Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Objectives

Diabetes Mellitus (DM) is a global health concern that affects millions of people globally. The present review aims to narrate the clinical guidelines and therapeutic interventions for Type 2 Diabetes Mellitus (T2DM) patients. Furthermore, the present work summarizes the ongoing phase 1/2/3 and clinical trials against T2DM.

Methods

A meticulous and comprehensive literature review was performed using various databases, such as PubMed, MEDLINE, Clinical trials database (https://clinicaltrials.gov/), and Google Scholar, to include various clinical trials and therapeutic interventions against T2DM.

Results

Based on our findings, we concluded that most T2DM-associated clinical trials are interventional. Anti-diabetic therapeutics, including insulin, metformin, Dipeptidyl Peptidase-4 (DPP-4) inhibitors, Glucagon-Like Peptide-1 Receptor Agonists (GLP-1RAs), and Sodium-Glucose cotransporter-2 (SGLT-2) inhibitors are frontline therapeutics being clinically investigated. Currently, the therapeutics in phase IV clinical trials are mostly SGLT-2 inhibitors, implicating their critical contribution to the clinical management of T2DM.

Conclusion

Despite the success of T2DM treatments, a surge in innovative treatment options to reduce diabetic consequences and improve glycemic control is currently ongoing. More emphasis needs to be on exploring novel targeted drug candidates that can offer more sustained glycemic control.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998294919240506044544
2024-05-17
2025-05-09
Loading full text...

Full text loading...

