Pract.201813827128110.1016/j.diabres.2018.02.02329496507
    [Google Scholar]
  2. Global report on diabetesWHOWorld Health organization.201683
    [Google Scholar]
  3. SunH. SaeediP. KarurangaS. PinkepankM. OgurtsovaK. DuncanB.B. SteinC. BasitA. ChanJ.C.N. MbanyaJ.C. PavkovM.E. RamachandaranA. WildS.H. JamesS. HermanW.H. ZhangP. BommerC. KuoS. BoykoE.J. MaglianoD.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.10911934879977
    [Google Scholar]
  4. BellRA Mayer-DavisEJ BeyerJW D'AgostinoRBJr LawrenceJM LinderB Diabetes in non-Hispanic white youth: prevalence, incidence, and clinical characteristics: The search for Diabetes in Youth Study.Diabetes care200932Suppl 2S1021110.2337/dc09‑S20219246575
    [Google Scholar]
  5. QuilliamB.J. SimeoneJ.C. OzbayA.B. KogutS.J. The incidence and costs of hypoglycemia in type 2 diabetes.Am. J. Manag. Care2011171067368022106460
    [Google Scholar]
  6. MurtaughLC Pancreas and beta-cell development: from the actual to the possible.Development2007134342743810.1242/dev.0277017185316
    [Google Scholar]
  7. KaulK. TarrJ.M. AhmadS.I. KohnerE.M. ChibberR. Introduction to Diabetes Mellitus. AhmadS.I. Diabetes: An Old Disease, a New InsightNew York, NY.201377111110.1007/978‑1‑4614‑5441‑0_1
    [Google Scholar]
  8. RobertsonR.P. Antagonist: diabetes and insulin resistance--philosophy, science, and the multiplier hypothesis.J. Lab. Clin. Med.199512555605647738421
    [Google Scholar]
  9. FujiokaK. Pathophysiology of type 2 diabetes and the role of incretin hormones and beta-cell dysfunction.JAAPA20072012Suppl.3810.1097/01720610‑200712000‑0000118217245
    [Google Scholar]
  10. MorrishN.J. WangS.L. StevensL.K. FullerJ.H. KeenH. Mortality and causes of death in the WHO multinational study of vascular disease in diabetes.Diabetologia200144S2Suppl. 2S14S2110.1007/PL0000293411587045
    [Google Scholar]
  11. da Rocha FernandesJ. OgurtsovaK. LinnenkampU. GuariguataL. SeuringT. ZhangP. CavanD. MakaroffL.E. IDF Diabetes Atlas estimates of 2014 global health expenditures on diabetes.Diabetes Res. Clin. Pract.2016117485410.1016/j.diabres.2016.04.01627329022
    [Google Scholar]
  12. TuomilehtoJ. Borch-JohnsenK. MolariusA. ForsénT. RastenyteD. SartiC. ReunanenA. Incidence of cardiovascular disease in Type 1 (insulin-dependent) diabetic subjects with and without diabetic nephropathy in Finland.Diabetologia199841778479010.1007/s0012500509889686919
    [Google Scholar]
  13. Soedamah-MuthuS.S. FullerJ.H. MulnierH.E. RaleighV.S. LawrensonR.A. ColhounH.M. High risk of cardiovascular disease in patients with type 1 diabetes in the U.K.: a cohort study using the general practice research database.Diabetes Care200629479880410.2337/diacare.29.04.06.dc05‑143316567818
    [Google Scholar]
  14. AssociationA.D. Diagnosis and classification of diabetes mellitus.Diabetes Care201033Suppl 1S62S6910.2337/dc10‑S06220042775
    [Google Scholar]
  15. GhazanfariZ. HaghdoostA.A. AlizadehS.M. AtapourJ. ZolalaF. A comparison of HbA1c and fasting blood sugar tests in general population.Int. J. Prev. Med.20101318719421566790
    [Google Scholar]
  16. VijaL. FargeD. GautierJ.F. VexiauP. DumitracheC. BourgaritA. VerrecchiaF. LargheroJ. Mesenchymal stem cells: Stem cell therapy perspectives for type 1 diabetes.Diabetes Metab.2009352859310.1016/j.diabet.2008.10.00319230736
    [Google Scholar]
  17. RobertsonP. DavisC. LarsenJ. StrattaR. SutherlandD.E. Pancreas transplantation in type 1 diabetes.Diabetes Care200427Suppl. 1s10510.2337/diacare.27.2007.S10514693941
    [Google Scholar]
  18. RyanE.A. PatyB.W. SeniorP.A. BigamD. AlfadhliE. KnetemanN.M. LakeyJ.R.T. ShapiroA.M.J. Five-year follow-up after clinical islet transplantation.Diabetes20055472060206910.2337/diabetes.54.7.206015983207
    [Google Scholar]
  19. ShapiroA.M.J. LakeyJ.R.T. RyanE.A. KorbuttG.S. TothE. WarnockG.L. KnetemanN.M. RajotteR.V. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen.N. Engl. J. Med.2000343423023810.1056/NEJM20000727343040110911004
    [Google Scholar]
  20. XuJ. LuY. DingF. ZhanX. ZhuM. WangZ. Reversal of diabetes in mice by intrahepatic injection of bone-derived GFP-murine mesenchymal stem cells infected with the recombinant retrovirus-carrying human insulin gene.World J. Surg.20073191872188210.1007/s00268‑007‑9168‑217653584
    [Google Scholar]
  21. XuJ. ZhuM-Y. LuY-H. LuY. WangZ-W. Treatment of type 1 diabetes by transplantation of bone-derived mesenchymal stem cells expressing human insulin gene: experiment with mice.Zhonghua Yi Xue Za Zhi200787362557256018067833
    [Google Scholar]
  22. WobusA.M. BohelerK.R. Embryonic stem cells: prospects for developmental biology and cell therapy.Physiol. Rev.200585263567810.1152/physrev.00054.200315788707
    [Google Scholar]
  23. BlauH.M. BrazeltonT.R. WeimannJ.M. The evolving concept of a stem cell: entity or function?Cell2001105782984110.1016/S0092‑8674(01)00409‑311439179
    [Google Scholar]
  24. FortierLAJVS Stem cells: classifications, controversies, and clinical applications.Vet Surg200534541542310.1111/j.1532‑950X.2005.00063.x16266332
    [Google Scholar]
  25. GuoT. HebrokM. Stem cells to pancreatic β-cells: new sources for diabetes cell therapy.Endocr. Rev.200930321422710.1210/er.2009‑000419389995
    [Google Scholar]
  26. ButlerA.E. HuangA. RaoP.N. BhushanA. HoganW.J. RizzaR.A. ButlerP.C. Hematopoietic stem cells derived from adult donors are not a source of pancreatic β-cells in adult nondiabetic humans.Diabetes20075671810181610.2337/db06‑138517456852
    [Google Scholar]
  27. IanusA. HolzG.G. TheiseN.D. HussainM.A. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion.J. Clin. Invest.2003111684385010.1172/JCI20031650212639990
    [Google Scholar]
  28. ParekhV.S. JoglekarM.V. HardikarA.A. Differentiation of human umbilical cord blood-derived mononuclear cells to endocrine pancreatic lineage.Differentiation200978423224010.1016/j.diff.2009.07.00419664871
    [Google Scholar]
  29. SeabergR.M. SmuklerS.R. KiefferT.J. EnikolopovG. AsgharZ. WheelerM.B. KorbuttG. van der KooyD. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages.Nat. Biotechnol.20042291115112410.1038/nbt100415322557
    [Google Scholar]
  30. SegevH. FishmanB. ZiskindA. ShulmanM. Itskovitz-EldorJ. Differentiation of human embryonic stem cells into insulin-producing clusters.Stem Cells200422326527410.1634/stemcells.22‑3‑26515153604
    [Google Scholar]
  31. KalraK. TomarP.C. Stem cell: basics, classification and applications.Amer. J. Phytomedi. Clini. Therapeut.201427919930
    [Google Scholar]
  32. AvasthiS. SrivastavaR.N. SinghA. SrivastavaM. Stem cell: past, present and future--a review article.Inter. J. Medi.200831223110.4314/ijmu.v3i1.39856
    [Google Scholar]
  33. SaleemM SabirS AkhtarMF ZahidS NiaziSG NaeemM Stem cell therapy for diabetes mellitus: Recent progress and hurdles.Crit Rev Eukaryot Gene Expr201929547148210.1615/CritRevEukaryotGeneExpr.201902572332422003
    [Google Scholar]
  34. HogrebeNJ AugsornworawatP MaxwellKG Velazco-CruzL MillmanJRJNb Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells.Nat. Biotech202038446047010.1038/s41587‑020‑0430‑6
    [Google Scholar]
  35. MishraPK SinghSR JoshuaIG TyagiSC Stem cells as a therapeutic target for diabetes.Front Biosci20101546147710.2741/363020036830
    [Google Scholar]
  36. Hajizadeh-SaffarE. TahamtaniY. AghdamiN. AzadmaneshK. Habibi-AnbouhiM. HeremansY. De LeuN. HeimbergH. RavassardP. ShokrgozarM.A. BaharvandH. Inducible VEGF expression by human embryonic stem cell-derived mesenchymal stromal cells reduces the minimal islet mass required to reverse diabetes.Sci. Rep.201551932210.1038/srep0932225818803
    [Google Scholar]
  37. PagliucaFW MillmanJR GürtlerM SegelM Van DervortA RyuJH Generation of functional human pancreatic β cells in vitro.Cell2014159242843910.1016/j.cell.2014.09.04025303535
    [Google Scholar]
  38. IncVP vertex announces positive day 90 data for the first patient in the phase 1/2 clinical trial dosed with VX‐880, a novel investigational stem cell‐derived therapy for the treatment of type 1 diabetes.2023Available from: https://investors.vrtx.com/news-releases/news-release-details/vertex-presents-positive-vx-880-results-ongoing-phase-12-study
  39. JahrH. BretzelR.G. Insulin-positive cells in vitro generated from rat bone marrow stromal cells.Transplant. Proc.20033562140214110.1016/S0041‑1345(03)00747‑414529868
