Skip to content
2000
image of The Multifaceted Role of the Polyphenol Curcumin: A Focus on Type 2 Diabetes Mellitus

Abstract

Type 2 Diabetes Mellitus (T2DM) is a chronic metabolic disorder characterized by chronic hyperglycemia, which often co-exists with other metabolic impairments. This condition can damage various tissues and organs, resulting in the development of severe complications, both microvascular, such as retinopathy, nephropathy, and neuropathy, and macrovascular, responsible for an increased risk of cardiovascular diseases. Curcumin is the main bioactive molecule found in the rhizomes of turmeric. Many studies have reported curcumin to exhibit antioxidant, anti-inflammatory, anti-infectious, and anti-cancer properties; thus, there is an increasing interest in exploiting these properties in order to prevent the rise or the progression of T2DM, as well as its possible associated conditions. In this review, we have presented the current state-of-art regarding the clinical trials that have involved curcumin administration and analyzed the possible mechanisms by which curcumin might exert the beneficial effects observed in literature.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998313402240726080637
2024-11-29
2025-01-22
Loading full text...

Full text loading...

References

  1. Knowler W.C. Fowler S.E. Hamman R.F. Christophi C.A. Hoffman H.J. Brenneman A.T. Brown-Friday J.O. Goldberg R. Venditti E. Nathan D.M. Diabetes Prevention Program Research Group 10-year follow-up of diabetes incidence and weight loss in the diabetes prevention program outcomes study. Lancet 2009 374 9702 1677 1686 10.1016/S0140‑6736(09)61457‑4 19878986
    [Google Scholar]
  2. Wong N.D. Sattar N. Cardiovascular risk in diabetes mellitus: Epidemiology, assessment and prevention. Nat. Rev. Cardiol. 2023 20 10 685 695 10.1038/s41569‑023‑00877‑z 37193856
    [Google Scholar]
  3. Tolman K.G. Fonseca V. Dalpiaz A. Tan M.H. Spectrum of liver disease in type 2 diabetes and management of patients with diabetes and liver disease. Diabetes Care 2007 30 3 734 743 10.2337/dc06‑1539 17327353
    [Google Scholar]
  4. Sun H. Saeedi P. Karuranga S. Pinkepank M. Ogurtsova K. Duncan B.B. Stein C. Basit A. Chan J.C.N. Mbanya J.C. Pavkov M.E. Ramachandaran A. Wild S.H. James S. Herman W.H. Zhang P. Bommer C. Kuo S. Boyko E.J. Magliano D.J. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022 183 109119 10.1016/j.diabres.2021.109119 34879977
    [Google Scholar]
  5. Davies M.J. D’Alessio D.A. Fradkin J. Kernan W.N. Mathieu C. Mingrone G. Rossing P. Tsapas A. Wexler D.J. Buse J.B. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2018 61 12 2461 2498 10.1007/s00125‑018‑4729‑5 30288571
    [Google Scholar]
  6. Ley S.H. Hamdy O. Mohan V. Hu F.B. Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet 2014 383 9933 1999 2007 10.1016/S0140‑6736(14)60613‑9 24910231
    [Google Scholar]
  7. Lyssenko V. Vaag A. Genetics of diabetes-associated microvascular complications. Diabetologia 2023 66 9 1601 1613 10.1007/s00125‑023‑05964‑x 37452207
    [Google Scholar]
  8. Yuan S. Li X. Liu Q. Wang Z. Jiang X. Burgess S. Larsson S.C. Physical activity, sedentary behavior, and type 2 diabetes: Mendelian randomization analysis. J. Endocr. Soc. 2023 7 8 bvad090 10.1210/jendso/bvad090 37415875
    [Google Scholar]
  9. Ruze R. Liu T. Zou X. Song J. Chen Y. Xu R. Yin X. Xu Q. Obesity and type 2 diabetes mellitus: Connections in epidemiology, pathogenesis, and treatments. Front. Endocrinol 2023 14 1161521 10.3389/fendo.2023.1161521 37152942
    [Google Scholar]
  10. Kim J. Kwon H.S. Not Control but Conquest: Strategies for the remission of type 2 diabetes mellitus. Diabetes Metab. J. 2022 46 2 165 180 10.4093/dmj.2021.0377 35385632
    [Google Scholar]
  11. Abdullah A. Peeters A. de Courten M. Stoelwinder J. The magnitude of association between overweight and obesity and the risk of diabetes: A meta-analysis of prospective cohort studies. Diabetes Res. Clin. Pract. 2010 89 3 309 319 10.1016/j.diabres.2010.04.012 20493574
    [Google Scholar]
  12. Hu F.B. Manson J.E. Stampfer M.J. Colditz G. Liu S. Solomon C.G. Willett W.C. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N. Engl. J. Med. 2001 345 11 790 797 10.1056/NEJMoa010492 11556298
    [Google Scholar]
  13. Gregg E.W. Chen H. Wagenknecht L.E. Clark J.M. Delahanty L.M. Bantle J. Pownall H.J. Johnson K.C. Safford M.M. Kitabchi A.E. Pi-Sunyer F.X. Wing R.R. Bertoni A.G. Look AHEAD Research Group Look AHEAD Research Group Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA 2012 308 23 2489 2496 10.1001/jama.2012.67929 23288372
    [Google Scholar]
  14. Goyal S. Rani J. Bhat M.A. Vanita V. Genetics of diabetes. World J. Diabetes 2023 14 6 656 679 10.4239/wjd.v14.i6.656 37383588
    [Google Scholar]
  15. Loh M. Zhou L. Ng H.K. Chambers J.C. Epigenetic disturbances in obesity and diabetes: Epidemiological and functional insights. Mol. Metab. 2019 27 Suppl. S33 S41 10.1016/j.molmet.2019.06.011 31500829
    [Google Scholar]
  16. Tossetta G. Fantone S. Gesuita R. Di Renzo G.C. Meyyazhagan A. Tersigni C. Scambia G. Di Simone N. Marzioni D. HtrA1 in gestational diabetes mellitus: A possible biomarker? Diagnostics 2022 12 11 2705 10.3390/diagnostics12112705 36359548