References

  1. KanwalA. KanwarN. BharatiS. SrivastavaP. SinghS.P. AmarS. Exploring new drug targets for type 2 diabetes: Success, challenges and opportunities.Biomedicines202210233110.3390/biomedicines1002033135203540
    [Google Scholar]
  2. ElSayedN.A. AleppoG. ArodaV.R. BannuruR.R. BrownF.M. BruemmerD. CollinsB.S. GagliaJ.L. HilliardM.E. IsaacsD. JohnsonE.L. KahanS. KhuntiK. LeonJ. LyonsS.K. PerryM.L. PrahaladP. PratleyR.E. SeleyJ.J. StantonR.C. GabbayR.A. 2. classification and diagnosis of diabetes: Standards of Care in Diabetes—2023.Diabetes Care202346Suppl. 1S19S4010.2337/dc23‑S00236507649
    [Google Scholar]
  3. ChanR.S.M. WooJ. Prevention of overweight and obesity: How effective is the current public health approach.Int. J. Environ. Res. Public Health20107376578310.3390/ijerph703076520617002
    [Google Scholar]
  4. IchihoH.M. DemeiY. KuarteiS. AitaotoN. An assessment of non-communicable diseases, diabetes, and related risk factors in the republic of palau: a systems perspective.Hawaii J. Med. Public Health2013725Suppl. 19810523901368
    [Google Scholar]
  5. WHODiabetes in India, FactsheetIn: India WHO, editor. Health topics/Mobile technology for preventing NCDs/Diabetes in India2023
    [Google Scholar]
  6. KaveeshwarS. CornwallJ. The current state of diabetes mellitus in India.Australas. Med. J.201471454810.4066/AMJ.2014.197924567766
    [Google Scholar]
  7. ColbergS.R. SigalR.J. FernhallB. RegensteinerJ.G. BlissmerB.J. RubinR.R. Chasan-TaberL. AlbrightA.L. BraunB. Exercise and type 2 diabetes: The american college of sports medicine and the american diabetes association: Joint position statement.Diabetes Care20103312e147e16710.2337/dc10‑999021115758
    [Google Scholar]
  8. MoghissiE.S. KorytkowskiM.T. DiNardoM. EinhornD. HellmanR. HirschI.B. InzucchiS.E. Ismail-BeigiF. KirkmanM.S. UmpierrezG.E. American association of clinical endocrinologists and american diabetes association consensus statement on inpatient glycemic control.Diabetes Care20093261119113110.2337/dc09‑902919429873
    [Google Scholar]
  9. KitabchiA.E. UmpierrezG.E. MilesJ.M. FisherJ.N. Hyperglycemic crises in adult patients with diabetes.Diabetes Care20093271335134310.2337/dc09‑903219564476
    [Google Scholar]
  10. PalermoN.E. SadhuA.R. McDonnellM.E. Diabetic Ketoacidosis in COVID-19: Unique concerns and considerations.J. Clin. Endocrinol. Metab.202010582819282910.1210/clinem/dgaa36032556147
    [Google Scholar]
  11. Coregliano-RingL. Goia-NishideK. RangelÉ.B. Hypokalemia in diabetes mellitus setting.Medicina202258343110.3390/medicina5803043135334607
    [Google Scholar]
  12. FinferS. ChittockD.R. SuS.Y. BlairD. FosterD. DhingraV. BellomoR. CookD. DodekP. HendersonW.R. HébertP.C. HeritierS. HeylandD.K. McArthurC. McDonaldE. MitchellI. MyburghJ.A. NortonR. PotterJ. RobinsonB.G. RoncoJ.J. Intensive versus conventional glucose control in critically ill patients.N. Engl. J. Med.2009360131283129710.1056/NEJMoa081062519318384
    [Google Scholar]
  13. PasquelF.J. TsegkaK. WangH. CardonaS. GalindoR.J. FayfmanM. DavisG. VellankiP. MigdalA. GujralU. NarayanK.M.V. UmpierrezG.E. Clinical outcomes in patients with isolated or combined diabetic ketoacidosis and hyperosmolar hyperglycemic state: A retrospective, hospital-based cohort study.Diabetes Care202043234935710.2337/dc19‑116831704689
    [Google Scholar]
  14. JohnstonK.C. BrunoA. PaulsQ. HallC.E. BarrettK.M. BarsanW. FanslerA. Van de BruinhorstK. JanisS. Durkalski-MauldinV.L. Intensive vs standard treatment of hyperglycemia and functional outcome in patients with acute ischemic stroke.JAMA2019322432633510.1001/jama.2019.934631334795
    [Google Scholar]
  15. GunstJ. De BruynA. Van den BergheG. Glucose control in the ICU.Curr. Opin. Anaesthesiol.201932215616210.1097/ACO.000000000000070630817388
    [Google Scholar]
  16. KramerA.H. RobertsD.J. ZygunD.A. Optimal glycemic control in neurocritical care patients: A systematic review and meta-analysis.Crit. Care2012165R20310.1186/cc1181223082798
    [Google Scholar]