    [Google Scholar]
  40. AssadyS MaorG AmitM Itskovitz-EldorJ SkoreckiKL TzukermanMJd Insulin production by human embryonic stem cells.Diabetes20015081691169710.2337/diabetes.50.8.169111473026
    [Google Scholar]
  41. KroonE MartinsonLA KadoyaK BangAG KellyOG EliazerS Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo.Nat Biotechnol200826444345210.1038/nbt139318288110
    [Google Scholar]
  42. RezaniaA BruinJE RiedelMJ MojibianM AsadiA XuJ Maturation of human embryonic stem cell–derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice.Diabetes20126182016202910.2337/db11‑171122740171
    [Google Scholar]
  43. ToyodaT MaeS-I TanakaH KondoY FunatoM HosokawaY Cell aggregation optimizes the differentiation of human ESCs and iPSCs into pancreatic bud-like progenitor cells.Stem Cell Res201514218519710.1016/j.scr.2015.01.00725665923
    [Google Scholar]
  44. SinghK.N. ChandraV. BarthwalK.C. Letter to the editor: Hypoglycaemic activity of Acacia arabica, Acacia benthami and Acacia modesta leguminous seed diets in normal young albino rats.Indian J. Physiol. Pharmacol.19751931671681205562
    [Google Scholar]
  45. MoreiraA. KahlenbergS. HornsbyP. Therapeutic potential of mesenchymal stem cells for diabetes.J. Mol. Endocrinol.2017593R109R12010.1530/JME‑17‑011728739632
    [Google Scholar]
  46. LiuY. TangS.C.W. Recent progress in stem cell therapy for diabetic nephropathy.Kidney Dis.201621202710.1159/00044191327536688
    [Google Scholar]
  47. KeshtkarS. AzarpiraN. GhahremaniM.H. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine.Stem Cell Res. Ther.2018916310.1186/s13287‑018‑0791‑729523213
    [Google Scholar]
  48. LeeR.H. SeoM.J. RegerR.L. SpeesJ.L. PulinA.A. OlsonS.D. ProckopD.J. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/ scid mice.Proc. Natl. Acad. Sci.200610346174381744310.1073/pnas.060824910317088535
    [Google Scholar]
  49. WangS. LiY. ZhaoJ. ZhangJ. HuangY. Mesenchymal stem cells ameliorate podocyte injury and proteinuria in a type 1 diabetic nephropathy rat model.Biol. Blood Marrow Transplant.201319453854610.1016/j.bbmt.2013.01.00123295166
    [Google Scholar]
  50. CaoM PanQ DongH YuanX LiY SunZ Adipose-derived mesenchymal stem cells improve glucose homeostasis in high-fat diet-induced obese mice.Stem Cell Res Ther2015620810.1186/s13287‑015‑0201‑326519255
    [Google Scholar]
  51. LiY-Y LiuH-H ChenH-L Adipose-derived mesenchymal stem cells ameliorate STZ-induced pancreas damage in type 1 diabetes.Biomed Mater Eng2012221-39710310.3233/BME‑2012‑069422766707
    [Google Scholar]
  52. EvangelistaAF Mecanismos envolvidos no efeito terapêutico de células mesenquimais de medula óssea em modelo experimental de neuropatia diabética sensorial: Instituto Gonçalo MonizFundação Oswaldo CruzSalvador201916
    [Google Scholar]
  53. EydianZ Mohammad GhasemiA AnsariS KamaliAN KhosraviM MomtazS Differentiation of multipotent stem cells to insulin-producing cells for treatment of diabetes mellitus: Bone marrow-and adipose tissue-derived cells comparison.20224953539354810.1007/s11033‑022‑07194‑735107740
    [Google Scholar]
  54. Ranjbaran H Mohammadi Jobani B Amirfakhrian E Alizadeh Navaei R. Efficacy of mesenchymal stem cell therapy on glucose levels in type 2 diabetes mellitus: A systematic review and meta-analysis.J Diabetes Investig.2021 May;12580381010.1111/jdi.13404.Epub 2020 Oct 22.32926576PMC8089007
    [Google Scholar]
  55. HuJ YuX WangZ WangF WangL GaoH Long term effects of the implantation of Wharton’s jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus.Endocr J201360334735710.1507/endocrj.EJ12‑034323154532
    [Google Scholar]
  56. FioriA TerlizziV KremerH GebauerJ HammesH-P HarmsenMC Mesenchymal stromal/stem cells as potential therapy in diabetic retinopathy.Immunobiology20182231272974310.1016/j.imbio.2018.01.00129402461
    [Google Scholar]
  57. NagaishiK MizueY ChikenjiT OtaniM NakanoM KonariN Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes.Sci Rep201663484210.1038/srep3484227721418
    [Google Scholar]
  58. CaoY. GangX. SunC. WangG. Mesenchymal stem cells improve healing of diabetic foot ulcer.J. Diabetes Res.2017201711010.1155/2017/932834728386568
    [Google Scholar]
  59. LiuY. ChenJ. LiangH. CaiY. LiX. YanL. ZhouL. ShanL. WangH. Human umbilical cord-derived mesenchymal stem cells not only ameliorate blood glucose but also protect vascular endothelium from diabetic damage through a paracrine mechanism mediated by MAPK/ERK signaling.Stem Cell Res. Ther.202213125810.1186/s13287‑022‑02927‑835715841
    [Google Scholar]
  60. DaveyGC. PatilSB. O'LoughlinA. O'BrienT. Mesenchymal stem cell-based treatment for microvascular and secondary complications of diabetes mellitus.Front Endocrinol (Lausanne).2014 Jun6; 58610.3389/fendo.2014.0008624936198PMC4047679
    [Google Scholar]
  61. GrangeC. TrittaS. TapparoM. CedrinoM. TettaC. CamussiG. BrizziM.F. Stem cell-derived extracellular vesicles inhibit and revert fibrosis progression in a mouse model of diabetic nephropathy.Sci. Rep.201991446810.1038/s41598‑019‑41100‑930872726
    [Google Scholar]
  62. VaderP. MolE.A. PasterkampG. SchiffelersR.M. Extracellular vesicles for drug delivery.Adv. Drug Deliv. Rev.2016106Pt A14815610.1016/j.addr.2016.02.00626928656
    [Google Scholar]
  63. SongL. TuanR.S. Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow.FASEB J.200418998098210.1096/fj.03‑1100fje15084518
    [Google Scholar]
  64. LiuM. HanZ.C. Mesenchymal stem cells: biology and clinical potential in type 1 diabetes therapy.J. Cell. Mol. Med.20081241155116810.1111/j.1582‑4934.2008.00288.x18298656
    [Google Scholar]
  65. ZhangN. LiJ. LuoR. JiangJ. WangJ.A. Bone marrow mesenchymal stem cells induce angiogenesis and attenuate the remodeling of diabetic cardiomyopathy.Exp. Clin. Endocrinol. Diabetes2008116210411110.1055/s‑2007‑98515418286426
    [Google Scholar]
  66. EzquerF.E. EzquerM.E. ParrauD.B. CarpioD. YañezA.J. CongetP.A. Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice.Biol. Blood Marrow Transplant.200814663164010.1016/j.bbmt.2008.01.00618489988
    [Google Scholar]
  67. HerreraM. BussolatiB. BrunoS. FonsatoV. RomanazziG. CamussiG. Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury.Int. J. Mol. Med.20041461035104110.3892/ijmm.14.6.103515547670
    [Google Scholar]
  68. YangZ. LiK. YanX. DongF. ZhaoC. Amelioration of diabetic retinopathy by engrafted human adipose-derived mesenchymal stem cells in streptozotocin diabetic rats.Graefes Arch. Clin. Exp. Ophthalmol.2010248101415142210.1007/s00417‑010‑1384‑z20437245
    [Google Scholar]
  69. SeebergerK.L. DufourJ.M. ShapiroA.M.J. LakeyJ.R.T. RajotteR.V. KorbuttG.S. Expansion of mesenchymal stem cells from human pancreatic ductal epithelium.Lab. Invest.200686214115310.1038/labinvest.370037716402034
    [Google Scholar]
  70. ChaoK.C. ChaoK.F. FuY.S. LiuS.H. Islet-like clusters derived from mesenchymal stem cells in Wharton’s Jelly of the human umbilical cord for transplantation to control type 1 diabetes.PLoS One200831e145110.1371/journal.pone.000145118197261
    [Google Scholar]
  71. DaveS. VanikarA. TrivediH. Ex vivo generation of glucose sensitive insulin secreting mesenchymal stem cells derived from human adipose tissue.Indian J. Endocrinol. Metab.2012167Suppl. 16510.4103/2230‑8210.9426422701849
    [Google Scholar]
  72. EndeN. ChenR. ReddiA.S. Effect of human umbilical cord blood cells on glycemia and insulitis in type 1 diabetic mice.Biochem. Biophys. Res. Commun.2004325366566910.1016/j.bbrc.2004.10.09115541340
    [Google Scholar]
  73. KajiyamaH. HamazakiT.S. TokuharaM. MasuiS. OkabayashiK. OhnumaK. YabeS. YasudaK. IshiuraS. OkochiH. AsashimaM. Pdx1-transfected adipose tissue-derived stem cells differentiate into insulin-producing cells in vivo and reduce hyperglycemia in diabetic mice.Int. J. Dev. Biol.201054469970510.1387/ijdb.092953hk19757377
    [Google Scholar]
  74. QiY. MaJ. LiS. LiuW. Applicability of adipose-derived mesenchymal stem cells in treatment of patients with type 2 diabetes.Stem Cell Res. Ther.201910127410.1186/s13287‑019‑1362‑231455405
    [Google Scholar]
  75. StarzlT.E. The ldquo privilege drdquo liver and hepatic tolerogenicity.Liver Transpl.200171091892010.1053/jlts.2001.007091811679993
    [Google Scholar]