    [Google Scholar]
  17. Schulz L.O. Bennett P.H. Ravussin E. Kidd J.R. Kidd K.K. Esparza J. Valencia M.E. Effects of traditional and western environments on prevalence of type 2 diabetes in Pima Indians in Mexico and the U.S. Diabetes Care 2006 29 8 1866 1871 10.2337/dc06‑0138 16873794
    [Google Scholar]
  18. Donaghue K.C. Chiarelli F. Trotta D. Allgrove J. Dahl-Jorgensen K. Microvascular and macrovascular complications associated with diabetes in children and adolescents. Pediatr. Diabetes 2009 10 Suppl. 12 195 203 10.1111/j.1399‑5448.2009.00576.x 19754630
    [Google Scholar]
  19. Brown W.V. Microvascular complications of diabetes mellitus: Renal protection accompanies cardiovascular protection. Am. J. Cardiol. 2008 102 12 10L 13L 10.1016/j.amjcard.2008.09.068 19084084
    [Google Scholar]
  20. Tossetta G. Piani F. Borghi C. Marzioni D. Role of CD93 in health and disease. Cells 2023 12 13 1778 10.3390/cells12131778 37443812
    [Google Scholar]
  21. Wang D. Li J. Luo G. Zhou J. Wang N. Wang S. Zhao R. Cao X. Ma Y. Liu G. Hao L. Nox4 as a novel therapeutic target for diabetic vascular complications. Redox Biol. 2023 64 102781 10.1016/j.redox.2023.102781 37321060
    [Google Scholar]
  22. Piani F. Tossetta G. Cara-Fuentes G. Agnoletti D. Marzioni D. Borghi C. Diagnostic and prognostic role of CD93 in cardiovascular disease: A systematic review. Biomolecules 2023 13 6 910 10.3390/biom13060910 37371490
    [Google Scholar]
  23. Papatheodorou K. Banach M. Bekiari E. Rizzo M. Edmonds M. Complications of diabetes 2017. J. Diabetes Res. 2018 2018 1 4 10.1155/2018/3086167 29713648
    [Google Scholar]
  24. Zhu P. Lao G. Li H. Tan R. Gu J. Ran J. Replacing of sedentary behavior with physical activity and the risk of mortality in people with prediabetes and diabetes: A prospective cohort study. Int. J. Behav. Nutr. Phys. Act. 2023 20 1 81 10.1186/s12966‑023‑01488‑0 37415151
    [Google Scholar]
  25. Oikonomou E. Xenou M. Zakynthinos G.E. Tsaplaris P. Lampsas S. Bletsa E. Gialamas I. Kalogeras K. Goliopoulou A. Gounaridi M.I. Pesiridis T. Tsatsaragkou A. Vavouranakis M. Siasos G. Tousoulis D. Novel approaches to the management of diabetes mellitus in patients with coronary artery disease. Curr. Pharm. Des. 2023 29 23 1844 1862 10.2174/1381612829666230703161058 37403390
    [Google Scholar]
  26. Martín-Timón I. Sevillano-Collantes C. Segura-Galindo A. Del Cañizo-Gómez F.J. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength? World J. Diabetes 2014 5 4 444 470 10.4239/wjd.v5.i4.444 25126392
    [Google Scholar]
  27. Mazzanti L. Cecati M. Vignini A. D'Eusanio S. Emanuelli M. Giannubilo S.R. Saccucci F. Tranquilli A.L. Placental expression of endothelial and inducible nitric oxide synthase and nitric oxide levels in patients with HELLP syndrome. Am J Obstet Gynecol 2011 205 236 e231-237 10.1016/j.ajog.2011.04.022
    [Google Scholar]
  28. Jacobs E. Hoyer A. Brinks R. Kuss O. Rathmann W. Burden of mortality attributable to diagnosed diabetes: A nationwide analysis based on claims data from 65 million people in Germany. Diabetes Care 2017 40 12 1703 1709 10.2337/dc17‑0954 28993421
    [Google Scholar]
  29. Khor X.Y. Pappachan J.M. Jeeyavudeen M.S. Individualized diabetes care: Lessons from the real-world experience. World J. Clin. Cases 2023 11 13 2890 2902 10.12998/wjcc.v11.i13.2890 37215423
    [Google Scholar]
  30. Charneca S. Hernando A. Costa-Reis P. Guerreiro C.S. Beyond seasoning—the role of herbs and spices in rheumatic diseases. Nutrients 2023 15 12 2812 10.3390/nu15122812 37375716
    [Google Scholar]
  31. García-Aguilar A. Guillén C. Targeting pancreatic beta cell death in type 2 diabetes by polyphenols. Front. Endocrinol. 2022 13 1052317 10.3389/fendo.2022.1052317 36465657
    [Google Scholar]
  32. Bacchetti T. Campagna R. Sartini D. Cecati M. Morresi C. Bellachioma L. Martinelli E. Rocchetti G. Lucini L. Ferretti G. Emanuelli M. C. spinosa L. subsp. rupestris phytochemical profile and effect on oxidative stress in normal and cancer cells. Molecules 2022 27 19 6488 10.3390/molecules27196488 36235028
    [Google Scholar]
  33. Pereira L. Cotas J. Therapeutic potential of polyphenols and other micronutrients of marine origin. Mar. Drugs 2023 21 6 323 10.3390/md21060323 37367648
    [Google Scholar]
  34. Kamal D.A.M. Salamt N. Yusuf A.N.M. Kashim M.I.A.M. Mokhtar M.H. Potential health benefits of curcumin on female reproductive disorders: A review. Nutrients 2021 13 9 3126 10.3390/nu13093126 34579002
    [Google Scholar]
  35. Ranjbar R. Bagheri H. Ghasemi F. Guest P.C. Sahebkar A. Effects of curcumin and its analogues on infectious diseases. Adv. Exp. Med. Biol. 2021 1291 75 101 10.1007/978‑3‑030‑56153‑6_5 34331685
    [Google Scholar]
  36. Akbari S. Kariznavi E. Jannati M. Elyasi S. Tayarani-Najaran Z. Curcumin as a preventive or therapeutic measure for chemotherapy and radiotherapy induced adverse reaction: A comprehensive review. Food Chem. Toxicol. 2020 145 111699 10.1016/j.fct.2020.111699 32858134
    [Google Scholar]