  17. UmpierrezG. CardonaS. PasquelF. JacobsS. PengL. UnigweM. NewtonC.A. Smiley-ByrdD. VellankiP. HalkosM. PuskasJ.D. GuytonR.A. ThouraniV.H. Randomized controlled trial of intensive versus conservative glucose control in patients undergoing coronary artery bypass graft surgery: GLUCO-CABG Trial.Diabetes Care20153891665167210.2337/dc15‑030326180108
    [Google Scholar]
  18. KreiderK.E. LienL.F. Transitioning safely from intravenous to subcutaneous insulin.Curr. Diab. Rep.20151552310.1007/s11892‑015‑0595‑425772640
    [Google Scholar]
  19. NasaP. ChaudharyS. ShrivastavaP.K. SinghA. Euglycemic diabetic ketoacidosis: A missed diagnosis.World J. Diabetes202112551452310.4239/wjd.v12.i5.51433995841
    [Google Scholar]
  20. ChristensenM.B. GotfredsenA. NørgaardK. Efficacy of basal‐bolus insulin regimens in the inpatient management of non‐critically ill patients with type 2 diabetes: A systematic review and meta‐analysis.Diabetes Metab. Res. Rev.2017335e288510.1002/dmrr.288528067472
    [Google Scholar]
  21. PasquelF.J. LansangM.C. DhatariyaK. UmpierrezG.E. Management of diabetes and hyperglycaemia in the hospital.Lancet Diabetes Endocrinol.20219317418810.1016/S2213‑8587(20)30381‑833515493
    [Google Scholar]
  22. BaileyC.J. The current drug treatment landscape for diabetes and perspectives for the future.Clin. Pharmacol. Ther.201598217018410.1002/cpt.14425963904
    [Google Scholar]
  23. GenuthS. Should sulfonylureas remain an acceptable first-line add-on to metformin therapy in patients with type 2 diabetes? No, it’s time to move on!Diabetes Care201538117017510.2337/dc14‑056525538314
    [Google Scholar]
  24. ConfederatL. ConstantinS. LupaşcuF. PânzariuA. HăncianuM. ProfireL. Hypoglycemia induced by antidiabetic sulfonylureas.Rev. Med. Chir. Soc. Med. Nat. Iasi2015119257958426204670
    [Google Scholar]
  25. ProksP. ReimannF. GreenN. GribbleF. AshcroftF. Sulfonylurea stimulation of insulin secretion.Diabetes200251Suppl. 3S368S37610.2337/diabetes.51.2007.S36812475777
    [Google Scholar]
  26. RoumieC.L. GreevyR.A. GrijalvaC.G. HungA.M. LiuX. MurffH.J. ElasyT.A. GriffinM.R. Association between intensification of metformin treatment with insulin vs sulfonylureas and cardiovascular events and all-cause mortality among patients with diabetes.JAMA2014311222288229610.1001/jama.2014.431224915260
    [Google Scholar]
  27. SchrammT.K. GislasonG.H. VaagA. RasmussenJ.N. FolkeF. HansenM.L. FosbølE.L. KøberL. NorgaardM.L. MadsenM. HansenP.R. Torp-PedersenC. Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes, with or without a previous myocardial infarction: a nationwide study.Eur. Heart J.201132151900190810.1093/eurheartj/ehr07721471135
    [Google Scholar]
  28. RoumieC.L. HungA.M. GreevyR.A. GrijalvaC.G. LiuX. MurffH.J. ElasyT.A. GriffinM.R. Comparative effectiveness of sulfonylurea and metformin monotherapy on cardiovascular events in type 2 diabetes mellitus: A cohort study.Ann. Intern. Med.2012157960161010.7326/0003‑4819‑157‑9‑201211060‑0000323128859
    [Google Scholar]
  29. ChaudhuryA. DuvoorC. Reddy DendiV.S. KraletiS. ChadaA. RavillaR. MarcoA. ShekhawatN.S. MontalesM.T. KuriakoseK. SasapuA. BeebeA. PatilN. MushamC.K. LohaniG.P. MirzaW. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management.Front. Endocrinol.20178610.3389/fendo.2017.0000628167928
    [Google Scholar]
  30. BaileyC.J. Metformin: Historical overview.Diabetologia20176091566157610.1007/s00125‑017‑4318‑z28776081
    [Google Scholar]
  31. Di MagnoL. Di PastenaF. BordoneR. ConiS. CanettieriG. The mechanism of action of biguanides: New answers to a complex question.Cancers20221413322010.3390/cancers1413322035804992
    [Google Scholar]
  32. ViolletB. GuigasB. GarciaN.S. LeclercJ. ForetzM. AndreelliF. Cellular and molecular mechanisms of metformin: an overview.Clin. Sci. (Lond.)2012122625327010.1042/CS2011038622117616
    [Google Scholar]
  33. MulherinA.J. OhA.H. KimH. GriecoA. LaufferL.M. BrubakerP.L. Mechanisms underlying metformin-induced secretion of glucagon-like peptide-1 from the intestinal L cell.Endocrinology2011152124610461910.1210/en.2011‑148521971158
    [Google Scholar]
  34. NapolitanoA. MillerS. NichollsA.W. BakerD. Van HornS. ThomasE. RajpalD. SpivakA. BrownJ.R. NunezD.J. Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus.PLoS One201497e10077810.1371/journal.pone.010077824988476