  76. TrivediH.L. VanikarA.V. ThakkerU. FirozeA. DaveS.D. PatelC.N. PatelJ.V. BhargavaA.B. ShankarV. Human adipose tissue-derived mesenchymal stem cells combined with hematopoietic stem cell transplantation synthesize insulin.Transplant. Proc.20084041135113910.1016/j.transproceed.2008.03.11318555133
    [Google Scholar]
  77. VanikarA.V. DaveS.D. ThakkarU.G. TrivediH.L. Cotransplantation of adipose tissue-derived insulin-secreting mesenchymal stem cells and hematopoietic stem cells: a novel therapy for insulin-dependent diabetes mellitus.Stem Cells Int.201020101510.4061/2010/58238221197448
    [Google Scholar]
  78. BiswasS. A review on the progress of stem cell therapy as a treatment for Diabetes mellitus.Brac University20226387
    [Google Scholar]
  79. Abu-ShahbaN. MahmoudM. El-ErianA.M. HusseinyM.I. Nour-EldeenG. HelwaI. AmrK. ElHefnawiM. OthmanA.I. IbrahimS.A. AzmyO. Impact of type 2 diabetes mellitus on the immunoregulatory characteristics of adipose tissue-derived mesenchymal stem cells.Int. J. Biochem. Cell Biol.202114010607210.1016/j.biocel.2021.10607234455058
    [Google Scholar]
  80. YuS. ChengY. ZhangL. YinY. XueJ. LiB. GongZ. GaoJ. MuY. Treatment with adipose tissue-derived mesenchymal stem cells exerts anti-diabetic effects, improves long-term complications, and attenuates inflammation in type 2 diabetic rats.Stem Cell Res. Ther.201910133310.1186/s13287‑019‑1474‑831747961
    [Google Scholar]
  81. VolarevicV. ArsenijevicN. LukicM.L. StojkovicM. Concise review: Mesenchymal stem cell treatment of the complications of diabetes mellitus.Stem Cells201129151010.1002/stem.55621280154
    [Google Scholar]
  82. LeeJ. HanD.J. KimS.C. In vitro differentiation of human adipose tissue-derived stem cells into cells with pancreatic phenotype by regenerating pancreas extract.Biochem. Biophys. Res. Commun.2008375454755110.1016/j.bbrc.2008.08.06418725201
    [Google Scholar]
  83. MizunoH. TobitaM. UysalA.C. Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine.Stem Cells201230580481010.1002/stem.107622415904
    [Google Scholar]
  84. SmadjaD.M. d’AudigierC. GuerinC.L. MaugeL. DizierB. SilvestreJ-S. CortivoL.D. GaussemP. EmmerichJ. Angiogenic potential of BM MSCs derived from patients with critical leg ischemia.Bone Marrow Transplant.2012477997100010.1038/bmt.2011.19621986637
    [Google Scholar]
  85. WangL. ZhangL. LiangX. ZouJ. LiuN. LiuT. WangG. DingX. LiuY. ZhangB. LiangR. WangS. Adipose tissue-derived stem cells from type 2 diabetics reveal conservative alterations in multidimensional characteristics.Int. J. Stem Cells202013226827810.15283/ijsc2002832587133
    [Google Scholar]
  86. DuanY. LuoQ. WangY. MaY. ChenF. ZhuX. ShiJ. Adipose mesenchymal stem cell-derived extracellular vesicles containing microRNA-26a-5p target TLR4 and protect against diabetic nephropathy.J. Biol. Chem.202029537128681288410.1074/jbc.RA120.01252232580945
    [Google Scholar]
  87. KuppanP. SeebergerK. KellyS. RoskoM. AdesidaA. PepperA.R. KorbuttG.S. Co‐transplantation of human adipose‐derived mesenchymal stem cells with neonatal porcine islets within a prevascularized subcutaneous space augments the xenograft function.Xenotransplantation2020274e1258110.1111/xen.1258131930606
    [Google Scholar]
  88. ZhaoY. MazzoneT. Human cord blood stem cells and the journey to a cure for type 1 diabetes.Autoimmun. Rev.201010210310710.1016/j.autrev.2010.08.01120728583
    [Google Scholar]
  89. Aguayo-MazzucatoC. Bonner-WeirS. Stem cell therapy for type 1 diabetes mellitus.Nat. Rev. Endocrinol.20106313914810.1038/nrendo.2009.27420173775
    [Google Scholar]
  90. KakkarA. SoroutA. TiwariM. ShrivastavaP. MeenaP. SaraswatS.K. SrivastavaS. DattR. PandeyS. Current status of stem cell treatment for type I diabetes mellitus.Tissue Eng. Regen. Med.201815669970910.1007/s13770‑018‑0143‑930603589
    [Google Scholar]
  91. YapS.K. TanK.L. Abd RahamanN.Y. Saulol HamidN.F. OoiD.J. TorY.S. Daniel LooiQ.H. Stella TanL.K. HowC.W. FooJ.B. Human umbilical cord mesenchymal stem cell-derived small extracellular vesicles ameliorated insulin resistance in type 2 diabetes mellitus rats.Pharmaceutics202214364910.3390/pharmaceutics1403064935336023
    [Google Scholar]
  92. WanX.X. ZhangD.Y. KhanM.A. ZhengS.Y. HuX.M. ZhangQ. YangR.H. XiongK. Stem cell transplantation in the treatment of type 1 diabetes mellitus: from insulin replacement to beta-cell replacement.Front. Endocrinol.20221385963810.3389/fendo.2022.85963835370989
    [Google Scholar]
  93. KondoY ToyodaT InagakiN iPSC technology‐based regenerative therapy for diabetes.J. Diab. Invest.201892234243
    [Google Scholar]
  94. EavesC.J. Hematopoietic stem cells: concepts, definitions, and the new reality.Blood2015125172605261310.1182/blood‑2014‑12‑57020025762175
    [Google Scholar]
  95. CarrollD. St ClairD.K.J.A. signaling r. Hematopoietic stem cells: normal versus malignant.Antioxid. Redox Signal.201829161612163210.1089/ars.2017.732629084438
    [Google Scholar]
  96. PastoreI. AssiE. Ben NasrM. BollaA.M. MaestroniA. UsuelliV. LoretelliC. SeelamA.J. AbdelsalamA. ZuccottiG.V. D’AddioF. FiorinaP. Hematopoietic stem cells in type 1 diabetes.Front. Immunol.20211269411810.3389/fimmu.2021.69411834305929
    [Google Scholar]
  97. SnarskiE. MilczarczykA. HałaburdaK. TorosianT. PaluszewskaM. UrbanowskaE. KrólM. BoguradzkiP. JedynastyK. FranekE. Wiktor-JedrzejczakW. Immunoablation and autologous hematopoietic stem cell transplantation in the treatment of new-onset type 1 diabetes mellitus: long-term observations.Bone Marrow Transplant.201651339840210.1038/bmt.2015.29426642342
    [Google Scholar]
  98. D’AddioF. Valderrama VasquezA. Ben NasrM. FranekE. ZhuD. LiL. NingG. SnarskiE. FiorinaP. Autologous nonmyeloablative hematopoietic stem cell transplantation in new-onset type 1 diabetes: a multicenter analysis.Diabetes20146393041304610.2337/db14‑029524947362
    [Google Scholar]
  99. GuB. MiaoH. ZhangJ. HuJ. ZhouW. GuW. WangW. NingG. Clinical benefits of autologous haematopoietic stem cell transplantation in type 1 diabetes patients.Diabetes Metab.201844434134510.1016/j.diabet.2017.12.00629331269
    [Google Scholar]
  100. ZhangJ. HuM. WangB. GaoJ. WangL. LiL. ChenS. CuiB. GuW. WangW. NingG. Comprehensive assessment of T-cell repertoire following autologous hematopoietic stem cell transplantation for treatment of type 1 diabetes using high-throughput sequencing.Pediatr. Diabetes20181971229123710.1111/pedi.1272830022578
    [Google Scholar]
  101. SnarskiE. SzmurłoD. HałaburdaK. KrólM. UrbanowskaE. MilczarczykA. FranekE. Wiktor-JedrzejczakW. An economic analysis of autologous hematopoietic stem cell transplantation (AHSCT) in the treatment of new onset type 1 diabetes.Acta Diabetol.201552588188810.1007/s00592‑015‑0724‑125744552
    [Google Scholar]
  102. BoscariF. D’AnnaM. BonoraB.M. TressoS. CappellariR. AvogaroA. BruttomessoD. FadiniG.P. Effects of glucose variability on hematopoietic stem/progenitor cells in patients with type 1 diabetes.J. Endocrinol. Invest.202144111912610.1007/s40618‑020‑01278‑632367464
    [Google Scholar]
  103. RezaniaA. BruinJ.E. AroraP. RubinA. BatushanskyI. AsadiA. O’DwyerS. QuiskampN. MojibianM. AlbrechtT. YangY.H.C. JohnsonJ.D. KiefferT.J. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells.Nat. Biotechnol.201432111121113310.1038/nbt.303325211370
    [Google Scholar]
  104. MaehrR. ChenS. SnitowM. LudwigT. YagasakiL. GolandR. LeibelR.L. MeltonD.A. Generation of pluripotent stem cells from patients with type 1 diabetes.Proc. Natl. Acad. Sci. USA200910637157681577310.1073/pnas.090689410619720998
    [Google Scholar]
  105. JiangY. JahagirdarB.N. ReinhardtR.L. SchwartzR.E. KeeneC.D. Ortiz-GonzalezX.R. ReyesM. LenvikT. LundT. BlackstadM. DuJ. AldrichS. LisbergA. LowW.C. LargaespadaD.A. VerfaillieC.M. Pluripotency of mesenchymal stem cells derived from adult marrow.Nature20024186893414910.1038/nature0087012077603
    [Google Scholar]
  106. DowC. ManciniF. RajaobelinaK. Boutron-RuaultM.C. BalkauB. BonnetF. FagherazziG. Diet and risk of diabetic retinopathy: a systematic review.Eur. J. Epidemiol.201833214115610.1007/s10654‑017‑0338‑829204902
    [Google Scholar]
  107. TianC. BagleyJ. CretinN. SethN. WucherpfennigK.W. IacominiJ. Prevention of type 1 diabetes by gene therapy.J. Clin. Invest.2004114796997810.1172/JCI2210315467836
