Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Type 2 Diabetes Mellitus (T2DM) is a chronic metabolic disorder characterized by chronic hyperglycemia, which often co-exists with other metabolic impairments. This condition can damage various tissues and organs, resulting in the development of severe complications, both microvascular, such as retinopathy, nephropathy, and neuropathy, and macrovascular, responsible for an increased risk of cardiovascular diseases. Curcumin is the main bioactive molecule found in the rhizomes of turmeric. Many studies have reported curcumin to exhibit antioxidant, anti-inflammatory, anti-infectious, and anti-cancer properties; thus, there is an increasing interest in exploiting these properties in order to prevent the rise or the progression of T2DM, as well as its possible associated conditions. In this review, we have presented the current state-of-art regarding the clinical trials that have involved curcumin administration and analyzed the possible mechanisms by which curcumin might exert the beneficial effects observed in literature.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998313402240726080637
2024-11-29
2025-04-18
Loading full text...

Full text loading...

References

  1. KnowlerW.C. FowlerS.E. HammanR.F. ChristophiC.A. HoffmanH.J. BrennemanA.T. Brown-FridayJ.O. GoldbergR. VendittiE. NathanD.M. 10-year follow-up of diabetes incidence and weight loss in the diabetes prevention program outcomes study.Lancet200937497021677168610.1016/S0140‑6736(09)61457‑419878986
    [Google Scholar]
  2. WongN.D. SattarN. Cardiovascular risk in diabetes mellitus: Epidemiology, assessment and prevention.Nat. Rev. Cardiol.2023201068569510.1038/s41569‑023‑00877‑z37193856
    [Google Scholar]
  3. TolmanK.G. FonsecaV. DalpiazA. TanM.H. Spectrum of liver disease in type 2 diabetes and management of patients with diabetes and liver disease.Diabetes Care200730373474310.2337/dc06‑153917327353
    [Google Scholar]
  4. SunH. SaeediP. KarurangaS. PinkepankM. OgurtsovaK. DuncanB.B. SteinC. BasitA. ChanJ.C.N. MbanyaJ.C. PavkovM.E. RamachandaranA. WildS.H. JamesS. HermanW.H. ZhangP. BommerC. KuoS. BoykoE.J. MaglianoD.J. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.10911934879977
    [Google Scholar]
  5. DaviesM.J. D’AlessioD.A. FradkinJ. KernanW.N. MathieuC. MingroneG. RossingP. TsapasA. WexlerD.J. BuseJ.B. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD).Diabetologia201861122461249810.1007/s00125‑018‑4729‑530288571
    [Google Scholar]
  6. LeyS.H. HamdyO. MohanV. HuF.B. Prevention and management of type 2 diabetes: dietary components and nutritional strategies.Lancet201438399331999200710.1016/S0140‑6736(14)60613‑924910231
    [Google Scholar]
  7. LyssenkoV. VaagA. Genetics of diabetes-associated microvascular complications.Diabetologia20236691601161310.1007/s00125‑023‑05964‑x37452207
    [Google Scholar]
  8. YuanS. LiX. LiuQ. WangZ. JiangX. BurgessS. LarssonS.C. Physical activity, sedentary behavior, and type 2 diabetes: Mendelian randomization analysis.J. Endocr. Soc.202378bvad09010.1210/jendso/bvad09037415875
    [Google Scholar]
  9. RuzeR. LiuT. ZouX. SongJ. ChenY. XuR. YinX. XuQ. Obesity and type 2 diabetes mellitus: Connections in epidemiology, pathogenesis, and treatments.Front. Endocrinol202314116152110.3389/fendo.2023.116152137152942
    [Google Scholar]
  10. KimJ. KwonH.S. Not Control but Conquest: Strategies for the remission of type 2 diabetes mellitus.Diabetes Metab. J.202246216518010.4093/dmj.2021.037735385632
    [Google Scholar]
  11. AbdullahA. PeetersA. de CourtenM. StoelwinderJ. The magnitude of association between overweight and obesity and the risk of diabetes: A meta-analysis of prospective cohort studies.Diabetes Res. Clin. Pract.201089330931910.1016/j.diabres.2010.04.01220493574
    [Google Scholar]
  12. HuF.B. MansonJ.E. StampferM.J. ColditzG. LiuS. SolomonC.G. WillettW.C. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women.N. Engl. J. Med.20013451179079710.1056/NEJMoa01049211556298
    [Google Scholar]
  13. GreggE.W. ChenH. WagenknechtL.E. ClarkJ.M. DelahantyL.M. BantleJ. PownallH.J. JohnsonK.C. SaffordM.M. KitabchiA.E. Pi-SunyerF.X. WingR.R. BertoniA.G. Look AHEAD Research Group Association of an intensive lifestyle intervention with remission of type 2 diabetes.JAMA2012308232489249610.1001/jama.2012.6792923288372
    [Google Scholar]
  14. GoyalS. RaniJ. BhatM.A. VanitaV. Genetics of diabetes.World J. Diabetes202314665667910.4239/wjd.v14.i6.65637383588
    [Google Scholar]
  15. LohM. ZhouL. NgH.K. ChambersJ.C. Epigenetic disturbances in obesity and diabetes: Epidemiological and functional insights.Mol. Metab.201927Suppl.S33S4110.1016/j.molmet.2019.06.01131500829
    [Google Scholar]
  16. TossettaG. FantoneS. GesuitaR. Di RenzoG.C. MeyyazhaganA. TersigniC. ScambiaG. Di SimoneN. MarzioniD. HtrA1 in gestational diabetes mellitus: A possible biomarker?Diagnostics20221211270510.3390/diagnostics1211270536359548