  37. Tossetta G. Fantone S. Giannubilo S.R. Marzioni D. The multifaced actions of curcumin in pregnancy outcome. Antioxidants 2021 10 1 126 10.3390/antiox10010126 33477354
    [Google Scholar]
  38. Zielińska A. Alves H. Marques V. Durazzo A. Lucarini M. Alves T.F. Morsink M. Willemen N. Eder P. Chaud M.V. Severino P. Santini A. Souto E.B. Properties, extraction methods, and delivery systems for curcumin as a natural source of beneficial health effects. Medicina 2020 56 7 336 10.3390/medicina56070336 32635279
    [Google Scholar]
  39. Darvesh A.S. Carroll R.T. Bishayee A. Novotny N.A. Geldenhuys W.J. Van der Schyf C.J. Curcumin and neurodegenerative diseases: A perspective. Expert Opin. Investig. Drugs 2012 21 8 1123 1140 10.1517/13543784.2012.693479 22668065
    [Google Scholar]
  40. Tossetta G. Fantone S. Busilacchi E.M. Di Simone N. Giannubilo S.R. Scambia G. Giordano A. Marzioni D. Modulation of matrix metalloproteases by ciliary neurotrophic factor in human placental development. Cell Tissue Res. 2022 390 1 113 129 10.1007/s00441‑022‑03658‑1 35794391
    [Google Scholar]
  41. Gupta S.C. Patchva S. Koh W. Aggarwal B.B. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin. Exp. Pharmacol. Physiol. 2012 39 3 283 299 10.1111/j.1440‑1681.2011.05648.x 22118895
    [Google Scholar]
  42. Mirzaei H. Shakeri A. Rashidi B. Jalili A. Banikazemi Z. Sahebkar A. Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies. Biomed. Pharmacother. 2017 85 102 112 10.1016/j.biopha.2016.11.098 27930973
    [Google Scholar]
  43. Amalraj A. Pius A. Gopi S. Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – A review. J. Tradit. Complement. Med. 2017 7 2 205 233 10.1016/j.jtcme.2016.05.005 28417091
    [Google Scholar]
  44. Soleimani V. Sahebkar A. Hosseinzadeh H. Turmeric ( Curcuma longa ) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phytother. Res. 2018 32 6 985 995 10.1002/ptr.6054 29480523
    [Google Scholar]
  45. Anand P. Kunnumakkara A.B. Newman R.A. Aggarwal B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm. 2007 4 6 807 818 10.1021/mp700113r 17999464
    [Google Scholar]
  46. Hsu K.Y. Ho C.T. Pan M.H. The therapeutic potential of curcumin and its related substances in turmeric: From raw material selection to application strategies. Yao Wu Shi Pin Fen Xi 2023 31 2 194 211 10.38212/2224‑6614.3454 37335161
    [Google Scholar]
  47. Cheng A.L. Hsu C.H. Lin J.K. Hsu M.M. Ho Y.F. Shen T.S. Ko J.Y. Lin J.T. Lin B.R. Ming-Shiang W. Yu H.S. Jee S.H. Chen G.S. Chen T.M. Chen C.A. Lai M.K. Pu Y.S. Pan M.H. Wang Y.J. Tsai C.C. Hsieh C.Y. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001 21 4B 2895 2900 11712783
    [Google Scholar]
  48. Gbolahan O.B. O’Neil B.H. McRee A.J. Sanoff H.K. Fallon J.K. Smith P.C. Ivanova A. Moore D.T. Dumond J. Asher G.N. A phase I evaluation of the effect of curcumin on dose‐limiting toxicity and pharmacokinetics of irinotecan in participants with solid tumors. Clin. Transl. Sci. 2022 15 5 1304 1315 10.1111/cts.13250 35157783
    [Google Scholar]
  49. Chandran B. Goel A. A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis. Phytother. Res. 2012 26 11 1719 1725 10.1002/ptr.4639 22407780
    [Google Scholar]
  50. Hewlings S. Kalman D. Curcumin: A review of its effects on human health. Foods 2017 6 10 92 10.3390/foods6100092 29065496
    [Google Scholar]
  51. Lao C.D. Ruffin M.T. IV Normolle D. Heath D.D. Murray S.I. Bailey J.M. Boggs M.E. Crowell J. Rock C.L. Brenner D.E. Dose escalation of a curcuminoid formulation. BMC Complement. Altern. Med. 2006 6 1 10 10.1186/1472‑6882‑6‑10 16545122
    [Google Scholar]
  52. Basnet P. Skalko-Basnet N. Curcumin: An anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules 2011 16 6 4567 4598 10.3390/molecules16064567 21642934
    [Google Scholar]
  53. Sharma R.A. Euden S.A. Platton S.L. Cooke D.N. Shafayat A. Hewitt H.R. Marczylo T.H. Morgan B. Hemingway D. Plummer S.M. Pirmohamed M. Gescher A.J. Steward W.P. Phase I clinical trial of oral curcumin: Biomarkers of systemic activity and compliance. Clin. Cancer Res. 2004 10 20 6847 6854 10.1158/1078‑0432.CCR‑04‑0744 15501961
    [Google Scholar]
  54. Tønnesen H.H. Másson M. Loftsson T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int. J. Pharm. 2002 244 1-2 127 135 10.1016/S0378‑5173(02)00323‑X 12204572
    [Google Scholar]
  55. Burgos-Morón E. Calderón-Montaño J.M. Salvador J. Robles A. López-Lázaro M. The dark side of curcumin. Int. J. Cancer 2010 126 7 1771 1775 10.1002/ijc.24967 19830693
    [Google Scholar]
  56. Prasad S. Tyagi A.K. Aggarwal B.B. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: The golden pigment from golden spice. Cancer Res. Treat. 2014 46 1 2 18 10.4143/crt.2014.46.1.2 24520218
    [Google Scholar]
  57. Anand P. Thomas S.G. Kunnumakkara A.B. Sundaram C. Harikumar K.B. Sung B. Tharakan S.T. Misra K. Priyadarsini I.K. Rajasekharan K.N. Aggarwal B.B. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem. Pharmacol. 2008 76 11 1590 1611 10.1016/j.bcp.2008.08.008 18775680
    [Google Scholar]
  58. Patra S. Dey J. Chakraborty A. Physicochemical characterization, stability, and in vitro evaluation of curcumin-loaded solid lipid nanoparticles prepared using biocompatible synthetic lipids. ACS Appl. Bio Mater. 2023 6 7 2785 2794 10.1021/acsabm.3c00252 37403739