    [Google Scholar]
  108. NagaishiK. MizueY. ChikenjiT. OtaniM. NakanoM. KonariN. FujimiyaM. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes.Sci. Rep.2016613484210.1038/srep3484227721418
    [Google Scholar]
  109. ChenM. ZhaoY. ZhouL. LiM. ZhangQ. HanQ. XiaoX. Exosomes derived from human umbilical cord mesenchymal stem cells enhance insulin sensitivity in insulin resistant human adipocytes.Curr. Med. Sci.2021411879310.1007/s11596‑021‑2323‑433582911
    [Google Scholar]
  110. KonariN. NagaishiK. KikuchiS. FujimiyaM. Mitochondria transfer from mesenchymal stem cells structurally and functionally repairs renal proximal tubular epithelial cells in diabetic nephropathy in vivo.Sci. Rep.201991518410.1038/s41598‑019‑40163‑y30914727
    [Google Scholar]
  111. MaliS. Delivery systems for gene therapy.Indian J. Hum. Genet.20131913810.4103/0971‑6866.11287023901186
    [Google Scholar]
  112. DunbarC.E. HighK.A. JoungJ.K. KohnD.B. OzawaK. SadelainM. Gene therapy comes of age.Science20183596372eaan467210.1126/science.aan467229326244
    [Google Scholar]
  113. KaufmannK.B. BüningH. GalyA. SchambachA. GrezM. Gene therapy on the move.EMBO Mol. Med.20135111642166110.1002/emmm.20120228724106209
    [Google Scholar]
  114. ChellappanD.K. SivamN.S. TeohK.X. LeongW.P. FuiT.Z. ChooiK. KhooN. YiF.J. ChellianJ. ChengL.L. DahiyaR. GuptaG. SinghviG. NammiS. HansbroP.M. DuaK. Gene therapy and type 1 diabetes mellitus.Biomed. Pharmacother.20181081188120010.1016/j.biopha.2018.09.13830372820
    [Google Scholar]
  115. NayerossadatN. MaedehT. AliP. Viral and nonviral delivery systems for gene delivery.Adv. Biomed. Res.2012112710.4103/2277‑9175.9815223210086
    [Google Scholar]
  116. WoldW. TothK. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy.Curr. Gene Ther.201413642143310.2174/156652321366613112509504624279313
    [Google Scholar]
  117. LeeC.S. BishopE.S. ZhangR. YuX. FarinaE.M. YanS. ZhaoC. ZengZ. ShuY. WuX. LeiJ. LiY. ZhangW. YangC. WuK. WuY. HoS. AthivirahamA. LeeM.J. WolfJ.M. ReidR.R. HeT.C. Adenovirus-mediated gene delivery: Potential applications for gene and cell-based therapies in the new era of personalized medicine.Genes Dis.201742436310.1016/j.gendis.2017.04.00128944281
    [Google Scholar]
  118. BorkarS.S. WakodkarS.B. RaghatateP.S. MahapatraD.K. Gene Therapy: New Therapeutic approach to Diabetes Mellitus.Gene19
    [Google Scholar]
  119. MorralN. McEvoyR. DongH. MeseckM. AltomonteJ. ThungS. WooS.L.C. Adenovirus-mediated expression of glucokinase in the liver as an adjuvant treatment for type 1 diabetes.Hum. Gene Ther.200213131561157010.1089/1043034026020165312228011
    [Google Scholar]
  120. JinY. QuA. WangG.M. HaoJ. GaoX. XieS. Simultaneous stimulation of Fas-mediated apoptosis and blockade of costimulation prevent autoimmune diabetes in mice induced by multiple low-dose streptozotocin.Gene Ther.2004111298299110.1038/sj.gt.330226015042121
    [Google Scholar]
  121. MachenJ. BerteraS. ChangY. BottinoR. BalamuruganA.N. RobbinsP.D. TruccoM. GiannoukakisN. Prolongation of islet allograft survival following ex vivo transduction with adenovirus encoding a soluble type 1 TNF receptor–Ig fusion decoy.Gene Ther.200411201506151410.1038/sj.gt.330232015229635
    [Google Scholar]
  122. SanliogluA.D. GriffithT.S. OmerA. DiriceE. SariR. AltunbasH.A. BalciM.K. SanliogluS. Molecular mechanisms of death ligand‐mediated immune modulation: A gene therapy model to prolong islet survival in type 1 diabetes.J. Cell. Biochem.2008104371072010.1002/jcb.2167718247339
    [Google Scholar]
  123. LiR. OkaK. YechoorV. Neo-islet formation in liver of diabetic mice by helper-dependent adenoviral vector-mediated gene transfer.J. Vis. Exp.201268e4321[Journal of Visualized Experiments].23093064
    [Google Scholar]
  124. RowzeeA.M. Perez-RiverosP.J. ZhengC. KrygowskiS. BaumB.J. CawleyN.X. Expression and secretion of human proinsulin-B10 from mouse salivary glands: implications for the treatment of type I diabetes mellitus.PLoS One201383e5922210.1371/journal.pone.005922223554999
    [Google Scholar]
  125. YeS. HuaS. ZhouM. Transient B-cell depletion and regulatory T-cells mediation in combination with adenovirus mediated IGF-1 prevents and reverses autoimmune diabetes in NOD mice.Autoimmunity202255852953710.1080/08916934.2022.212878236226521
    [Google Scholar]
  126. WangC. DuX. FuF. LiX. WangZ. ZhouY. GouL. LiW. LiJ. ZhangJ. LiaoG. LiL. HanY.P. TongN. LiuJ. ChenY. ChengJ. CaoQ. IlegemsE. LuY. ZhengX. BerggrenP.O. Adiponectin gene therapy prevents islet loss after transplantation.J. Cell. Mol. Med.202226184847485810.1111/jcmm.1751535975481
    [Google Scholar]
  127. LiC. ZhangL. QiaoL. HuS. GeJ. HuC. LiT. Combination therapy with anti-CD20 mAb and IL-10 gene to reverse type 1 diabetes by attenuating pancreatitis and inhibiting apoptosis in NOD mice.Life Sci.202025611798510.1016/j.lfs.2020.11798532562692
    [Google Scholar]
  128. ParajuliK.R. ZhangY. CaoA.M. WangH. FonsecaV.A. WuH. Pax4 gene delivery improves islet transplantation efficacy by promoting β cell survival and α-to-β cell transdifferentiation.Cell Transplant.20202910.1177/096368972095865533086892
    [Google Scholar]
  129. MatsudaE. ObamaY. KosaiK. Safe and low-dose but therapeutically effective adenovirus-mediated hepatocyte growth factor gene therapy for type 1 diabetes in mice.Life Sci.202126811901410.1016/j.lfs.2020.11901433412216
    [Google Scholar]
  130. GengL. LiaoB. JinL. YuJ. ZhaoX. ZhaoY. ZhongL. WangB. LiJ. LiuJ. YangJ.K. JiaW. LianQ. XuA. β-Klotho promotes glycolysis and glucose-stimulated insulin secretion via GP130.Nat. Metab.20224560862610.1038/s42255‑022‑00572‑235551509
    [Google Scholar]
  131. LuG. TengX. ZhengZ. ZhangR. PengL. ZhengF. LiuJ. HuangH. XiongH. Overexpression of a glucokinase point mutant in the treatment of diabetes mellitus.Gene Ther.201623432332910.1038/gt.2016.126752353
    [Google Scholar]
  132. ShimizuK. OgiyaY. YoshinagaK. KimuraH. MichinagaS. OnoM. TaketomiA. TeradaT. SakuraiF. MizuguchiH. TomitaK. NishinakaT. ZFAND3 overexpression in the mouse liver improves glucose tolerance and hepatic insulin resistance.Exp. Clin. Endocrinol. Diabetes2022130425426110.1055/a‑1400‑265633782927
    [Google Scholar]
  133. Fernandez-RuizR. García-AlamánA. EstebanY. Mir-CollJ. Serra-NavarroB. Fontcuberta-PiSunyerM. BrocaC. ArmanetM. WojtusciszynA. KramV. YoungM.F. VidalJ. GomisR. GasaR. Wisp1 is a circulating factor that stimulates proliferation of adult mouse and human beta cells.Nat. Commun.2020111598210.1038/s41467‑020‑19657‑133239617
    [Google Scholar]
  134. ChenY. LiQ. DuanY. YangX. ChenY. HanJ. Activation of Nogo‐B receptor expression ameliorates type 2 diabetes in mice by improving insulin sensitivity.FASEB J.202034S1110.1096/fasebj.2020.34.s1.02057
    [Google Scholar]
  135. SoW.Y. LiuW.N. TeoA.K.K. RutterG.A. HanW. Paired box 6 programs essential exocytotic genes in the regulation of glucose-stimulated insulin secretion and glucose homeostasis.Sci. Transl. Med.202113600eabb103810.1126/scitranslmed.abb103834193609
    [Google Scholar]
  136. El KhatibM.M. SakumaT. TonneJ.M. MohamedM.S. HolditchS.J. LuB. KudvaY.C. IkedaY. β-Cell-targeted blockage of PD1 and CTLA4 pathways prevents development of autoimmune diabetes and acute allogeneic islets rejection.Gene Ther.201522543043810.1038/gt.2015.1825786871
    [Google Scholar]
  137. ZhangY.C. PileggiA. AgarwalA. MolanoR.D. PowersM. BruskoT. WasserfallC. GoudyK. ZahrE. PoggioliR. Scott-JorgensenM. Campbell-ThompsonM. CrawfordJ.M. NickH. FlotteT. EllisT.M. RicordiC. InverardiL. AtkinsonM.A. Adeno-associated virus-mediated IL-10 gene therapy inhibits diabetes recurrence in syngeneic islet cell transplantation of NOD mice.Diabetes200352370871610.2337/diabetes.52.3.70812606512
    [Google Scholar]
  138. GoudyK. SongS. WasserfallC. ZhangY.C. KapturczakM. MuirA. PowersM. Scott-JorgensenM. Campbell-ThompsonM. CrawfordJ.M. EllisT.M. FlotteT.R. AtkinsonM.A. Adeno-associated virus vector-mediated IL-10 gene delivery prevents type 1 diabetes in NOD mice.Proc. Natl. Acad. Sci.20019824139131391810.1073/pnas.25153229811717448
    [Google Scholar]
  139. KapturczakM. FlotteT. AtkinsonM. Adeno-associated virus (AAV) as a vehicle for therapeutic gene delivery: improvements in vector design and viral production enhance potential to prolong graft survival in pancreatic islet cell transplantation for the reversal of type 1 diabetes.Curr. Mol. Med.20011224525810.2174/156652401336397911899074