    [Google Scholar]
  17. SchulzL.O. BennettP.H. RavussinE. KiddJ.R. KiddK.K. EsparzaJ. ValenciaM.E. Effects of traditional and western environments on prevalence of type 2 diabetes in Pima Indians in Mexico and the U.S.Diabetes Care20062981866187110.2337/dc06‑013816873794
    [Google Scholar]
  18. DonaghueK.C. ChiarelliF. TrottaD. AllgroveJ. Dahl-JorgensenK. Microvascular and macrovascular complications associated with diabetes in children and adolescents.Pediatr. Diabetes200910Suppl. 1219520310.1111/j.1399‑5448.2009.00576.x19754630
    [Google Scholar]
  19. BrownW.V. Microvascular complications of diabetes mellitus: Renal protection accompanies cardiovascular protection.Am. J. Cardiol.20081021210L13L10.1016/j.amjcard.2008.09.06819084084
    [Google Scholar]
  20. TossettaG. PianiF. BorghiC. MarzioniD. Role of CD93 in health and disease.Cells20231213177810.3390/cells1213177837443812
    [Google Scholar]
  21. WangD. LiJ. LuoG. ZhouJ. WangN. WangS. ZhaoR. CaoX. MaY. LiuG. HaoL. Nox4 as a novel therapeutic target for diabetic vascular complications.Redox Biol.20236410278110.1016/j.redox.2023.10278137321060
    [Google Scholar]
  22. PianiF. TossettaG. Cara-FuentesG. AgnolettiD. MarzioniD. BorghiC. Diagnostic and prognostic role of CD93 in cardiovascular disease: A systematic review.Biomolecules202313691010.3390/biom1306091037371490
    [Google Scholar]
  23. PapatheodorouK. BanachM. BekiariE. RizzoM. EdmondsM. Complications of diabetes 2017.J. Diabetes Res.201820181410.1155/2018/308616729713648
    [Google Scholar]
  24. ZhuP. LaoG. LiH. TanR. GuJ. RanJ. Replacing of sedentary behavior with physical activity and the risk of mortality in people with prediabetes and diabetes: A prospective cohort study.Int. J. Behav. Nutr. Phys. Act.20232018110.1186/s12966‑023‑01488‑037415151
    [Google Scholar]
  25. OikonomouE. XenouM. ZakynthinosG.E. TsaplarisP. LampsasS. BletsaE. GialamasI. KalogerasK. GoliopoulouA. GounaridiM.I. PesiridisT. TsatsaragkouA. VavouranakisM. SiasosG. TousoulisD. Novel approaches to the management of diabetes mellitus in patients with coronary artery disease.Curr. Pharm. Des.202329231844186210.2174/138161282966623070316105837403390
    [Google Scholar]
  26. Martín-TimónI. Sevillano-CollantesC. Segura-GalindoA. Del Cañizo-GómezF.J. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength?World J. Diabetes20145444447010.4239/wjd.v5.i4.44425126392
    [Google Scholar]
  27. MazzantiL. CecatiM. VigniniA. D'EusanioS. EmanuelliM. GiannubiloS.R. SaccucciF. TranquilliA.L. Placental expression of endothelial and inducible nitric oxide synthase and nitric oxide levels in patients with HELLP syndrome.Am J Obstet Gynecol2011205236e231-23710.1016/j.ajog.2011.04.022
    [Google Scholar]
  28. JacobsE. HoyerA. BrinksR. KussO. RathmannW. Burden of mortality attributable to diagnosed diabetes: A nationwide analysis based on claims data from 65 million people in Germany.Diabetes Care201740121703170910.2337/dc17‑095428993421
    [Google Scholar]
  29. KhorX.Y. PappachanJ.M. JeeyavudeenM.S. Individualized diabetes care: Lessons from the real-world experience.World J. Clin. Cases202311132890290210.12998/wjcc.v11.i13.289037215423
    [Google Scholar]
  30. CharnecaS. HernandoA. Costa-ReisP. GuerreiroC.S. Beyond seasoning—the role of herbs and spices in rheumatic diseases.Nutrients20231512281210.3390/nu1512281237375716
    [Google Scholar]
  31. García-AguilarA. GuillénC. Targeting pancreatic beta cell death in type 2 diabetes by polyphenols.Front. Endocrinol.202213105231710.3389/fendo.2022.105231736465657
    [Google Scholar]
  32. BacchettiT. CampagnaR. SartiniD. CecatiM. MorresiC. BellachiomaL. MartinelliE. RocchettiG. LuciniL. FerrettiG. EmanuelliM. C. spinosa L. subsp. rupestris phytochemical profile and effect on oxidative stress in normal and cancer cells.Molecules20222719648810.3390/molecules2719648836235028
    [Google Scholar]
  33. PereiraL. CotasJ. Therapeutic potential of polyphenols and other micronutrients of marine origin.Mar. Drugs202321632310.3390/md2106032337367648
    [Google Scholar]
  34. KamalD.A.M. SalamtN. YusufA.N.M. KashimM.I.A.M. MokhtarM.H. Potential health benefits of curcumin on female reproductive disorders: A review.Nutrients2021139312610.3390/nu1309312634579002
    [Google Scholar]
  35. RanjbarR. BagheriH. GhasemiF. GuestP.C. SahebkarA. Effects of curcumin and its analogues on infectious diseases.Adv. Exp. Med. Biol.202112917510110.1007/978‑3‑030‑56153‑6_534331685
    [Google Scholar]
  36. AkbariS. KariznaviE. JannatiM. ElyasiS. Tayarani-NajaranZ. Curcumin as a preventive or therapeutic measure for chemotherapy and radiotherapy induced adverse reaction: A comprehensive review.Food Chem. Toxicol.202014511169910.1016/j.fct.2020.11169932858134
    [Google Scholar]
  37. TossettaG. FantoneS. GiannubiloS.R. MarzioniD. The multifaced actions of curcumin in pregnancy outcome.Antioxidants202110112610.3390/antiox1001012633477354