    [Google Scholar]
  59. Appendino G. Belcaro G. Cornelli U. Luzzi R. Togni S. Dugall M. Cesarone M.R. Feragalli B. Ippolito E. Errichi B.M. Pellegrini L. Ledda A. Ricci A. Bavera P. Hosoi M. Stuard S. Corsi M. Errichi S. Gizzi G. Potential role of curcumin phytosome (Meriva) in controlling the evolution of diabetic microangiopathy. A pilot study. Panminerva Med. 2011 53 3 Suppl. 1 43 49 22108476
    [Google Scholar]
  60. Sun J. Bi C. Chan H.M. Sun S. Zhang Q. Zheng Y. Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability. Colloids Surf. B Biointerfaces 2013 111 367 375 10.1016/j.colsurfb.2013.06.032 23856543
    [Google Scholar]
  61. Tabanelli R. Brogi S. Calderone V. Improving curcumin bioavailability: Current strategies and future perspectives. Pharmaceutics 2021 13 10 1715 10.3390/pharmaceutics13101715 34684008
    [Google Scholar]
  62. Chuengsamarn S. Rattanamongkolgul S. Luechapudiporn R. Phisalaphong C. Jirawatnotai S. Curcumin extract for prevention of type 2 diabetes. Diabetes Care 2012 35 11 2121 2127 10.2337/dc12‑0116 22773702
    [Google Scholar]
  63. Murugan P. Pari L. Influence of tetrahydrocurcumin on hepatic and renal functional markers and protein levels in experimental type 2 diabetic rats. Basic Clin. Pharmacol. Toxicol. 2007 101 4 241 245 10.1111/j.1742‑7843.2007.00109.x 17845505
    [Google Scholar]
  64. Na L.X. Li Y. Pan H.Z. Zhou X.L. Sun D.J. Meng M. Li X.X. Sun C.H. Curcuminoids exert glucose‐lowering effect in type 2 diabetes by decreasing serum free fatty acids: A double‐blind, placebo‐controlled trial. Mol. Nutr. Food Res. 2013 57 9 1569 1577 10.1002/mnfr.201200131 22930403
    [Google Scholar]
  65. Chuengsamarn S. Rattanamongkolgul S. Phonrat B. Tungtrongchitr R. Jirawatnotai S. Reduction of atherogenic risk in patients with type 2 diabetes by curcuminoid extract: A randomized controlled trial. J. Nutr. Biochem. 2014 25 2 144 150 10.1016/j.jnutbio.2013.09.013 24445038
    [Google Scholar]
  66. Rahimi H.R. Mohammadpour A.H. Dastani M. Jaafari M.R. Abnous K. Ghayour Mobarhan M. Kazemi Oskuee R. The effect of nano-curcumin on HbA1c, fasting blood glucose, and lipid profile in diabetic subjects: A randomized clinical trial. Avicenna J. Phytomed. 2016 6 5 567 577 27761427
    [Google Scholar]
  67. Thota R.N. Acharya S.H. Garg M.L. Curcumin and/or omega-3 polyunsaturated fatty acids supplementation reduces insulin resistance and blood lipids in individuals with high risk of type 2 diabetes: A randomised controlled trial. Lipids Health Dis. 2019 18 1 31 10.1186/s12944‑019‑0967‑x 30684965
    [Google Scholar]
  68. Adibian M. Hodaei H. Nikpayam O. Sohrab G. Hekmatdoost A. Hedayati M. The effects of curcumin supplementation on high‐sensitivity C‐reactive protein, serum adiponectin, and lipid profile in patients with type 2 diabetes: A randomized, double‐blind, placebo‐controlled trial. Phytother. Res. 2019 33 5 1374 1383 10.1002/ptr.6328 30864188
    [Google Scholar]
  69. Funamoto M. Shimizu K. Sunagawa Y. Katanasaka Y. Miyazaki Y. Kakeya H. Yamakage H. Satoh-Asahara N. Wada H. Hasegawa K. Morimoto T. Effects of highly absorbable curcumin in patients with impaired glucose tolerance and non-insulin-dependent diabetes mellitus. J. Diabetes Res. 2019 2019 1 7 10.1155/2019/8208237 31871950
    [Google Scholar]
  70. Mokhtari M. Razzaghi R. Momen-Heravi M. The effects of curcumin intake on wound healing and metabolic status in patients with diabetic foot ulcer: A randomized, double‐blind, placebo‐controlled trial. Phytother. Res. 2021 35 4 2099 2107 10.1002/ptr.6957 33200488
    [Google Scholar]
  71. Yang Y.S. Su Y.F. Yang H.W. Lee Y.H. Chou J.I. Ueng K.C. Lipid-lowering effects of curcumin in patients with metabolic syndrome: A randomized, double-blind, placebo-controlled trial. Phytother. Res. 2014 28 12 1770 1777 10.1002/ptr.5197 25131839
    [Google Scholar]
  72. Amin F. Islam N. Anila N. Gilani A.H. Clinical efficacy of the co-administration of Turmeric and Black seeds (Kalongi) in metabolic syndrome – A double blind randomized controlled trial – TAK-MetS trial. Complement. Ther. Med. 2015 23 2 165 174 10.1016/j.ctim.2015.01.008 25847554
    [Google Scholar]
  73. Usharani P. Mateen A.A. Naidu M.U.R. Raju Y.S.N. Chandra N. Effect of NCB-02, atorvastatin and placebo on endothelial function, oxidative stress and inflammatory markers in patients with type 2 diabetes mellitus: A randomized, parallel-group, placebo-controlled, 8-week study. Drugs R D. 2008 9 4 243 250 10.2165/00126839‑200809040‑00004 18588355
    [Google Scholar]
  74. Khajehdehi P. Pakfetrat M. Javidnia K. Azad F. Malekmakan L. Nasab M.H. Dehghanzadeh G. Oral supplementation of turmeric attenuates proteinuria, transforming growth factor-β and interleukin-8 levels in patients with overt type 2 diabetic nephropathy: A randomized, double-blind and placebo-controlled study. Scand. J. Urol. Nephrol. 2011 45 5 365 370 10.3109/00365599.2011.585622 21627399
    [Google Scholar]