    [Google Scholar]
  140. PrasadK-M.R. YangZ. BleichD. NadlerJ.L. Adeno-associated virus vector mediated gene transfer to pancreatic beta cells.Gene Ther.20007181553156110.1038/sj.gt.330127911021593
    [Google Scholar]
  141. SongS. GoudyK. Campbell-ThompsonM. WasserfallC. Scott-JorgensenM. WangJ. TangQ. CrawfordJ.M. EllisT.M. AtkinsonM.A. FlotteT.R. Recombinant adeno-associated virus-mediated alpha-1 antitrypsin gene therapy prevents type I diabetes in NOD mice.Gene Ther.200411218118610.1038/sj.gt.330215614712302
    [Google Scholar]
  142. LaQ.T. RenB. LoganG.J. CunninghamS.C. KhandekarN. NassifN.T. O’BrienB.A. AlexanderI.E. SimpsonA.M. Use of a hybrid adeno-associated viral vector transposon system to deliver the insulin gene to diabetic NOD mice.Cells2020910222710.3390/cells910222733023100
    [Google Scholar]
  143. MallolC. CasanaE. JimenezV. CasellasA. HaurigotV. JambrinaC. SacristanV. MorróM. AgudoJ. VilàL. BoschF. AAV-mediated pancreatic overexpression of Igf1 counteracts progression to autoimmune diabetes in mice.Mol. Metab.20176766468010.1016/j.molmet.2017.05.00728702323
    [Google Scholar]
  144. GaoM.H. GiamouridisD. LaiN.C. GuoT. XiaB. KimY.C. HuuV.A.N. Skowronska-KrawczykD. LantierL. BhargavaR. HammondH.K. Urocortin 2 gene transfer improves glycemic control and reduces retinopathy and mortality in murine insulin deficiency.Mol. Ther. Methods Clin. Dev.20201722023310.1016/j.omtm.2019.12.00231970200
    [Google Scholar]
  145. LovricJ. ManoM. ZentilinL. EulalioA. ZacchignaS. GiaccaM. Terminal differentiation of cardiac and skeletal myocytes induces permissivity to AAV transduction by relieving inhibition imposed by DNA damage response proteins.Mol. Ther.201220112087209710.1038/mt.2012.14422850678
    [Google Scholar]
  146. RomerA.I. SusselL. Pancreatic islet cell development and regeneration.Curr. Opin. Endocrinol. Diabetes Obes.201522425526410.1097/MED.000000000000017426087337
    [Google Scholar]
  147. NakanoM. AsakawaA. InuiA. Long-term correction of type 1 and 2 diabetes by central leptin gene therapy independent of effects on appetite and energy expenditure.Indian J. Endocrinol. Metab.2012169Suppl. 355610.4103/2230‑8210.10557223565490
    [Google Scholar]
  148. JaénM.L. VilàL. EliasI. JimenezV. RodóJ. MaggioniL. Ruiz-de GopeguiR. GarciaM. MuñozS. CallejasD. AyusoE. FerréT. GrifollI. AndaluzA. RuberteJ. HaurigotV. BoschF. Long-term efficacy and safety of insulin and glucokinase gene therapy for diabetes: 8-year follow-up in dogs.Mol. Ther. Methods Clin. Dev.201761710.1016/j.omtm.2017.03.00828626777
    [Google Scholar]
  149. LiH. LiX. LamK.S.L. TamS. XiaoW. XuR. Adeno-associated virus-mediated pancreatic and duodenal homeobox gene-1 expression enhanced differentiation of hepatic oval stem cells to insulin-producing cells in diabetic rats.J. Biomed. Sci.200815448749710.1007/s11373‑008‑9233‑318253862
    [Google Scholar]
  150. YuY. ZhangJ. YaoS. PanL. LuoG. XuN. Apolipoprotein M overexpression through adeno‐associated virus gene transfer improves insulin secretion and insulin sensitivity in Goto‐Kakizaki rats.J. Diabetes Investig.20201151150115810.1111/jdi.1326132243104
    [Google Scholar]
  151. HoffmannJ.M. GrünbergJ.R. HammarstedtA. KroonT. GreinerT.U. MaurerS. EliasI. PalsdottirV. BoschF. BoucherJ. HedjazifarS. SmithU. BMP4 gene therapy enhances insulin sensitivity but not adipose tissue browning in obese mice.Mol. Metab.202032152610.1016/j.molmet.2019.11.01632029225
    [Google Scholar]
  152. CasanaE. JimenezV. JambrinaC. SacristanV. MuñozS. RodoJ. GrassI. GarciaM. MallolC. LeónX. CasellasA. SánchezV. FranckhauserS. FerréT. MarcóS. BoschF. AAV-mediated BMP7 gene therapy counteracts insulin resistance and obesity.Mol. Ther. Methods Clin. Dev.20222519020410.1016/j.omtm.2022.03.00735434177
    [Google Scholar]
  153. JimenezV. JambrinaC. CasanaE. SacristanV. MuñozS. DarribaS. RodóJ. MallolC. GarciaM. LeónX. MarcóS. RiberaA. EliasI. CasellasA. GrassI. EliasG. FerréT. MotasS. FranckhauserS. MuleroF. NavarroM. HaurigotV. RuberteJ. BoschF. FGF21 gene therapy as treatment for obesity and insulin resistance.EMBO Mol. Med.2018108e879110.15252/emmm.20170879129987000
    [Google Scholar]
  154. DuH. YinZ. ZhaoY. LiH. DaiB. FanJ. HeM. NieX. WangC.Y. WangD.W. ChenC. miR-320a induces pancreatic β cells dysfunction in diabetes by inhibiting MafF.Mol. Ther. Nucleic Acids20212644445710.1016/j.omtn.2021.08.02734631276
    [Google Scholar]
  155. ZhangL. LiX. ZhangN. YangX. HouT. FuW. YuanF. WangL. WenH. TianY. ZhangH. LuX. ZhuW.G. WDFY2 potentiates hepatic insulin sensitivity and controls endosomal localization of the insulin receptor and IRS1/2.Diabetes20206991887190210.2337/db19‑069932641353
    [Google Scholar]
  156. JiL. WangQ. LiuM. ZhuC. XiaoY. HanJ. FangY. YeJ. YinJ. WeiL. The 14‐3‐3 protein YWHAB inhibits glucagon‐induced hepatic gluconeogenesis through interacting with the glucagon receptor and FOXO1.FEBS Lett.202159591275128810.1002/1873‑3468.1406333641163
    [Google Scholar]
  157. WangJ WenJ BaiD GuoY Injection of submandibular gland with recombinant Exendin-4 and adeno-associated virus for the treatment of diabetic rats.Zhong Nan Da Xue Xue Bao Yi Xue Ban201540111179118510.11817/j.issn.1672‑7347.2015.11.00326643419
    [Google Scholar]
  158. LiuJ. NieC. XueL. YanY. LiuS. SunJ. FanM. QianH. YingH. WangL. LiY. Growth hormone receptor disrupts glucose homeostasis via promoting and stabilizing retinol binding protein 4.Theranostics202111178283830010.7150/thno.6119234373742
    [Google Scholar]
  159. WuT. ZhangS. XuJ. ZhangY. SunT. ShaoY. WangJ. TangW. ChenF. HanX. HRD1, an important player in pancreatic β-cell failure and therapeutic target for type 2 diabetic mice.Diabetes202069594095310.2337/db19‑106032086291
    [Google Scholar]
  160. SiaK.C. FuZ.Y. CalneR.Y. NathwaniA.C. LeeK.O. GanS.U. Modification of a constitutive to glucose-responsive liver-specific promoter resulted in increased efficacy of adeno-associated virus serotype 8-insulin gene therapy of diabetic mice.Cells2020911247410.3390/cells911247433202992
    [Google Scholar]
  161. GautamP. RecinoA. FoaleR.D. ZhaoJ. GanS.U. WallbergM. CalneR. LeverA.M.L. Promoter optimisation of lentiviral vectors for efficient insulin gene expression in canine mesenchymal stromal cells: potential surrogate beta cells.J. Gene Med.2016181031232110.1002/jgm.290027572655
    [Google Scholar]
  162. Jimenez-MorenoC. de Gracia Herrera-GomezI. Lopez-NoriegaL. LorenzoP. Cobo-VuilleumierN. Fuente-MartinE. Mellado-GilJ. ParnaudG. BoscoD. GauthierB. Martin-MontalvoA. A simple high efficiency intra-islet transduction protocol using lentiviral vectors.Curr. Gene Ther.201515443644610.2174/156652321566615063012155726122098
    [Google Scholar]
  163. ElsnerM. TerbishT. JörnsA. NaujokO. WedekindD. HedrichH.J. LenzenS. Reversal of diabetes through gene therapy of diabetic rats by hepatic insulin expression via lentiviral transduction.Mol. Ther.201220591892610.1038/mt.2012.822354377
    [Google Scholar]
  164. RenB. O’BrienB.A. ByrneM.R. Ch’ngE. GattP.N. SwanM.A. NassifN.T. WeiM.Q. GijsbersR. DebyserZ. SimpsonA.M. Long‐term reversal of diabetes in non‐obese diabetic mice by liver‐directed gene therapy.J. Gene Med.2013151284110.1002/jgm.269223293075
    [Google Scholar]
  165. LuJ. ShenH. LiQ. XiongF. XieR. YuanM. YangJ.K. KCNH6 protects pancreatic β‐cells from endoplasmic reticulum stress and apoptosis.FASEB J.20203411150151502810.1096/fj.202001218R32918525
    [Google Scholar]
  166. ErendorF. SahinE.O. SanliogluA.D. BalciM.K. GriffithT.S. SanliogluS. Lentiviral gene therapy vectors encoding VIP suppressed diabetes-related inflammation and augmented pancreatic beta-cell proliferation.Gene Ther.2021283-413014110.1038/s41434‑020‑0183‑332733091
    [Google Scholar]
  167. ClarkK.A. ShinA.C. SiriveluM.P. MohanKumarR.C. MaddineniS.R. RamachandranR. MohanKumarP.S. MohanKumarS.M.J. Evaluation of the central effects of systemic lentiviral-mediated leptin delivery in streptozotocin-induced diabetic rats.Int. J. Mol. Sci.202122241319710.3390/ijms22241319734947993
    [Google Scholar]