    [Google Scholar]
  38. ZielińskaA. AlvesH. MarquesV. DurazzoA. LucariniM. AlvesT.F. MorsinkM. WillemenN. EderP. ChaudM.V. SeverinoP. SantiniA. SoutoE.B. Properties, extraction methods, and delivery systems for curcumin as a natural source of beneficial health effects.Medicina202056733610.3390/medicina5607033632635279
    [Google Scholar]
  39. DarveshA.S. CarrollR.T. BishayeeA. NovotnyN.A. GeldenhuysW.J. Van der SchyfC.J. Curcumin and neurodegenerative diseases: A perspective.Expert Opin. Investig. Drugs20122181123114010.1517/13543784.2012.69347922668065
    [Google Scholar]
  40. TossettaG. FantoneS. BusilacchiE.M. Di SimoneN. GiannubiloS.R. ScambiaG. GiordanoA. MarzioniD. Modulation of matrix metalloproteases by ciliary neurotrophic factor in human placental development.Cell Tissue Res.2022390111312910.1007/s00441‑022‑03658‑135794391
    [Google Scholar]
  41. GuptaS.C. PatchvaS. KohW. AggarwalB.B. Discovery of curcumin, a component of golden spice, and its miraculous biological activities.Clin. Exp. Pharmacol. Physiol.201239328329910.1111/j.1440‑1681.2011.05648.x22118895
    [Google Scholar]
  42. MirzaeiH. ShakeriA. RashidiB. JaliliA. BanikazemiZ. SahebkarA. Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies.Biomed. Pharmacother.20178510211210.1016/j.biopha.2016.11.09827930973
    [Google Scholar]
  43. AmalrajA. PiusA. GopiS. GopiS. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – A review.J. Tradit. Complement. Med.20177220523310.1016/j.jtcme.2016.05.00528417091
    [Google Scholar]
  44. SoleimaniV. SahebkarA. HosseinzadehH. Turmeric ( Curcuma longa ) and its major constituent (curcumin) as nontoxic and safe substances: Review.Phytother. Res.201832698599510.1002/ptr.605429480523
    [Google Scholar]
  45. AnandP. KunnumakkaraA.B. NewmanR.A. AggarwalB.B. Bioavailability of curcumin: Problems and promises.Mol. Pharm.20074680781810.1021/mp700113r17999464
    [Google Scholar]
  46. HsuK.Y. HoC.T. PanM.H. The therapeutic potential of curcumin and its related substances in turmeric: From raw material selection to application strategies.Yao Wu Shi Pin Fen Xi202331219421110.38212/2224‑6614.345437335161
    [Google Scholar]
  47. ChengA.L. HsuC.H. LinJ.K. HsuM.M. HoY.F. ShenT.S. KoJ.Y. LinJ.T. LinB.R. Ming-ShiangW. YuH.S. JeeS.H. ChenG.S. ChenT.M. ChenC.A. LaiM.K. PuY.S. PanM.H. WangY.J. TsaiC.C. HsiehC.Y. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions.Anticancer Res.2001214B2895290011712783
    [Google Scholar]
  48. GbolahanO.B. O’NeilB.H. McReeA.J. SanoffH.K. FallonJ.K. SmithP.C. IvanovaA. MooreD.T. DumondJ. AsherG.N. A phase I evaluation of the effect of curcumin on dose‐limiting toxicity and pharmacokinetics of irinotecan in participants with solid tumors.Clin. Transl. Sci.20221551304131510.1111/cts.1325035157783
    [Google Scholar]
  49. ChandranB. GoelA. A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis.Phytother. Res.201226111719172510.1002/ptr.463922407780
    [Google Scholar]
  50. HewlingsS. KalmanD. Curcumin: A review of its effects on human health.Foods20176109210.3390/foods610009229065496
    [Google Scholar]
  51. LaoC.D. RuffinM.T.IV NormolleD. HeathD.D. MurrayS.I. BaileyJ.M. BoggsM.E. CrowellJ. RockC.L. BrennerD.E. Dose escalation of a curcuminoid formulation.BMC Complement. Altern. Med.2006611010.1186/1472‑6882‑6‑1016545122
    [Google Scholar]
  52. BasnetP. Skalko-BasnetN. Curcumin: An anti-inflammatory molecule from a curry spice on the path to cancer treatment.Molecules20111664567459810.3390/molecules1606456721642934
    [Google Scholar]
  53. SharmaR.A. EudenS.A. PlattonS.L. CookeD.N. ShafayatA. HewittH.R. MarczyloT.H. MorganB. HemingwayD. PlummerS.M. PirmohamedM. GescherA.J. StewardW.P. Phase I clinical trial of oral curcumin: Biomarkers of systemic activity and compliance.Clin. Cancer Res.200410206847685410.1158/1078‑0432.CCR‑04‑074415501961
    [Google Scholar]
  54. TønnesenH.H. MássonM. LoftssonT. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability.Int. J. Pharm.20022441-212713510.1016/S0378‑5173(02)00323‑X12204572
    [Google Scholar]
  55. Burgos-MorónE. Calderón-MontañoJ.M. SalvadorJ. RoblesA. López-LázaroM. The dark side of curcumin.Int. J. Cancer201012671771177510.1002/ijc.2496719830693
    [Google Scholar]
  56. PrasadS. TyagiA.K. AggarwalB.B. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: The golden pigment from golden spice.Cancer Res. Treat.201446121810.4143/crt.2014.46.1.224520218
    [Google Scholar]
  57. AnandP. ThomasS.G. KunnumakkaraA.B. SundaramC. HarikumarK.B. SungB. TharakanS.T. MisraK. PriyadarsiniI.K. RajasekharanK.N. AggarwalB.B. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature.Biochem. Pharmacol.200876111590161110.1016/j.bcp.2008.08.00818775680
    [Google Scholar]
  58. PatraS. DeyJ. ChakrabortyA. Physicochemical characterization, stability, and in vitro evaluation of curcumin-loaded solid lipid nanoparticles prepared using biocompatible synthetic lipids.ACS Appl. Bio Mater.2023672785279410.1021/acsabm.3c0025237403739