  75. Jiménez-Osorio A.S. García-Niño W.R. González-Reyes S. Álvarez-Mejía A.E. Guerra-León S. Salazar-Segovia J. Falcón I. Montes de Oca-Solano H. Madero M. Pedraza-Chaverri J. The effect of dietary supplementation with curcumin on redox status and nrf2 activation in patients with nondiabetic or diabetic proteinuric chronic kidney disease: A pilot study. J. Ren. Nutr. 2016 26 4 237 244 10.1053/j.jrn.2016.01.013 26915483
    [Google Scholar]
  76. Shafabakhsh R. Asemi Z. Reiner Z. Soleimani A. Aghadavod E. Bahmani F. The effects of nano-curcumin on metabolic status in patients with diabetes on hemodialysis, a randomized, double blind, placebo-controlled trial. Iran. J. Kidney Dis. 2020 14 4 290 299 32655024
    [Google Scholar]
  77. Asadi S. Gholami M.S. Siassi F. Qorbani M. Khamoshian K. Sotoudeh G. Nano curcumin supplementation reduced the severity of diabetic sensorimotor polyneuropathy in patients with type 2 diabetes mellitus: A randomized double-blind placebo- controlled clinical trial. Complement. Ther. Med. 2019 43 253 260 10.1016/j.ctim.2019.02.014 30935539
    [Google Scholar]
  78. Asadi S. Gholami M.S. Siassi F. Qorbani M. Sotoudeh G. Beneficial effects of nano‐curcumin supplement on depression and anxiety in diabetic patients with peripheral neuropathy: A randomized, double‐blind, placebo‐controlled clinical trial. Phytother. Res. 2020 34 4 896 903 10.1002/ptr.6571 31788880
    [Google Scholar]
  79. Shafabakhsh R. Mobini M. Raygan F. Aghadavod E. Ostadmohammadi V. Amirani E. Mansournia M.A. Asemi Z. Curcumin administration and the effects on psychological status and markers of inflammation and oxidative damage in patients with type 2 diabetes and coronary heart disease. Clin. Nutr. ESPEN 2020 40 77 82 10.1016/j.clnesp.2020.09.029 33183576
    [Google Scholar]
  80. Dastani M. Rahimi H.R. Askari V.R. Jaafari M.R. Jarahi L. Yadollahi A. Rahimi V.B. Three months of combination therapy with nano‐curcumin reduces the inflammation and lipoprotein (a) in type 2 diabetic patients with mild to moderate coronary artery disease: Evidence of a randomized, double‐blinded, placebo‐controlled clinical trial. Biofactors 2023 49 1 108 118 10.1002/biof.1874 35674733
    [Google Scholar]
  81. Zeng Y.F. Guo Q.H. Wei X.Y. Chen S.Y. Deng S. Liu J.J. Yin N. Liu Y. Zeng W.J. Cardioprotective effect of curcumin on myocardial ischemia/reperfusion injury: A meta-analysis of preclinical animal studies. Front. Pharmacol. 2023 14 1184292 10.3389/fphar.2023.1184292 37284318
    [Google Scholar]
  82. Dytrych P. Kejík Z. Hajduch J. Kaplánek R. Veselá K. Kučnirová K. Skaličková M. Venhauerová A. Hoskovec D. Martásek P. Jakubek M. Therapeutic potential and limitations of curcumin as antimetastatic agent. Biomed. Pharmacother. 2023 163 114758 10.1016/j.biopha.2023.114758 37141738
    [Google Scholar]
  83. Flint A.L. Hansen D.W. Brown L.D. Stewart L.E. Ortiz E. Panda S.S. Modified curcumins as potential drug candidates for breast cancer: An overview. Molecules 2022 27 24 8891 10.3390/molecules27248891 36558022
    [Google Scholar]
  84. Jamil S.N.H. Ali A.H. Feroz S.R. Lam S.D. Agustar H.K. Mohd Abd Razak M.R. Latip J. Curcumin and its derivatives as potential antimalarial and anti-inflammatory agents: A review on structure–activity relationship and mechanism of action. Pharmaceuticals 2023 16 4 609 10.3390/ph16040609 37111366
    [Google Scholar]
  85. Perna A. Hay E. Sellitto C. Del Genio E. De Falco M. Guerra G. De Luca A. De Blasiis P. Lucariello A. Antiinflammatory activities of curcumin and spirulina: Focus on their role against COVID-19. J. Diet. Suppl. 2023 20 2 372 389 10.1080/19390211.2023.2173354 36729019
    [Google Scholar]
  86. Campagna R. Mateuszuk Ł. Wojnar-Lason K. Kaczara P. Tworzydło A. Kij A. Bujok R. Mlynarski J. Wang Y. Sartini D. Emanuelli M. Chlopicki S. Nicotinamide N-methyltransferase in endothelium protects against oxidant stress-induced endothelial injury. Biochim. Biophys. Acta Mol. Cell Res. 2021 1868 10 119082 10.1016/j.bbamcr.2021.119082 34153425
    [Google Scholar]
  87. Zhou H. Beevers C.S. Huang S. The targets of curcumin. Curr. Drug Targets 2011 12 3 332 347 10.2174/138945011794815356 20955148
    [Google Scholar]
  88. Santonocito D. Sarpietro M.G. Carbone C. Panico A. Campisi A. Siciliano E.A. Sposito G. Castelli F. Puglia C. Curcumin containing PEGylated solid lipid nanoparticles for systemic administration: A preliminary study. Molecules 2020 25 13 2991 10.3390/molecules25132991 32629951
    [Google Scholar]
  89. Huang D. Ou B. Hampsch-Woodill M. Flanagan J.A. Deemer E.K. Development and validation of oxygen radical absorbance capacity assay for lipophilic antioxidants using randomly methylated beta-cyclodextrin as the solubility enhancer. J. Agric. Food Chem. 2002 50 7 1815 1821 10.1021/jf0113732 11902917
    [Google Scholar]
  90. Henriksen E.J. Diamond-Stanic M.K. Marchionne E.M. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic. Biol. Med. 2011 51 5 993 999 10.1016/j.freeradbiomed.2010.12.005 21163347
    [Google Scholar]
  91. Evans J.L. Goldfine I.D. Maddux B.A. Grodsky G.M. Oxidative stress and stress-activated signaling pathways: A unifying hypothesis of type 2 diabetes. Endocr. Rev. 2002 23 5 599 622 10.1210/er.2001‑0039 12372842
    [Google Scholar]