  168. RussoF. CitroA. SqueriG. SanvitoF. MontiP. GregoriS. RoncaroloM.G. AnnoniA. InsB9-23 gene transfer to hepatocyte-based combined therapy abrogates recurrence of type 1 diabetes after islet transplantation.Diabetes202170117118110.2337/db19‑124933122392
    [Google Scholar]
  169. ErendorF. EksiY.E. SahinE.O. BalciM.K. GriffithT.S. SanliogluS. Lentivirus mediated pancreatic beta-cell-specific insulin gene therapy for STZ-induced diabetes.Mol. Ther.202129114916110.1016/j.ymthe.2020.10.02533130311
    [Google Scholar]
  170. TasyurekH.M. EksiY.E. SanliogluA.D. AltunbasH.A. BalciM.K. GriffithT.S. SanliogluS. HIV-based lentivirus-mediated vasoactive intestinal peptide gene delivery protects against DIO animal model of Type 2 diabetes.Gene Ther.201825426928310.1038/s41434‑018‑0011‑129523882
    [Google Scholar]
  171. TasyurekH.M. AltunbasH.A. BalciM.K. GriffithT.S. SanliogluS. Therapeutic potential of lentivirus-mediated glucagon-like peptide-1 gene therapy for diabetes.Hum. Gene Ther.201829780281510.1089/hum.2017.18029409356
    [Google Scholar]
  172. ChengX. HuangY. YangP. BuL. miR-383 ameliorates high glucose-induced β-cells apoptosis and hyperglycemia in high-fat induced diabetic mice.Life Sci.202026311857110.1016/j.lfs.2020.11857133058915
    [Google Scholar]
  173. LuS. LiuG. ChenT. WangW. HuJ. TangD. PengX. Lentivirus-mediated hFGF21 stable expression in liver of diabetic rats model and its antidiabetic effect observation.Hum. Gene Ther.2020317-847248410.1089/hum.2019.32232027183
    [Google Scholar]
  174. IbraheemD. ElaissariA. FessiH. Gene therapy and DNA delivery systems.Int. J. Pharm.20144591-2708310.1016/j.ijpharm.2013.11.04124286924
    [Google Scholar]
  175. SavulescuJ. Harm, ethics committees and the gene therapy death.J. Med. Ethics200127314815010.1136/jme.27.3.14811417019
    [Google Scholar]
  176. HareendranS. BalakrishnanB. SenD. KumarS. SrivastavaA. JayandharanG.R. Adeno‐associated virus (AAV) vectors in gene therapy: immune challenges and strategies to circumvent them.Rev. Med. Virol.201323639941310.1002/rmv.176224023004
    [Google Scholar]
  177. Ylä-HerttualaS. Endgame: glybera finally recommended for approval as the first gene therapy drug in the European union.Mol Ther201220101831183210.1038/mt.2012.19423023051
    [Google Scholar]
  178. MingozziF. MausM.V. HuiD.J. SabatinoD.E. MurphyS.L. RaskoJ.E.J. RagniM.V. MannoC.S. SommerJ. JiangH. PierceG.F. ErtlH.C.J. HighK.A. CD8+ T-cell responses to adeno-associated virus capsid in humans.Nat. Med.200713441942210.1038/nm154917369837
    [Google Scholar]
  179. RogersG.L. MartinoA.T. AslanidiG.V. JayandharanG.R. SrivastavaA. HerzogR.W. Innate Immune Responses to AAV Vectors.Front. Microbiol.2011219410.3389/fmicb.2011.0019421954398
    [Google Scholar]
  180. XiaoC. ZhouH. LiuG. ZhangP. FuY. GuP. HouH. TangT. FanX. Bone marrow stromal cells with a combined expression of BMP-2 and VEGF-165 enhanced bone regeneration.Biomed. Mater.20116101501310.1088/1748‑6041/6/1/01501321252414
    [Google Scholar]
  181. HodgkinsonC.P. GomezJ.A. MirotsouM. DzauV.J. Genetic engineering of mesenchymal stem cells and its application in human disease therapy.Hum. Gene Ther.201021111513152610.1089/hum.2010.16520825283
    [Google Scholar]
  182. ArmbrusterN. WeberC. WictorowiczT. RethwilmA. SchellerC. SteinertA.F. Ex vivo gene delivery to synovium using foamy viral vectors.J. Gene Med.2014167-816617810.1002/jgm.277425044583
    [Google Scholar]
  183. TreacyO. RyanA.E. HeinzlT. O’FlynnL. CreggM. WilkM. OdoardiF. LohanP. O’BrienT. NosovM. RitterT. Adenoviral transduction of mesenchymal stem cells: in vitro responses and in vivo immune responses after cell transplantation.PLoS One201278e4266210.1371/journal.pone.004266222880073
    [Google Scholar]
  184. IsnerJ.M. ValeP.R. SymesJ.F. LosordoD.W. Assessment of risks associated with cardiovascular gene therapy in human subjects.Circ. Res.200189538940010.1161/hh1701.09625911532899
    [Google Scholar]
  185. ChhabraP. BraymanK.L. Stem cell therapy to cure type 1 diabetes: from hype to hope.Stem Cells Transl. Med.20132532833610.5966/sctm.2012‑011623572052
    [Google Scholar]
  186. HouW.R. XieS.N. WangH.J. SuY.Y. LuJ.L. LiL.L. ZhangS.S. XiangM. Intramuscular delivery of a naked DNA plasmid encoding proinsulin and pancreatic regenerating III protein ameliorates type 1 diabetes mellitus.Pharmacol. Res.201163432032710.1016/j.phrs.2010.12.00921185938
    [Google Scholar]
  187. AnguelaX.M. TafuroS. RocaC. CallejasD. AgudoJ. ObachM. RiberaA. RuzoA. MannC.J. CasellasA. BoschF. Nonviral-mediated hepatic expression of IGF-I increases Treg levels and suppresses autoimmune diabetes in mice.Diabetes201362255156010.2337/db11‑177623099863
    [Google Scholar]
  188. DengL YangP LiC XieL LuW ZhangY Prolonged control of insulin-dependent diabetes via intramuscular expression of plasmid-encoded single-strand insulin analogue.Genes Dis20221031101111310.1016/j.gendis.2022.05.009
    [Google Scholar]
  189. BanerjeeA. SharmaD. TrivediR. SinghJ. Treatment of insulin resistance in obesity-associated type 2 diabetes mellitus through adiponectin gene therapy.Int. J. Pharm.202058311935710.1016/j.ijpharm.2020.11935732334065
    [Google Scholar]
  190. RenM. PanJ. YuX. ChangK. YuanX. ZhangC. CTRP1 prevents high fat diet-induced obesity and improves glucose homeostasis in obese and STZ-induced diabetic mice.J. Transl. Med.202220144910.1186/s12967‑022‑03672‑536195912
    [Google Scholar]
  191. DesaiY. PatelM. PanakantiR. Hepatocyte growth factor and betacellulin gene expression for treating diabetes: In vitro analysis.Int. J. Pharm. Investig.2022121465010.5530/ijpi.2022.1.8
    [Google Scholar]
  192. NurunnabiM. LeeS.A. RevuriV. HwangY.H. KangS.H. LeeM. ChoS. ChoK.J. ByunY. BaeY.H. LeeD.Y. LeeY. Oral delivery of a therapeutic gene encoding glucagon-like peptide 1 to treat high fat diet-induced diabetes.J. Control. Release201726830531310.1016/j.jconrel.2017.08.03528860072
    [Google Scholar]
  193. PanY. ShaoM. LiP. XuC. NieJ. ZhangK. WuS. SuiD. XuF.J. Polyaminoglycoside-mediated cell reprogramming system for the treatment of diabetes mellitus.J. Control. Release202234342043310.1016/j.jconrel.2022.01.04135101476
    [Google Scholar]
  194. WongM.S. HawthorneW.J. ManoliosN. Gene therapy in diabetes.Self Nonself20101316517510.4161/self.1.3.1264321487475
    [Google Scholar]
  195. TorchilinV.P. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting.Annu. Rev. Biomed. Eng.20068134337510.1146/annurev.bioeng.8.061505.09573516834560
    [Google Scholar]
  196. LevineF. Gene therapy for diabetes: strategies for β-cell modification and replacement.Diabetes Metab. Rev.199713420924610.1002/(SICI)1099‑0895(199712)13:4<209::AID‑DMR198>3.0.CO;2‑N9509277
    [Google Scholar]
  197. YamanakaS. Pluripotent stem cell-based cell therapy—promise and challenges.Cell Stem Cell202027452353110.1016/j.stem.2020.09.01433007237
    [Google Scholar]
  198. KohnD.B. ChenY.Y. SpencerM.J. Successes and challenges in clinical gene therapy.Gene Ther.20233010-1173874610.1038/s41434‑023‑00390‑537935854
    [Google Scholar]
  199. ShahryariA BurtscherI NazariZ LickertHJAT Engineering gene therapy: advances and barriers.Adv. Theraput.202149210004010.1002/adtp.202100040
    [Google Scholar]
  200. ChenS. DuK. ZouC. Current progress in stem cell therapy for type 1 diabetes mellitus.Stem Cell Res. Ther.202011127510.1186/s13287‑020‑01793‑632641151
    [Google Scholar]
  201. Soria-JuanB. EscacenaN. Capilla-GonzálezV. AguileraY. LlanosL. TejedoJ.R. BedoyaF.J. JuanV. De la CuestaA. Ruiz-SalmerónR. AndreuE. GrochowiczL. PrósperF. Sánchez-GuijoF. LozanoF.S. MirallesM. Del Río-SoláL. CastellanosG. MoraledaJ.M. SacksteinR. García-ArranzM. García-OlmoD. MartínF. HmadchaA. SoriaB. Cost-effective, safe, and personalized cell therapy for critical limb ischemia in type 2 diabetes mellitus.Front. Immunol.201910115110.3389/fimmu.2019.0115131231366
    [Google Scholar]
  202. FarrokhiM TaheriF KhouzaniPJ RahmaniE TavakoliR FardAM Role of precision medicine and personalized medicine in the treatment of diseases.Kindle2023311164
    [Google Scholar]
  203. ElementoO. The future of precision medicine: Towards a more predictive personalized medicine.Emerg. Top. Life Sci.20204217517710.1042/ETLS2019019732856697
    [Google Scholar]