    [Google Scholar]
  59. AppendinoG. BelcaroG. CornelliU. LuzziR. TogniS. DugallM. CesaroneM.R. FeragalliB. IppolitoE. ErrichiB.M. PellegriniL. LeddaA. RicciA. BaveraP. HosoiM. StuardS. CorsiM. ErrichiS. GizziG. Potential role of curcumin phytosome (Meriva) in controlling the evolution of diabetic microangiopathy. A pilot study.Panminerva Med.2011533Suppl. 1434922108476
    [Google Scholar]
  60. SunJ. BiC. ChanH.M. SunS. ZhangQ. ZhengY. Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability.Colloids Surf. B Biointerfaces201311136737510.1016/j.colsurfb.2013.06.03223856543
    [Google Scholar]
  61. TabanelliR. BrogiS. CalderoneV. Improving curcumin bioavailability: Current strategies and future perspectives.Pharmaceutics20211310171510.3390/pharmaceutics1310171534684008
    [Google Scholar]
  62. ChuengsamarnS. RattanamongkolgulS. LuechapudipornR. PhisalaphongC. JirawatnotaiS. Curcumin extract for prevention of type 2 diabetes.Diabetes Care201235112121212710.2337/dc12‑011622773702
    [Google Scholar]
  63. MuruganP. PariL. Influence of tetrahydrocurcumin on hepatic and renal functional markers and protein levels in experimental type 2 diabetic rats.Basic Clin. Pharmacol. Toxicol.2007101424124510.1111/j.1742‑7843.2007.00109.x17845505
    [Google Scholar]
  64. NaL.X. LiY. PanH.Z. ZhouX.L. SunD.J. MengM. LiX.X. SunC.H. Curcuminoids exert glucose‐lowering effect in type 2 diabetes by decreasing serum free fatty acids: A double‐blind, placebo‐controlled trial.Mol. Nutr. Food Res.20135791569157710.1002/mnfr.20120013122930403
    [Google Scholar]
  65. ChuengsamarnS. RattanamongkolgulS. PhonratB. TungtrongchitrR. JirawatnotaiS. Reduction of atherogenic risk in patients with type 2 diabetes by curcuminoid extract: A randomized controlled trial.J. Nutr. Biochem.201425214415010.1016/j.jnutbio.2013.09.01324445038
    [Google Scholar]
  66. RahimiH.R. MohammadpourA.H. DastaniM. JaafariM.R. AbnousK. Ghayour MobarhanM. Kazemi OskueeR. The effect of nano-curcumin on HbA1c, fasting blood glucose, and lipid profile in diabetic subjects: A randomized clinical trial.Avicenna J. Phytomed.20166556757727761427
    [Google Scholar]
  67. ThotaR.N. AcharyaS.H. GargM.L. Curcumin and/or omega-3 polyunsaturated fatty acids supplementation reduces insulin resistance and blood lipids in individuals with high risk of type 2 diabetes: A randomised controlled trial.Lipids Health Dis.20191813110.1186/s12944‑019‑0967‑x30684965
    [Google Scholar]
  68. AdibianM. HodaeiH. NikpayamO. SohrabG. HekmatdoostA. HedayatiM. The effects of curcumin supplementation on high‐sensitivity C‐reactive protein, serum adiponectin, and lipid profile in patients with type 2 diabetes: A randomized, double‐blind, placebo‐controlled trial.Phytother. Res.20193351374138310.1002/ptr.632830864188
    [Google Scholar]
  69. FunamotoM. ShimizuK. SunagawaY. KatanasakaY. MiyazakiY. KakeyaH. YamakageH. Satoh-AsaharaN. WadaH. HasegawaK. MorimotoT. Effects of highly absorbable curcumin in patients with impaired glucose tolerance and non-insulin-dependent diabetes mellitus.J. Diabetes Res.201920191710.1155/2019/820823731871950
    [Google Scholar]
  70. MokhtariM. RazzaghiR. Momen-HeraviM. The effects of curcumin intake on wound healing and metabolic status in patients with diabetic foot ulcer: A randomized, double‐blind, placebo‐controlled trial.Phytother. Res.20213542099210710.1002/ptr.695733200488
    [Google Scholar]
  71. YangY.S. SuY.F. YangH.W. LeeY.H. ChouJ.I. UengK.C. Lipid-lowering effects of curcumin in patients with metabolic syndrome: A randomized, double-blind, placebo-controlled trial.Phytother. Res.201428121770177710.1002/ptr.519725131839
    [Google Scholar]
  72. AminF. IslamN. AnilaN. GilaniA.H. Clinical efficacy of the co-administration of Turmeric and Black seeds (Kalongi) in metabolic syndrome – A double blind randomized controlled trial – TAK-MetS trial.Complement. Ther. Med.201523216517410.1016/j.ctim.2015.01.00825847554
    [Google Scholar]
  73. UsharaniP. MateenA.A. NaiduM.U.R. RajuY.S.N. ChandraN. Effect of NCB-02, atorvastatin and placebo on endothelial function, oxidative stress and inflammatory markers in patients with type 2 diabetes mellitus: A randomized, parallel-group, placebo-controlled, 8-week study.Drugs R D.20089424325010.2165/00126839‑200809040‑0000418588355
    [Google Scholar]
  74. KhajehdehiP. PakfetratM. JavidniaK. AzadF. MalekmakanL. NasabM.H. DehghanzadehG. Oral supplementation of turmeric attenuates proteinuria, transforming growth factor-β and interleukin-8 levels in patients with overt type 2 diabetic nephropathy: A randomized, double-blind and placebo-controlled study.Scand. J. Urol. Nephrol.201145536537010.3109/00365599.2011.58562221627399
    [Google Scholar]