  92. Evans J.L. Goldfine I.D. Maddux B.A. Grodsky G.M. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 2003 52 1 1 8 10.2337/diabetes.52.1.1 12502486
    [Google Scholar]
  93. Paolisso G. D’Amore A. Volpe C. Balbi V. Saccomanno F. Galzerano D. Giugliano D. Varricchio M. D’Onofrio F. Evidence for a relationship between oxidative stress and insulin action in non-insulin-dependent (type II) diabetic patients. Metabolism 1994 43 11 1426 1429 10.1016/0026‑0495(94)90039‑6 7968598
    [Google Scholar]
  94. Blendea M.C. Jacobs D. Stump C.S. McFarlane S.I. Ogrin C. Bahtyiar G. Stas S. Kumar P. Sha Q. Ferrario C.M. Sowers J.R. Abrogation of oxidative stress improves insulin sensitivity in the Ren-2 rat model of tissue angiotensin II overexpression. Am. J. Physiol. Endocrinol. Metab. 2005 288 2 E353 E359 10.1152/ajpendo.00402.2004 15494608
    [Google Scholar]
  95. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001 414 6865 813 820 10.1038/414813a 11742414
    [Google Scholar]
  96. Johansen J.S. Harris A.K. Rychly D.J. Ergul A. Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical practice. Cardiovasc. Diabetol. 2005 4 1 5 10.1186/1475‑2840‑4‑5 15862133
    [Google Scholar]
  97. Burgos-Morón E. Abad-Jiménez Z. Martínez de Marañón A. Iannantuoni F. Escribano-López I. López-Domènech S. Salom C. Jover A. Mora V. Roldan I. Solá E. Rocha M. Víctor V.M. Relationship between oxidative stress, ER stress, and inflammation in type 2 diabetes: The battle continues. J. Clin. Med. 2019 8 9 1385 10.3390/jcm8091385 31487953
    [Google Scholar]
  98. Nogueira-Machado J.A. Chaves M.M. From hyperglycemia to AGE-RAGE interaction on the cell surface: A dangerous metabolic route for diabetic patients. Expert Opin. Ther. Targets 2008 12 7 871 882 10.1517/14728222.12.7.871 18554155
    [Google Scholar]
  99. Kaneto H. Katakami N. Matsuhisa M. Matsuoka T. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm. 2010 2010 1 11 10.1155/2010/453892 20182627
    [Google Scholar]
  100. Edeas M. Attaf D. Mailfert A.S. Nasu M. Joubet R. Maillard reaction, mitochondria and oxidative stress: Potential role of antioxidants. Pathol. Biol. 2010 58 3 220 225 10.1016/j.patbio.2009.09.011 20031340
    [Google Scholar]
  101. Chetyrkin S. Mathis M. Pedchenko V. Sanchez O.A. McDonald W.H. Hachey D.L. Madu H. Stec D. Hudson B. Voziyan P. Glucose autoxidation induces functional damage to proteins via modification of critical arginine residues. Biochemistry 2011 50 27 6102 6112 10.1021/bi200757d 21661747
    [Google Scholar]
  102. Elosta A. Ghous T. Ahmed N. Natural products as anti-glycation agents: Possible therapeutic potential for diabetic complications. Curr. Diabetes Rev. 2012 8 2 92 108 10.2174/157339912799424528 22268395
    [Google Scholar]
  103. Giacco F. Brownlee M. Oxidative stress and diabetic complications. Circ. Res. 2010 107 9 1058 1070 10.1161/CIRCRESAHA.110.223545 21030723
    [Google Scholar]
  104. Cao J. Han Z. Tian L. Chen K. Fan Y. Ye B. Huang W. Wang C. Huang Z. Curcumin inhibits EMMPRIN and MMP-9 expression through AMPK-MAPK and PKC signaling in PMA induced macrophages. J. Transl. Med. 2014 12 1 266 10.1186/s12967‑014‑0266‑2 25241044
    [Google Scholar]
  105. Chan W.H. Wu H.J. Hsuuw Y.D. Curcumin inhibits ROS formation and apoptosis in methylglyoxal-treated human hepatoma G2 cells. Ann. N. Y. Acad. Sci. 2005 1042 1 372 378 10.1196/annals.1338.057 15965083
    [Google Scholar]
  106. Hao H. Yuan T. Li Z. Zhang C. Liu J. Liang G. Feng L. Pan Y. Curcumin analogue C66 ameliorates mouse cardiac dysfunction and structural disorders after acute myocardial infarction via suppressing JNK activation. Eur. J. Pharmacol. 2023 946 175629 10.1016/j.ejphar.2023.175629 36868294
    [Google Scholar]
  107. Zhu H. Zhang L. Jia H. Xu L. Cao Y. Zhai M. Li K. Xia L. Jiang L. Li X. Zhou Y. Liu J. Yu S. Duan W. Tetrahydrocurcumin improves lipopolysaccharide-induced myocardial dysfunction by inhibiting oxidative stress and inflammation via JNK/ERK signaling pathway regulation. Phytomedicine 2022 104 154283 10.1016/j.phymed.2022.154283 35779282
    [Google Scholar]
  108. Rajabi S. Darroudi M. Naseri K. Farkhondeh T. Samarghandian S. Protective effects of curcumin and its analogues via the Nrf2 pathway in metabolic syndrome. Curr. Med. Chem. 2023 37218198
    [Google Scholar]
  109. Wei Z. pinfang K. jing Z. zhuoya Y. Shaohuan Q. Chao S. Curcumin improves diabetic cardiomyopathy by inhibiting pyroptosis through AKT/Nrf2/ARE pathway. Mediators Inflamm. 2023 2023 1 20 10.1155/2023/3906043 37101595
    [Google Scholar]
  110. Wu X. Zhou X. Lai S. Liu J. Qi J. Curcumin activates Nrf2/ HO ‐1 signaling to relieve diabetic cardiomyopathy injury by reducing ROS in vitro and in vivo. FASEB J. 2022 36 9 e22505 10.1096/fj.202200543RRR 35971779
    [Google Scholar]
  111. Tossetta G. Fantone S. Marzioni D. Mazzucchelli R. Role of natural and synthetic compounds in modulating NRF2/KEAP1 signaling pathway in prostate cancer. Cancers 2023 15 11 3037 10.3390/cancers15113037 37296999
    [Google Scholar]
  112. Ghafouri-Fard S. Shoorei H. Bahroudi Z. Hussen B.M. Talebi S.F. Taheri M. Ayatollahi S.A. Nrf2-related therapeutic effects of curcumin in different disorders. Biomolecules 2022 12 1 82 10.3390/biom12010082 35053230