  204. AkilA.A.S. YassinE. Al-MaraghiA. AliyevE. Al-MalkiK. FakhroK.A. Diagnosis and treatment of type 1 diabetes at the dawn of the personalized medicine era.J. Transl. Med.202119113710.1186/s12967‑021‑02778‑633397399
    [Google Scholar]
  205. AlagpulinsaD.A. CaoJ.J.L. DriscollR.K. SîrbulescuR.F. PensonM.F.E. SremacM. EngquistE.N. BraunsT.A. MarkmannJ.F. MeltonD.A. PoznanskyM.C. Alginate-microencapsulation of human stem cell–derived β cells with CXCL12 prolongs their survival and function in immunocompetent mice without systemic immunosuppression.Am. J. Transplant.20191971930194010.1111/ajt.1530830748094
    [Google Scholar]
  206. Castro-GutierrezR. AlkananiA. MathewsC.E. MichelsA. RussH.A. Protecting stem cell derived pancreatic beta-like cells from diabetogenic T cell recognition.Front. Endocrinol.20211270788110.3389/fendo.2021.70788134305820
    [Google Scholar]
  207. ShaheenR. GurlinR.E. GologorskyR. BlahaC. MunnangiP. SantandreuA. TorresA. CarneseP. NairG.G. SzotG. FissellW.H. HebrokM. RoyS. Superporous agarose scaffolds for encapsulation of adult human islets and human stem‐cell‐derived β cells for intravascular bioartificial pancreas applications.J. Biomed. Mater. Res. A2021109122438244810.1002/jbm.a.3723634196100
    [Google Scholar]
  208. HogrebeN.J. AugsornworawatP. MaxwellK.G. Velazco-CruzL. MillmanJ.R. Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells.Nat. Biotechnol.202038446047010.1038/s41587‑020‑0430‑632094658
    [Google Scholar]
  209. NairG.G. LiuJ.S. RussH.A. TranS. SaxtonM.S. ChenR. JuangC. LiM. NguyenV.Q. GiacomettiS. PuriS. XingY. WangY. SzotG.L. OberholzerJ. BhushanA. HebrokM. Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells.Nat. Cell Biol.201921226327410.1038/s41556‑018‑0271‑430710150
    [Google Scholar]
  210. WangQ. DonelanW. YeH. JinY. LinY. WuX. WangY. XiY. Real-time observation of pancreatic beta cell differentiation from human induced pluripotent stem cells.Am. J. Transl. Res.20191163490350431312361
    [Google Scholar]
  211. YoshiharaE. O’ConnorC. GasserE. WeiZ. OhT.G. TsengT.W. WangD. CayabyabF. DaiY. YuR.T. LiddleC. AtkinsA.R. DownesM. EvansR.M. Immune-evasive human islet-like organoids ameliorate diabetes.Nature2020586783060661110.1038/s41586‑020‑2631‑z32814902
    [Google Scholar]
  212. Velazco-CruzL. SongJ. MaxwellK.G. GoedegebuureM.M. AugsornworawatP. HogrebeN.J. MillmanJ.R. Acquisition of dynamic function in human stem cell-derived β cells.Stem Cell Repor.201912235136510.1016/j.stemcr.2018.12.01230661993
    [Google Scholar]
  213. SouthardS.M. KotipatruniR.P. RustW.L. Generation and selection of pluripotent stem cells for robust differentiation to insulin-secreting cells capable of reversing diabetes in rodents.PLoS One2018139e020312610.1371/journal.pone.020312630183752
    [Google Scholar]
  214. EydianZ. Mohammad GhasemiA. AnsariS. KamaliA.N. KhosraviM. MomtazS. RikiS. RafighdoostL. Entezari HeraviR. Differentiation of multipotent stem cells to insulin-producing cells for treatment of diabetes mellitus: bone marrow- and adipose tissue-derived cells comparison.Mol. Biol. Rep.20224953539354810.1007/s11033‑022‑07194‑735107740
    [Google Scholar]
  215. YuG. ZhangM. GaoL. ZhouY. QiaoL. YinJ. WangY. ZhouJ. YeH. Far-red light-activated human islet-like designer cells enable sustained fine-tuned secretion of insulin for glucose control.Mol. Ther.202230134135410.1016/j.ymthe.2021.09.00434530162
    [Google Scholar]
  216. SarvestaniF.S. ZareM.A. SakiF. KoohpeymaF. Al-AbdullahI.H. AzarpiraN. The effect of human wharton’s jelly-derived mesenchymal stem cells on MC4R, NPY, and LEPR gene expression levels in rats with streptozotocin-induced diabetes.Iran. J. Basic Med. Sci.202023221422332405365
    [Google Scholar]
  217. HashemiS.M. HassanZ.M. Hossein-KhannazerN. PourfathollahA.A. SoudiS. Investigating the route of administration and efficacy of adipose tissue-derived mesenchymal stem cells and conditioned medium in type 1 diabetic mice.Inflammopharmacology202028258560110.1007/s10787‑019‑00661‑x31741175
    [Google Scholar]
  218. BaiY. WangJ. HeZ. YangM. LiL. JiangH. Mesenchymal stem cells reverse diabetic nephropathy disease via lipoxin A4 by targeting transforming growth factor β (TGF-β)/smad pathway and pro-inflammatory cytokines.Med. Sci. Monit.2019253069307610.12659/MSM.91486031023998
    [Google Scholar]
  219. LiY. LiuJ. LiaoG. ZhangJ. ChenY. LiL. LiL. LiuF. ChenB. GuoG. WangC. YangL. ChengJ. LuY. Early intervention with mesenchymal stem cells prevents nephropathy in diabetic rats by ameliorating the inflammatory microenvironment.Int. J. Mol. Med.20184152629263910.3892/ijmm.2018.350129484379
    [Google Scholar]
  220. SunY. ShiH. YinS. JiC. ZhangX. ZhangB. WuP. ShiY. MaoF. YanY. XuW. QianH. Human mesenchymal stem cell derived exosomes alleviate type 2 diabetes mellitus by reversing peripheral insulin resistance and relieving β-cell destruction.ACS Nano20181287613762810.1021/acsnano.7b0764330052036
    [Google Scholar]
  221. Sávio-SilvaC. Soinski-SousaP.E. Simplício-FilhoA. BastosR.M.C. BeyerstedtS. RangelÉ.B. Therapeutic potential of mesenchymal stem cells in a pre-clinical model of diabetic kidney disease and obesity.Int. J. Mol. Sci.2021224154610.3390/ijms2204154633557007
    [Google Scholar]
  222. BiY. GuoX. ZhangM. ZhuK. ShiC. FanB. WuY. YangZ. JiG. Bone marrow derived-mesenchymal stem cell improves diabetes-associated fatty liver via mitochondria transformation in mice.Stem Cell Res. Ther.202112160210.1186/s13287‑021‑02663‑534895322
    [Google Scholar]
  223. NavabiR. NegahdariB. Hajizadeh-SaffarE. HajinasrollahM. JenabY. RabbaniS. PakzadM. HassaniS.N. HezaveheiM. Jafari-AtrabiM. TahamtaniY. BaharvandH. Combined therapy of mesenchymal stem cells with a GLP-1 receptor agonist, liraglutide, on an inflammatory-mediated diabetic non-human primate model.Life Sci.202127611937410.1016/j.lfs.2021.11937433745896
    [Google Scholar]
  224. YuanY. LiL. ZhuL. LiuF. TangX. LiaoG. LiuJ. ChengJ. ChenY. LuY. Mesenchymal stem cells elicit macrophages into M2 phenotype via improving transcription factor EB-mediated autophagy to alleviate diabetic nephropathy.Stem Cells202038563965210.1002/stem.314431904160
    [Google Scholar]
  225. ZhangL. ChiY. WeiY. ZhangW. WangF. ZhangL. ZouL. SongB. ZhaoX. HanZ. Bone marrow-derived mesenchymal stem/stromal cells in patients with acute myeloid leukemia reveal transcriptome alterations and deficiency in cellular vitality.Stem Cell Res. Ther.202112136510.1186/s13287‑021‑02444‑034174939
    [Google Scholar]
  226. CaiX. WangL. WangX. HouF. miR‐124a enhances therapeutic effects of bone marrow stromal cells transplant on diabetic nephropathy‐related epithelial‐to‐mesenchymal transition and fibrosis.J. Cell. Biochem.2020121129931210.1002/jcb.29170
    [Google Scholar]
  227. RaoN WangX XieJ LiJ ZhaiY LiX Stem cells from human exfoliated deciduous teeth ameliorate diabetic nephropathy in vivo and in vitro by inhibiting advanced glycation end product-activated epithelial-mesenchymal transition.Stem Cells Int20192019275147510.1155/2019/275147531871464
    [Google Scholar]
  228. GabrM.M. ZakariaM.M. RefaieA.F. IsmailA.M. KhaterS.M. AshamallahS.A. AzzamM.M. GhoneimM.A. Insulin-producing cells from adult human bone marrow mesenchymal stromal cells could control chemically induced diabetes in dogs: A preliminary study.Cell Transplant.201827693794710.1177/096368971875991329860900
    [Google Scholar]
  229. EbrahimN. AhmedI. HussienN. DessoukyA. FaridA. ElshazlyA. MostafaO. GazzarW. SorourS. SeleemY. HusseinA. SabryD. Mesenchymal stem cell-derived exosomes ameliorated diabetic nephropathy by autophagy induction through the mTOR signaling pathway.Cells201871222610.3390/cells712022630467302
    [Google Scholar]
  230. ElshemyMM AsemM AllemailemKS UtoK EbaraM NabilA Antioxidative capacity of liver-and adipose-derived mesenchymal stem cell-conditioned media and their applicability in treatment of type 2 diabetic rats.Oxid Med Cell Longev20212021883346710.1155/2021/883346733623636
    [Google Scholar]
  231. TakemuraS. ShimizuT. OkaM. SekiyaS. BabazonoT. Transplantation of adipose‐derived mesenchymal stem cell sheets directly into the kidney suppresses the progression of renal injury in a diabetic nephropathy rat model.J. Diabetes Investig.202011354555310.1111/jdi.1316431622047
    [Google Scholar]