  75. Jiménez-OsorioA.S. García-NiñoW.R. González-ReyesS. Álvarez-MejíaA.E. Guerra-LeónS. Salazar-SegoviaJ. FalcónI. Montes de Oca-SolanoH. MaderoM. Pedraza-ChaverriJ. The effect of dietary supplementation with curcumin on redox status and nrf2 activation in patients with nondiabetic or diabetic proteinuric chronic kidney disease: A pilot study.J. Ren. Nutr.201626423724410.1053/j.jrn.2016.01.01326915483
    [Google Scholar]
  76. ShafabakhshR. AsemiZ. ReinerZ. SoleimaniA. AghadavodE. BahmaniF. The effects of nano-curcumin on metabolic status in patients with diabetes on hemodialysis, a randomized, double blind, placebo-controlled trial.Iran. J. Kidney Dis.202014429029932655024
    [Google Scholar]
  77. AsadiS. GholamiM.S. SiassiF. QorbaniM. KhamoshianK. SotoudehG. Nano curcumin supplementation reduced the severity of diabetic sensorimotor polyneuropathy in patients with type 2 diabetes mellitus: A randomized double-blind placebo- controlled clinical trial.Complement. Ther. Med.20194325326010.1016/j.ctim.2019.02.01430935539
    [Google Scholar]
  78. AsadiS. GholamiM.S. SiassiF. QorbaniM. SotoudehG. Beneficial effects of nano‐curcumin supplement on depression and anxiety in diabetic patients with peripheral neuropathy: A randomized, double‐blind, placebo‐controlled clinical trial.Phytother. Res.202034489690310.1002/ptr.657131788880
    [Google Scholar]
  79. ShafabakhshR. MobiniM. RayganF. AghadavodE. OstadmohammadiV. AmiraniE. MansourniaM.A. AsemiZ. Curcumin administration and the effects on psychological status and markers of inflammation and oxidative damage in patients with type 2 diabetes and coronary heart disease.Clin. Nutr. ESPEN202040778210.1016/j.clnesp.2020.09.02933183576
    [Google Scholar]
  80. DastaniM. RahimiH.R. AskariV.R. JaafariM.R. JarahiL. YadollahiA. RahimiV.B. Three months of combination therapy with nano‐curcumin reduces the inflammation and lipoprotein (a) in type 2 diabetic patients with mild to moderate coronary artery disease: Evidence of a randomized, double‐blinded, placebo‐controlled clinical trial.Biofactors202349110811810.1002/biof.187435674733
    [Google Scholar]
  81. ZengY.F. GuoQ.H. WeiX.Y. ChenS.Y. DengS. LiuJ.J. YinN. LiuY. ZengW.J. Cardioprotective effect of curcumin on myocardial ischemia/reperfusion injury: A meta-analysis of preclinical animal studies.Front. Pharmacol.202314118429210.3389/fphar.2023.118429237284318
    [Google Scholar]
  82. DytrychP. KejíkZ. HajduchJ. KaplánekR. VeseláK. KučnirováK. SkaličkováM. VenhauerováA. HoskovecD. MartásekP. JakubekM. Therapeutic potential and limitations of curcumin as antimetastatic agent.Biomed. Pharmacother.202316311475810.1016/j.biopha.2023.11475837141738
    [Google Scholar]
  83. FlintA.L. HansenD.W. BrownL.D. StewartL.E. OrtizE. PandaS.S. Modified curcumins as potential drug candidates for breast cancer: An overview.Molecules20222724889110.3390/molecules2724889136558022
    [Google Scholar]
  84. JamilS.N.H. AliA.H. FerozS.R. LamS.D. AgustarH.K. Mohd Abd RazakM.R. LatipJ. Curcumin and its derivatives as potential antimalarial and anti-inflammatory agents: A review on structure–activity relationship and mechanism of action.Pharmaceuticals202316460910.3390/ph1604060937111366
    [Google Scholar]
  85. PernaA. HayE. SellittoC. Del GenioE. De FalcoM. GuerraG. De LucaA. De BlasiisP. LucarielloA. Antiinflammatory activities of curcumin and spirulina: Focus on their role against COVID-19.J. Diet. Suppl.202320237238910.1080/19390211.2023.217335436729019
    [Google Scholar]
  86. CampagnaR. MateuszukŁ. Wojnar-LasonK. KaczaraP. TworzydłoA. KijA. BujokR. MlynarskiJ. WangY. SartiniD. EmanuelliM. ChlopickiS. Nicotinamide N-methyltransferase in endothelium protects against oxidant stress-induced endothelial injury.Biochim. Biophys. Acta Mol. Cell Res.202118681011908210.1016/j.bbamcr.2021.11908234153425
    [Google Scholar]
  87. ZhouH. BeeversC.S. HuangS. The targets of curcumin.Curr. Drug Targets201112333234710.2174/13894501179481535620955148
    [Google Scholar]
  88. SantonocitoD. SarpietroM.G. CarboneC. PanicoA. CampisiA. SicilianoE.A. SpositoG. CastelliF. PugliaC. Curcumin containing PEGylated solid lipid nanoparticles for systemic administration: A preliminary study.Molecules20202513299110.3390/molecules2513299132629951
    [Google Scholar]
  89. HuangD. OuB. Hampsch-WoodillM. FlanaganJ.A. DeemerE.K. Development and validation of oxygen radical absorbance capacity assay for lipophilic antioxidants using randomly methylated beta-cyclodextrin as the solubility enhancer.J. Agric. Food Chem.20025071815182110.1021/jf011373211902917
    [Google Scholar]
  90. HenriksenE.J. Diamond-StanicM.K. MarchionneE.M. Oxidative stress and the etiology of insulin resistance and type 2 diabetes.Free Radic. Biol. Med.201151599399910.1016/j.freeradbiomed.2010.12.00521163347
    [Google Scholar]
  91. EvansJ.L. GoldfineI.D. MadduxB.A. GrodskyG.M. Oxidative stress and stress-activated signaling pathways: A unifying hypothesis of type 2 diabetes.Endocr. Rev.200223559962210.1210/er.2001‑003912372842
    [Google Scholar]