    [Google Scholar]
  113. Naghdi A. Goodarzi M.T. Karimi J. Hashemnia M. Khodadadi I. Effects of curcumin and metformin on oxidative stress and apoptosis in heart tissue of type 1 diabetic rats. J. Cardiovasc. Thorac. Res. 2022 14 2 128 137 10.34172/jcvtr.2022.23 35935389
    [Google Scholar]
  114. Tossetta G. Fantone S. Piani F. Crescimanno C. Ciavattini A. Giannubilo S.R. Marzioni D. Modulation of NRF2/KEAP1 signaling in preeclampsia. Cells 2023 12 11 1545 10.3390/cells12111545 37296665
    [Google Scholar]
  115. Duan J. Yang M. Liu Y. Xiao S. Zhang X. Curcumin protects islet beta cells from streptozotocin‑induced type 2 diabetes mellitus injury via its antioxidative effects. Endokrynol. Pol. 2022 73 6 942 946 10.5603/EP.a2022.0070 35971926
    [Google Scholar]
  116. Marzioni D. Mazzucchelli R. Fantone S. Tossetta G. NRF2 modulation in TRAMP mice: An in vivo model of prostate cancer. Mol. Biol. Rep. 2022 36335520
    [Google Scholar]
  117. He Y. Yue Y. Zheng X. Zhang K. Chen S. Du Z. Curcumin, inflammation, and chronic diseases: How are they linked? Molecules 2015 20 5 9183 9213 10.3390/molecules20059183 26007179
    [Google Scholar]
  118. Muthenna P. Suryanarayana P. Gunda S.K. Petrash J.M. Reddy G.B. Inhibition of aldose reductase by dietary antioxidant curcumin: Mechanism of inhibition, specificity and significance. FEBS Lett. 2009 583 22 3637 3642 10.1016/j.febslet.2009.10.042 19850041
    [Google Scholar]
  119. Hao F. Kang J. Cao Y. Fan S. Yang H. An Y. Pan Y. Tie L. Li X. Curcumin attenuates palmitate-induced apoptosis in MIN6 pancreatic β-cells through PI3K/Akt/FoxO1 and mitochondrial survival pathways. Apoptosis 2015 20 11 1420 1432 10.1007/s10495‑015‑1150‑0 26330141
    [Google Scholar]
  120. Pereira S.S. Alvarez-Leite J.I. Low-grade inflammation, obesity, and diabetes. Curr. Obes. Rep. 2014 3 4 422 431 10.1007/s13679‑014‑0124‑9 26626919
    [Google Scholar]
  121. Cecati M. Sartini D. Campagna R. Biagini A. Ciavattini A. Emanuelli M. Giannubilo S.R. Molecular analysis of endometrial inflammation in preterm birth. Cell. Mol. Biol. 2017 63 3 51 57 10.14715/cmb/2017.63.3.10 28466813
    [Google Scholar]
  122. Vignini A. Cecati M. Nanetti L. Raffaelli F. Ciavattini A. Giannubilo S.R. Mazzanti L. Saccucci F. Emanuelli M. Tranquilli A.L. Placental expression of endothelial and inducible nitric oxide synthase and NO metabolism in gestational hypertension: A case–control study. J. Matern. Fetal Neonatal Med. 2016 29 4 576 581 10.3109/14767058.2015.1011615 25690025
    [Google Scholar]
  123. Perugini J. Di Mercurio E. Tossetta G. Severi I. Monaco F. Reguzzoni M. Tomasetti M. Dani C. Cinti S. Giordano A. Biological effects of ciliary neurotrophic factor on hMADS adipocytes. Front. Endocrinol. 2019 10 768 10.3389/fendo.2019.00768 31781039
    [Google Scholar]
  124. Dri E. Lampas E. Lazaros G. Lazarou E. Theofilis P. Tsioufis C. Tousoulis D. Inflammatory mediators of endothelial dysfunction. Life 2023 13 6 1420 10.3390/life13061420 37374202
    [Google Scholar]
  125. Campagna R. Vignini A. NAD+ homeostasis and NAD+-consuming enzymes: Implications for vascular health. Antioxidants 2023 12 2 376 10.3390/antiox12020376 36829935
    [Google Scholar]
  126. Immanuel J. Yun S. Vascular inflammatory diseases and endothelial phenotypes. Cells 2023 12 12 1640 10.3390/cells12121640 37371110
    [Google Scholar]
  127. Zapotoczny B. Braet F. Kus E. Ginda-Mäkelä K. Klejevskaja B. Campagna R. Chlopicki S. Szymonski M. Actin‐spectrin scaffold supports open fenestrae in liver sinusoidal endothelial cells. Traffic 2019 20 12 932 942 10.1111/tra.12700 31569283
    [Google Scholar]
  128. Jain S.K. Rains J. Croad J. Larson B. Jones K. Curcumin supplementation lowers TNF-alpha, IL-6, IL-8, and MCP-1 secretion in high glucose-treated cultured monocytes and blood levels of TNF-alpha, IL-6, MCP-1, glucose, and glycosylated hemoglobin in diabetic rats. Antioxid. Redox Signal. 2009 11 2 241 249 10.1089/ars.2008.2140 18976114
    [Google Scholar]
  129. Yu W. Wu J. Cai F. Xiang J. Zha W. Fan D. Guo S. Ming Z. Liu C. Curcumin alleviates diabetic cardiomyopathy in experimental diabetic rats. PLoS One 2012 7 12 e52013 10.1371/journal.pone.0052013 23251674
    [Google Scholar]
  130. Wang P. Su C. Feng H. Chen X. Dong Y. Rao Y. Ren Y. Yang J. Shi J. Tian J. Jiang S. Curcumin regulates insulin pathways and glucose metabolism in the brains of APPswe/PS1dE9 mice. Int. J. Immunopathol. Pharmacol. 2017 30 1 25 43 10.1177/0394632016688025 28124574
    [Google Scholar]
  131. Shao S. Ye X. Su W. Wang Y. Curcumin alleviates Alzheimer’s disease by inhibiting inflammatory response, oxidative stress and activating the AMPK pathway. J. Chem. Neuroanat. 2023 134 102363 10.1016/j.jchemneu.2023.102363 37989445
    [Google Scholar]
  132. Pu Y. Zhang H. Wang P. Zhao Y. Li Q. Wei X. Cui Y. Sun J. Shang Q. Liu D. Zhu Z. Dietary curcumin ameliorates aging-related cerebrovascular dysfunction through the AMPK/uncoupling protein 2 pathway. Cell. Physiol. Biochem. 2013 32 5 1167 1177 10.1159/000354516 24335167
    [Google Scholar]