  232. AraujoD.B. DantasJ.R. SilvaK.R. SoutoD.L. PereiraM.F.C. MoreiraJ.P. LuizR.R. Claudio-Da-SilvaC.S. GabbayM.A.L. DibS.A. CouriC.E.B. MaiolinoA. RebelattoC.L.K. DagaD.R. SenegagliaA.C. BrofmanP.R.S. BaptistaL.S. OliveiraJ.E.P. ZajdenvergL. RodackiM. Allogenic adipose tissue-derived stromal/stem cells and vitamin D supplementation in patients with recent-onset type 1 diabetes mellitus: a 3-month follow-up pilot study.Front. Immunol.20201199310.3389/fimmu.2020.0099332582156
    [Google Scholar]
  233. JinJ. ShiY. GongJ. ZhaoL. LiY. HeQ. HuangH. Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte.Stem Cell Res. Ther.20191019510.1186/s13287‑019‑1177‑130876481
    [Google Scholar]
  234. MontanucciP. PescaraT. GrecoA. LeonardiG. MariniL. BastaG. CalafioreR. Co‐microencapsulation of human umbilical cord‐derived mesenchymal stem and pancreatic islet‐derived insulin producing cells in experimental type 1 diabetes.Diabetes Metab. Res. Rev.2021372e337210.1002/dmrr.337232562342
    [Google Scholar]
  235. HeQ. WangL. ZhaoR. YanF. ShaS. CuiC. SongJ. HuH. GuoX. YangM. CuiY. SunY. SunZ. LiuF. DongM. HouX. ChenL. Mesenchymal stem cell-derived exosomes exert ameliorative effects in type 2 diabetes by improving hepatic glucose and lipid metabolism via enhancing autophagy.Stem Cell Res. Ther.202011122310.1186/s13287‑020‑01731‑632513303
    [Google Scholar]
  236. ChenL XiangE LiC HanB ZhangQ RaoW Umbilical cord-derived mesenchymal stem cells ameliorate nephrocyte injury and proteinuria in a diabetic nephropathy rat model.J. Diabet. Res.202029803585310.1155/2020/8035853
    [Google Scholar]
  237. XiangE. HanB. ZhangQ. RaoW. WangZ. ChangC. ZhangY. TuC. LiC. WuD. Human umbilical cord-derived mesenchymal stem cells prevent the progression of early diabetic nephropathy through inhibiting inflammation and fibrosis.Stem Cell Res. Ther.202011133610.1186/s13287‑020‑01852‑y32746936
    [Google Scholar]
  238. LeeS.E. JangJ.E. KimH.S. JungM.K. KoM.S. KimM.O. ParkH.S. OhW. ChoiS.J. JinH.J. KimS.Y. KimY.J. KimS.W. KimM.K. SungC.O. PackC.G. LeeK.U. KohE.H. Mesenchymal stem cells prevent the progression of diabetic nephropathy by improving mitochondrial function in tubular epithelial cells.Exp. Mol. Med.201951711410.1038/s12276‑019‑0268‑531285429
    [Google Scholar]
  239. AnX. LiaoG. ChenY. LuoA. LiuJ. YuanY. LiL. YangL. WangH. LiuF. YangG. YiS. LiY. ChengJ. LuY. Intervention for early diabetic nephropathy by mesenchymal stem cells in a preclinical nonhuman primate model.Stem Cell Res. Ther.201910136310.1186/s13287‑019‑1401‑z31791397
    [Google Scholar]
  240. WangH.L. WeiB. HeH.J. HuangX.R. ShengJ.Y. ChenX.C. WangL. TanR.Z. LiJ.C. LiuJ. YangS.J. MaR.C.W. LanH.Y. Smad3 deficiency improves islet-based therapy for diabetes and diabetic kidney injury by promoting β cell proliferation via the E2F3-dependent mechanism.Theranostics202212137939510.7150/thno.6703434987651
    [Google Scholar]
  241. ChoiM.Y. LimS.J. KimM.J. WeeY.M. KwonH. JungC.H. KimY.H. HanD.J. ShinS. Islet isograft transplantation improves insulin sensitivity in a murine model of type 2 diabetes.Endocrine202172366067110.1007/s12020‑021‑02655‑833713015
    [Google Scholar]
  242. TunS.B.B. ChuaM. HasanR. KöhlerM. ZhengX. AliY. AbdulredaM.H. Juntti-BerggrenL. BarathiV.A. BerggrenP.O. Islet transplantation to the anterior chamber of the eye—a future treatment option for insulin-deficient type-2 diabetics? A case report from a nonhuman type-2 diabetic primate.Cell Transplant.20202910.1177/096368972091325632264703
    [Google Scholar]
  243. SuiL. DanzlN. CampbellS.R. ViolaR. WilliamsD. XingY. WangY. PhillipsN. PoffenbergerG. JohannessonB. OberholzerJ. PowersA.C. LeibelR.L. ChenX. SykesM. EgliD. β-Cell replacement in mice using human type 1 diabetes nuclear transfer embryonic stem cells.Diabetes2018671263510.2337/db17‑012028931519
    [Google Scholar]
  244. RamzyA ThompsonDM Ward-HartstongeKA IvisonS CookL GarciaRV Implanted pluripotent stem-cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in patients with type 1 diabetes.Cell stem cell.202128122047206110.1016/j.stem.2021.10.00334861146
    [Google Scholar]
  245. IzadiM. Sadr Hashemi NejadA. MoazenchiM. MasoumiS. RabbaniA. KompaniF. Hedayati AslA.A. Abbasi KakroodiF. JaroughiN. Mohseni MeybodiM.A. SetoodehA. AbbasiF. HosseiniS.E. Moeini NiaF. Salman YazdiR. NavabiR. Hajizadeh-SaffarE. BaharvandH. Mesenchymal stem cell transplantation in newly diagnosed type-1 diabetes patients: a phase I/II randomized placebo-controlled clinical trial.Stem Cell Res. Ther.202213126410.1186/s13287‑022‑02941‑w35725652
    [Google Scholar]
  246. LiY. WangF. LiangH. TangD. HuangM. ZhaoJ. YangX. LiuY. ShuL. WangJ. HeZ. LiuY. Efficacy of mesenchymal stem cell transplantation therapy for type 1 and type 2 diabetes mellitus: a meta-analysis.Stem Cell Res. Ther.202112127310.1186/s13287‑021‑02342‑533957998
    [Google Scholar]
  247. NguyenL.T. HoangD.M. NguyenK.T. BuiD.M. NguyenH.T. LeH.T.A. HoangV.T. BuiH.T.H. DamP.T.M. HoangX.T.A. NgoA.T.L. LeH.M. PhungN.Y. VuD.M. DuongT.T. NguyenT.D. HaL.T. BuiH.T.P. NguyenH.K. HekeM. BuiA.V. Type 2 diabetes mellitus duration and obesity alter the efficacy of autologously transplanted bone marrow-derived mesenchymal stem/stromal cells.Stem Cells Transl. Med.20211091266127810.1002/sctm.20‑050634080789
    [Google Scholar]
  248. WangH. StrangeC. NietertP.J. WangJ. TurnbullT.L. CloudC. OwczarskiS. ShufordB. DukeT. GilkesonG. LuttrellL. HermayerK. FernandesJ. AdamsD.B. MorganK.A. Autologous mesenchymal stem cell and islet cotransplantation: safety and efficacy.Stem Cells Transl. Med.201871111910.1002/sctm.17‑013929159905
    [Google Scholar]
  249. WeissJN LevyS Stem cell ophthalmology treatment study: bone marrow derived stem cells in the treatment of retinitis pigmentosa.Stem Cell Investig201851810.21037/sci.2018.04.0230050918
    [Google Scholar]
  250. DantasJR CABRALDA PereiraK PereiraMF SoutoDL NolascoM Heterologous adipose–derived mesenchymal stem cells and vitamin d supplementation in patients with recent–onset type 1 diabetes mellitus–six months follow-up.Diabetes201867Supplement_1111210.2337/db18‑1112‑P
    [Google Scholar]
  251. GuX. YuX. ZhaoC. DuanP. ZhaoT. LiuY. LiS. YangZ. LiY. QianC. YinZ. WangY. Efficacy and safety of autologous bone marrow mesenchymal stem cell transplantation in patients with diabetic retinopathy.Cell. Physiol. Biochem.2018491405210.1159/00049283830134223
    [Google Scholar]
  252. ZhaoY. KnightC.M. JiangZ. DelgadoE. Van HovenA.M. GhannyS. ZhouZ. ZhouH. YuH. HuW. LiH. LiX. Perez-BasterrecheaM. ZhaoL. ZhaoY. GiangolaJ. WeinbergR. MazzoneT. Stem cell educator therapy in type 1 diabetes: From the bench to clinical trials.Autoimmun. Rev.202221510305810.1016/j.autrev.2022.10305835108619
    [Google Scholar]
  253. ZangL. LiY. HaoH. LiuJ. ChengY. LiB. YinY. ZhangQ. GaoF. WangH. GuS. LiJ. LinF. ZhuY. TianG. ChenY. GuW. DuJ. ChenK. GuoQ. YangG. PeiY. YanW. WangX. MengJ. ZhangS. BaJ. LyuZ. DouJ. HanW. MuY. Efficacy and safety of umbilical cord-derived mesenchymal stem cells in Chinese adults with type 2 diabetes: a single-center, double-blinded, randomized, placebo-controlled phase II trial.Stem Cell Res. Ther.202213118010.1186/s13287‑022‑02848‑635505375
    [Google Scholar]
  254. WuZ. XuX. CaiJ. ChenJ. HuangL. WuW. PuglieseA. LiS. RicordiC. TanJ. Prevention of chronic diabetic complications in type 1 diabetes by co-transplantation of umbilical cord mesenchymal stromal cells and autologous bone marrow: a pilot randomized controlled open-label clinical study with 8-year follow-up.Cytotherapy202224442142710.1016/j.jcyt.2021.09.01535086778
    [Google Scholar]
  255. WeissJ.N. Cellular Therapy for Type 1 Diabetes Using Mesenchymal Stem Cells. In: Stem Cell Surgery Trials in Heart Failure and DiabetesChamSpringer2022858810.1007/978‑3‑030‑78010‑4_17
    [Google Scholar]
  256. YazhenZ. WenyiC. BingF. HongcuiC. The clinical efficacy and safety of stem cell therapy for diabetes mellitus: a systematic review and meta-analysis.Aging Dis.202011114115310.14336/AD.2019.042132010488
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998292392240425122326
Loading
/content/journals/cdr/10.2174/0115733998292392240425122326
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cell therapy; Diabetes; gene therapy; pancreatic beta cells; stem cells; vector
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test