  92. EvansJ.L. GoldfineI.D. MadduxB.A. GrodskyG.M. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction?Diabetes20035211810.2337/diabetes.52.1.112502486
    [Google Scholar]
  93. PaolissoG. D’AmoreA. VolpeC. BalbiV. SaccomannoF. GalzeranoD. GiuglianoD. VarricchioM. D’OnofrioF. Evidence for a relationship between oxidative stress and insulin action in non-insulin-dependent (type II) diabetic patients.Metabolism199443111426142910.1016/0026‑0495(94)90039‑67968598
    [Google Scholar]
  94. BlendeaM.C. JacobsD. StumpC.S. McFarlaneS.I. OgrinC. BahtyiarG. StasS. KumarP. ShaQ. FerrarioC.M. SowersJ.R. Abrogation of oxidative stress improves insulin sensitivity in the Ren-2 rat model of tissue angiotensin II overexpression.Am. J. Physiol. Endocrinol. Metab.20052882E353E35910.1152/ajpendo.00402.200415494608
    [Google Scholar]
  95. BrownleeM. Biochemistry and molecular cell biology of diabetic complications.Nature2001414686581382010.1038/414813a11742414
    [Google Scholar]
  96. JohansenJ.S. HarrisA.K. RychlyD.J. ErgulA. Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical practice.Cardiovasc. Diabetol.200541510.1186/1475‑2840‑4‑515862133
    [Google Scholar]
  97. Burgos-MorónE. Abad-JiménezZ. Martínez de MarañónA. IannantuoniF. Escribano-LópezI. López-DomènechS. SalomC. JoverA. MoraV. RoldanI. SoláE. RochaM. VíctorV.M. Relationship between oxidative stress, ER stress, and inflammation in type 2 diabetes: The battle continues.J. Clin. Med.201989138510.3390/jcm809138531487953
    [Google Scholar]
  98. Nogueira-MachadoJ.A. ChavesM.M. From hyperglycemia to AGE-RAGE interaction on the cell surface: A dangerous metabolic route for diabetic patients.Expert Opin. Ther. Targets200812787188210.1517/14728222.12.7.87118554155
    [Google Scholar]
  99. KanetoH. KatakamiN. MatsuhisaM. MatsuokaT. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis.Mediators Inflamm.2010201011110.1155/2010/45389220182627
    [Google Scholar]
  100. EdeasM. AttafD. MailfertA.S. NasuM. JoubetR. Maillard reaction, mitochondria and oxidative stress: Potential role of antioxidants.Pathol. Biol.201058322022510.1016/j.patbio.2009.09.01120031340
    [Google Scholar]
  101. ChetyrkinS. MathisM. PedchenkoV. SanchezO.A. McDonaldW.H. HacheyD.L. MaduH. StecD. HudsonB. VoziyanP. Glucose autoxidation induces functional damage to proteins via modification of critical arginine residues.Biochemistry201150276102611210.1021/bi200757d21661747
    [Google Scholar]
  102. ElostaA. GhousT. AhmedN. Natural products as anti-glycation agents: Possible therapeutic potential for diabetic complications.Curr. Diabetes Rev.2012829210810.2174/15733991279942452822268395
    [Google Scholar]
  103. GiaccoF. BrownleeM. Oxidative stress and diabetic complications.Circ. Res.201010791058107010.1161/CIRCRESAHA.110.22354521030723
    [Google Scholar]
  104. CaoJ. HanZ. TianL. ChenK. FanY. YeB. HuangW. WangC. HuangZ. Curcumin inhibits EMMPRIN and MMP-9 expression through AMPK-MAPK and PKC signaling in PMA induced macrophages.J. Transl. Med.201412126610.1186/s12967‑014‑0266‑225241044
    [Google Scholar]
  105. ChanW.H. WuH.J. HsuuwY.D. Curcumin inhibits ROS formation and apoptosis in methylglyoxal-treated human hepatoma G2 cells.Ann. N. Y. Acad. Sci.20051042137237810.1196/annals.1338.05715965083
    [Google Scholar]
  106. HaoH. YuanT. LiZ. ZhangC. LiuJ. LiangG. FengL. PanY. Curcumin analogue C66 ameliorates mouse cardiac dysfunction and structural disorders after acute myocardial infarction via suppressing JNK activation.Eur. J. Pharmacol.202394617562910.1016/j.ejphar.2023.17562936868294
    [Google Scholar]
  107. ZhuH. ZhangL. JiaH. XuL. CaoY. ZhaiM. LiK. XiaL. JiangL. LiX. ZhouY. LiuJ. YuS. DuanW. Tetrahydrocurcumin improves lipopolysaccharide-induced myocardial dysfunction by inhibiting oxidative stress and inflammation via JNK/ERK signaling pathway regulation.Phytomedicine202210415428310.1016/j.phymed.2022.15428335779282
    [Google Scholar]
  108. RajabiS. DarroudiM. NaseriK. FarkhondehT. SamarghandianS. Protective effects of curcumin and its analogues via the Nrf2 pathway in metabolic syndrome.Curr. Med. Chem.202337218198
    [Google Scholar]
  109. WeiZ. pinfangK. jingZ. zhuoyaY. ShaohuanQ. ChaoS. Curcumin improves diabetic cardiomyopathy by inhibiting pyroptosis through AKT/Nrf2/ARE pathway.Mediators Inflamm.2023202312010.1155/2023/390604337101595
    [Google Scholar]
  110. WuX. ZhouX. LaiS. LiuJ. QiJ. Curcumin activates Nrf2/ HO‐1 signaling to relieve diabetic cardiomyopathy injury by reducing ROS in vitro and in vivo.FASEB J.2022369e2250510.1096/fj.202200543RRR35971779
    [Google Scholar]
  111. TossettaG. FantoneS. MarzioniD. MazzucchelliR. Role of natural and synthetic compounds in modulating NRF2/KEAP1 signaling pathway in prostate cancer.Cancers20231511303710.3390/cancers1511303737296999
    [Google Scholar]
  112. Ghafouri-FardS. ShooreiH. BahroudiZ. HussenB.M. TalebiS.F. TaheriM. AyatollahiS.A. Nrf2-related therapeutic effects of curcumin in different disorders.Biomolecules20221218210.3390/biom1201008235053230