  133. Wang L. Zhang B. Huang F. Liu B. Xie Y. Curcumin inhibits lipolysis via suppression of ER stress in adipose tissue and prevents hepatic insulin resistance. J. Lipid Res. 2016 57 7 1243 1255 10.1194/jlr.M067397 27220352
    [Google Scholar]
  134. Attiq A. Jalil J. Husain K. Ahmad W. Raging the war against inflammation with natural products. Front. Pharmacol. 2018 9 976 10.3389/fphar.2018.00976 30245627
    [Google Scholar]
  135. Guo S. Meng X. Yang X. Liu X. Ou-Yang C. Liu C. Curcumin administration suppresses collagen synthesis in the hearts of rats with experimental diabetes. Acta Pharmacol. Sin. 2018 39 2 195 204 10.1038/aps.2017.92 28905939
    [Google Scholar]
  136. Reuter S. Gupta S.C. Park B. Goel A. Aggarwal B.B. Epigenetic changes induced by curcumin and other natural compounds. Genes Nutr. 2011 6 2 93 108 10.1007/s12263‑011‑0222‑1 21516481
    [Google Scholar]
  137. Fan S. Xu Y. Li X. Tie L. Pan Y. Li X. Opposite angiogenic outcome of curcumin against ischemia and Lewis lung cancer models: In silico, in vitro and in vivo studies. Biochim. Biophys. Acta Mol. Basis Dis. 2014 1842 9 1742 1754 10.1016/j.bbadis.2014.06.019 24970744
    [Google Scholar]
  138. Wang Y. Zhou S. Sun W. McClung K. Pan Y. Liang G. Tan Y. Zhao Y. Liu Q. Sun J. Cai L. Inhibition of JNK by novel curcumin analog C66 prevents diabetic cardiomyopathy with a preservation of cardiac metallothionein expression. Am. J. Physiol. Endocrinol. Metab. 2014 306 11 E1239 E1247 10.1152/ajpendo.00629.2013 24714399
    [Google Scholar]
  139. Na L.X. Zhang Y.L. Li Y. Liu L.Y. Li R. Kong T. Sun C.H. Curcumin improves insulin resistance in skeletal muscle of rats. Nutr. Metab. Cardiovasc. Dis. 2011 21 7 526 533 10.1016/j.numecd.2009.11.009 20227862
    [Google Scholar]
  140. Szczesny-Malysiak E. Stojak M. Campagna R. Grosicki M. Jamrozik M. Kaczara P. Chlopicki S. Bardoxolone methyl displays detrimental effects on endothelial bioenergetics, suppresses endothelial ET-1 release, and increases endothelial permeability in human microvascular endothelium. Oxid. Med. Cell. Longev. 2020 2020 1 16 10.1155/2020/4678252 33123312
    [Google Scholar]
  141. Reddy S.T. Devarajan A. Bourquard N. Shih D. Fogelman A.M. Is it just paraoxonase 1 or are other members of the paraoxonase gene family implicated in atherosclerosis? Curr. Opin. Lipidol. 2008 19 4 405 408 10.1097/MOL.0b013e328304b64e 18607188
    [Google Scholar]
  142. Sartini D. Campagna R. Lucarini G. Pompei V. Salvolini E. Mattioli-Belmonte M. Molinelli E. Brisigotti V. Campanati A. Bacchetti T. Ferretti G. Offidani A. Emanuelli M. Differential immunohistochemical expression of paraoxonase-2 in actinic keratosis and squamous cell carcinoma. Hum. Cell 2021 34 6 1929 1931 10.1007/s13577‑021‑00581‑5 34302630
    [Google Scholar]
  143. Mahrooz A. Khosravi-Asrami O.F. Alizadeh A. Mohmmadi N. Bagheri A. Kashi Z. Bahar A. Nosrati M. Mackness M. Can HDL cholesterol be replaced by paraoxonase 1 activity in the prediction of severe coronary artery disease in patients with type 2 diabetes? Nutr. Metab. Cardiovasc. Dis. 2023 33 8 1599 1607 10.1016/j.numecd.2023.05.020 37344284
    [Google Scholar]
  144. Campagna R. Belloni A. Pozzi V. Salvucci A. Notarstefano V. Togni L. Mascitti M. Sartini D. Giorgini E. Salvolini E. Santarelli A. Lo Muzio L. Emanuelli M. Role played by paraoxonase-2 enzyme in cell viability, proliferation and sensitivity to chemotherapy of oral squamous cell carcinoma cell lines. Int. J. Mol. Sci. 2022 24 1 338 10.3390/ijms24010338 36613780
    [Google Scholar]
  145. Durrington P.N. Bashir B. Soran H. Paraoxonase 1 and atherosclerosis. Front. Cardiovasc. Med. 2023 10 1065967 10.3389/fcvm.2023.1065967 36873390
    [Google Scholar]
  146. Priyanka K. Singh S. Gill K. Paraoxonase 3: Structure and its role in pathophysiology of coronary artery disease. Biomolecules 2019 9 12 817 10.3390/biom9120817 31816846
    [Google Scholar]
  147. Campagna R. Pozzi V. Giorgini S. Morichetti D. Goteri G. Sartini D. Serritelli E.N. Emanuelli M. Paraoxonase-2 is upregulated in triple negative breast cancer and contributes to tumor progression and chemoresistance. Hum. Cell 2023 36 3 1108 1119 10.1007/s13577‑023‑00892‑9 36897549
    [Google Scholar]
  148. Zhang L. Xu T. Wang S. Yu L. Liu D. Zhan R. Yu S.Y. Curcumin produces antidepressant effects via activating MAPK/ERK-dependent brain-derived neurotrophic factor expression in the amygdala of mice. Behav. Brain Res. 2012 235 1 67 72 10.1016/j.bbr.2012.07.019 22820234
    [Google Scholar]
  149. Abdelsamia E.M. Khaleel S.A. Balah A. Abdel Baky N.A. Curcumin augments the cardioprotective effect of metformin in an experimental model of type I diabetes mellitus; Impact of Nrf2/HO-1 and JAK/STAT pathways. Biomed. Pharmacother. 2019 109 2136 2144 10.1016/j.biopha.2018.11.064 30551471
    [Google Scholar]
  150. Katsori A.M. Palagani A. Bougarne N. Hadjipavlou-Litina D. Haegeman G. Vanden Berghe W. Inhibition of the NF-κB signaling pathway by a novel heterocyclic curcumin analogue. Molecules 2015 20 1 863 878 10.3390/molecules20010863 25580684
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998313402240726080637
Loading
/content/journals/cdr/10.2174/0115733998313402240726080637
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test