    [Google Scholar]
  113. NaghdiA. GoodarziM.T. KarimiJ. HashemniaM. KhodadadiI. Effects of curcumin and metformin on oxidative stress and apoptosis in heart tissue of type 1 diabetic rats.J. Cardiovasc. Thorac. Res.202214212813710.34172/jcvtr.2022.2335935389
    [Google Scholar]
  114. TossettaG. FantoneS. PianiF. CrescimannoC. CiavattiniA. GiannubiloS.R. MarzioniD. Modulation of NRF2/KEAP1 signaling in preeclampsia.Cells20231211154510.3390/cells1211154537296665
    [Google Scholar]
  115. DuanJ. YangM. LiuY. XiaoS. ZhangX. Curcumin protects islet beta cells from streptozotocin‑induced type 2 diabetes mellitus injury via its antioxidative effects.Endokrynol. Pol.202273694294610.5603/EP.a2022.007035971926
    [Google Scholar]
  116. MarzioniD. MazzucchelliR. FantoneS. TossettaG. NRF2 modulation in TRAMP mice: An in vivo model of prostate cancer.Mol. Biol. Rep.202236335520
    [Google Scholar]
  117. HeY. YueY. ZhengX. ZhangK. ChenS. DuZ. Curcumin, inflammation, and chronic diseases: How are they linked?Molecules20152059183921310.3390/molecules2005918326007179
    [Google Scholar]
  118. MuthennaP. SuryanarayanaP. GundaS.K. PetrashJ.M. ReddyG.B. Inhibition of aldose reductase by dietary antioxidant curcumin: Mechanism of inhibition, specificity and significance.FEBS Lett.2009583223637364210.1016/j.febslet.2009.10.04219850041
    [Google Scholar]
  119. HaoF. KangJ. CaoY. FanS. YangH. AnY. PanY. TieL. LiX. Curcumin attenuates palmitate-induced apoptosis in MIN6 pancreatic β-cells through PI3K/Akt/FoxO1 and mitochondrial survival pathways.Apoptosis201520111420143210.1007/s10495‑015‑1150‑026330141
    [Google Scholar]
  120. PereiraS.S. Alvarez-LeiteJ.I. Low-grade inflammation, obesity, and diabetes.Curr. Obes. Rep.20143442243110.1007/s13679‑014‑0124‑926626919
    [Google Scholar]
  121. CecatiM. SartiniD. CampagnaR. BiaginiA. CiavattiniA. EmanuelliM. GiannubiloS.R. Molecular analysis of endometrial inflammation in preterm birth.Cell. Mol. Biol.2017633515710.14715/cmb/2017.63.3.1028466813
    [Google Scholar]
  122. VigniniA. CecatiM. NanettiL. RaffaelliF. CiavattiniA. GiannubiloS.R. MazzantiL. SaccucciF. EmanuelliM. TranquilliA.L. Placental expression of endothelial and inducible nitric oxide synthase and NO metabolism in gestational hypertension: A case–control study.J. Matern. Fetal Neonatal Med.201629457658110.3109/14767058.2015.101161525690025
    [Google Scholar]
  123. PeruginiJ. Di MercurioE. TossettaG. SeveriI. MonacoF. ReguzzoniM. TomasettiM. DaniC. CintiS. GiordanoA. Biological effects of ciliary neurotrophic factor on hMADS adipocytes.Front. Endocrinol.20191076810.3389/fendo.2019.0076831781039
    [Google Scholar]
  124. DriE. LampasE. LazarosG. LazarouE. TheofilisP. TsioufisC. TousoulisD. Inflammatory mediators of endothelial dysfunction.Life2023136142010.3390/life1306142037374202
    [Google Scholar]
  125. CampagnaR. VigniniA. NAD+ homeostasis and NAD+-consuming enzymes: Implications for vascular health.Antioxidants202312237610.3390/antiox1202037636829935
    [Google Scholar]
  126. ImmanuelJ. YunS. Vascular inflammatory diseases and endothelial phenotypes.Cells20231212164010.3390/cells1212164037371110
    [Google Scholar]
  127. ZapotocznyB. BraetF. KusE. Ginda-MäkeläK. KlejevskajaB. CampagnaR. ChlopickiS. SzymonskiM. Actin‐spectrin scaffold supports open fenestrae in liver sinusoidal endothelial cells.Traffic2019201293294210.1111/tra.1270031569283
    [Google Scholar]
  128. JainS.K. RainsJ. CroadJ. LarsonB. JonesK. Curcumin supplementation lowers TNF-alpha, IL-6, IL-8, and MCP-1 secretion in high glucose-treated cultured monocytes and blood levels of TNF-alpha, IL-6, MCP-1, glucose, and glycosylated hemoglobin in diabetic rats.Antioxid. Redox Signal.200911224124910.1089/ars.2008.214018976114
    [Google Scholar]
  129. YuW. WuJ. CaiF. XiangJ. ZhaW. FanD. GuoS. MingZ. LiuC. Curcumin alleviates diabetic cardiomyopathy in experimental diabetic rats.PLoS One2012712e5201310.1371/journal.pone.005201323251674
    [Google Scholar]
  130. WangP. SuC. FengH. ChenX. DongY. RaoY. RenY. YangJ. ShiJ. TianJ. JiangS. Curcumin regulates insulin pathways and glucose metabolism in the brains of APPswe/PS1dE9 mice.Int. J. Immunopathol. Pharmacol.2017301254310.1177/039463201668802528124574
    [Google Scholar]
  131. ShaoS. YeX. SuW. WangY. Curcumin alleviates Alzheimer’s disease by inhibiting inflammatory response, oxidative stress and activating the AMPK pathway.J. Chem. Neuroanat.202313410236310.1016/j.jchemneu.2023.10236337989445
    [Google Scholar]
  132. PuY. ZhangH. WangP. ZhaoY. LiQ. WeiX. CuiY. SunJ. ShangQ. LiuD. ZhuZ. Dietary curcumin ameliorates aging-related cerebrovascular dysfunction through the AMPK/uncoupling protein 2 pathway.Cell. Physiol. Biochem.20133251167117710.1159/00035451624335167
    [Google Scholar]
  133. WangL. ZhangB. HuangF. LiuB. XieY. Curcumin inhibits lipolysis via suppression of ER stress in adipose tissue and prevents hepatic insulin resistance.J. Lipid Res.20165771243125510.1194/jlr.M06739727220352
    [Google Scholar]
  134. AttiqA. JalilJ. HusainK. AhmadW. Raging the war against inflammation with natural products.Front. Pharmacol.2018997610.3389/fphar.2018.0097630245627
    [Google Scholar]
  135. GuoS. MengX. YangX. LiuX. Ou-YangC. LiuC. Curcumin administration suppresses collagen synthesis in the hearts of rats with experimental diabetes.Acta Pharmacol. Sin.201839219520410.1038/aps.2017.9228905939
    [Google Scholar]
  136. ReuterS. GuptaS.C. ParkB. GoelA. AggarwalB.B. Epigenetic changes induced by curcumin and other natural compounds.Genes Nutr.2011629310810.1007/s12263‑011‑0222‑121516481
    [Google Scholar]
  137. FanS. XuY. LiX. TieL. PanY. LiX. Opposite angiogenic outcome of curcumin against ischemia and Lewis lung cancer models: In silico, in vitro and in vivo studies.Biochim. Biophys. Acta Mol. Basis Dis.2014184291742175410.1016/j.bbadis.2014.06.01924970744
    [Google Scholar]
  138. WangY. ZhouS. SunW. McClungK. PanY. LiangG. TanY. ZhaoY. LiuQ. SunJ. CaiL. Inhibition of JNK by novel curcumin analog C66 prevents diabetic cardiomyopathy with a preservation of cardiac metallothionein expression.Am. J. Physiol. Endocrinol. Metab.201430611E1239E124710.1152/ajpendo.00629.201324714399
    [Google Scholar]
  139. NaL.X. ZhangY.L. LiY. LiuL.Y. LiR. KongT. SunC.H. Curcumin improves insulin resistance in skeletal muscle of rats.Nutr. Metab. Cardiovasc. Dis.201121752653310.1016/j.numecd.2009.11.00920227862
    [Google Scholar]
  140. Szczesny-MalysiakE. StojakM. CampagnaR. GrosickiM. JamrozikM. KaczaraP. ChlopickiS. Bardoxolone methyl displays detrimental effects on endothelial bioenergetics, suppresses endothelial ET-1 release, and increases endothelial permeability in human microvascular endothelium.Oxid. Med. Cell. Longev.2020202011610.1155/2020/467825233123312
    [Google Scholar]
  141. ReddyS.T. DevarajanA. BourquardN. ShihD. FogelmanA.M. Is it just paraoxonase 1 or are other members of the paraoxonase gene family implicated in atherosclerosis?Curr. Opin. Lipidol.200819440540810.1097/MOL.0b013e328304b64e18607188
    [Google Scholar]
  142. SartiniD. CampagnaR. LucariniG. PompeiV. SalvoliniE. Mattioli-BelmonteM. MolinelliE. BrisigottiV. CampanatiA. BacchettiT. FerrettiG. OffidaniA. EmanuelliM. Differential immunohistochemical expression of paraoxonase-2 in actinic keratosis and squamous cell carcinoma.Hum. Cell20213461929193110.1007/s13577‑021‑00581‑534302630
    [Google Scholar]
  143. MahroozA. Khosravi-AsramiO.F. AlizadehA. MohmmadiN. BagheriA. KashiZ. BaharA. NosratiM. MacknessM. Can HDL cholesterol be replaced by paraoxonase 1 activity in the prediction of severe coronary artery disease in patients with type 2 diabetes?Nutr. Metab. Cardiovasc. Dis.20233381599160710.1016/j.numecd.2023.05.02037344284
    [Google Scholar]
  144. CampagnaR. BelloniA. PozziV. SalvucciA. NotarstefanoV. TogniL. MascittiM. SartiniD. GiorginiE. SalvoliniE. SantarelliA. Lo MuzioL. EmanuelliM. Role played by paraoxonase-2 enzyme in cell viability, proliferation and sensitivity to chemotherapy of oral squamous cell carcinoma cell lines.Int. J. Mol. Sci.202224133810.3390/ijms2401033836613780
    [Google Scholar]
  145. DurringtonP.N. BashirB. SoranH. Paraoxonase 1 and atherosclerosis.Front. Cardiovasc. Med.202310106596710.3389/fcvm.2023.106596736873390
    [Google Scholar]
  146. PriyankaK. SinghS. GillK. Paraoxonase 3: Structure and its role in pathophysiology of coronary artery disease.Biomolecules201991281710.3390/biom912081731816846
    [Google Scholar]
  147. CampagnaR. PozziV. GiorginiS. MorichettiD. GoteriG. SartiniD. SerritelliE.N. EmanuelliM. Paraoxonase-2 is upregulated in triple negative breast cancer and contributes to tumor progression and chemoresistance.Hum. Cell20233631108111910.1007/s13577‑023‑00892‑936897549
    [Google Scholar]
  148. ZhangL. XuT. WangS. YuL. LiuD. ZhanR. YuS.Y. Curcumin produces antidepressant effects via activating MAPK/ERK-dependent brain-derived neurotrophic factor expression in the amygdala of mice.Behav. Brain Res.20122351677210.1016/j.bbr.2012.07.01922820234
    [Google Scholar]
  149. AbdelsamiaE.M. KhaleelS.A. BalahA. Abdel BakyN.A. Curcumin augments the cardioprotective effect of metformin in an experimental model of type I diabetes mellitus; Impact of Nrf2/HO-1 and JAK/STAT pathways.Biomed. Pharmacother.20191092136214410.1016/j.biopha.2018.11.06430551471
    [Google Scholar]
  150. KatsoriA.M. PalaganiA. BougarneN. Hadjipavlou-LitinaD. HaegemanG. Vanden BergheW. Inhibition of the NF-κB signaling pathway by a novel heterocyclic curcumin analogue.Molecules201520186387810.3390/molecules2001086325580684
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998313402240726080637
Loading
/content/journals/cdr/10.2174/0115733998313402240726080637
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test