    [Google Scholar]
  35. DeFronzoR.A. BuseJ.B. KimT. BurnsC. SkareS. BaronA. FinemanM. Once-daily delayed-release metformin lowers plasma glucose and enhances fasting and postprandial GLP-1 and PYY: results from two randomised trials.Diabetologia20165981645165410.1007/s00125‑016‑3992‑627216492
    [Google Scholar]
  36. MetforminH.L. MetabolismS. Metformin and systemic metabolism.Trends Pharmacol. Sci.20204186888110.1016/j.tips.2020.09.00132994049
    [Google Scholar]
  37. YaoY. SangW. ZhouM. RenG. Antioxidant and alpha-glucosidase inhibitory activity of colored grains in China.J. Agric. Food Chem.201058277077410.1021/jf903234c19904935
    [Google Scholar]
  38. SlamaG. ElgrablyF. SolaA. MbembaJ. LargerE. Postprandial glycaemia: A plea for the frequent use of delta postprandial glycaemia in the treatment of diabetic patients.Diabetes Metab.200632218719210.1016/S1262‑3636(07)70268‑916735970
    [Google Scholar]
  39. LeeA. PatrickP. WishartJ. HorowitzM. MorleyJ.E. The effects of miglitol on glucagon‐like peptide‐1 secretion and appetite sensations in obese type 2 diabetics.Diabetes Obes. Metab.20024532933510.1046/j.1463‑1326.2002.00219.x12190996
    [Google Scholar]
  40. MoritohY. TakeuchiK. HazamaM. Chronic administration of voglibose, an alpha-glucosidase inhibitor, increases active glucagon-like peptide-1 levels by increasing its secretion and decreasing dipeptidyl peptidase-4 activity in ob/ob mice.J. Pharmacol. Exp. Ther.2009329266967610.1124/jpet.108.14805619208898
    [Google Scholar]
  41. FengY. LiQ. OuG. YangM. DuL. Bile acid sequestrants: A review of mechanism and design.J. Pharm. Pharmacol.202173785586110.1093/jpp/rgab00233885783
    [Google Scholar]
  42. BeysenC. MurphyE.J. DeinesK. ChanM. TsangE. GlassA. TurnerS.M. ProtasioJ. RiiffT. HellersteinM.K. Effect of bile acid sequestrants on glucose metabolism, hepatic de novo lipogenesis, and cholesterol and bile acid kinetics in type 2 diabetes: A randomised controlled study.Diabetologia201255243244210.1007/s00125‑011‑2382‑322134839
    [Google Scholar]
  43. NauckM.A. MeierJ.J. The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions.Lancet Diabetes Endocrinol.20164652553610.1016/S2213‑8587(15)00482‑926876794
    [Google Scholar]
  44. DruckerD.J. The biology of incretin hormones.Cell Metab.20063315316510.1016/j.cmet.2006.01.00416517403
    [Google Scholar]
  45. HolstJ.J. The physiology of glucagon-like peptide 1.Physiol. Rev.20078741409143910.1152/physrev.00034.200617928588
    [Google Scholar]
  46. SeinoY. FukushimaM. YabeD. GIP and GLP‐1, the two incretin hormones: Similarities and differences.J. Diabetes Investig.201011-282310.1111/j.2040‑1124.2010.00022.x24843404
    [Google Scholar]
  47. MaruthurN.M. TsengE. HutflessS. WilsonL.M. Suarez-CuervoC. BergerZ. ChuY. IyohaE. SegalJ.B. BolenS. Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes.Ann. Intern. Med.20161641174075110.7326/M15‑265027088241
    [Google Scholar]
  48. PainterN.A. MorelloC.M. SinghR.F. McBaneS.E. An evidence-based and practical approach to using Bydureon™ in patients with type 2 diabetes.J. Am. Board Fam. Med.201326220321010.3122/jabfm.2013.02.12017423471935
    [Google Scholar]
  49. GentilellaR. BianchiC. RossiA. RotellaC.M. Exenatide: A review from pharmacology to clinical practice.Diabetes Obes. Metab.200911654455610.1111/j.1463‑1326.2008.01018.x19383034
    [Google Scholar]
  50. JacksonS.H. MartinT.S. JonesJ.D. SealD. EmanuelF. Liraglutide (victoza): The first once-daily incretin mimetic injection for type-2 diabetes.P&T201035949852920975808
    [Google Scholar]
  51. HarrisK.B. McCartyD.J. Efficacy and tolerability of glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes mellitus.Ther. Adv. Endocrinol. Metab.20156131810.1177/204201881455824225678952
    [Google Scholar]
  52. SeoY.G. Side effects associated with liraglutide treatment for obesity as well as diabetes.J. Obes. Metab. Syndr.2021301121910.7570/jomes2005933071241
    [Google Scholar]
  53. ShaoS. XuQ. YuX. PanR. ChenY. Dipeptidyl peptidase 4 inhibitors and their potential immune modulatory functions.Pharmacol. Ther.202020910750310.1016/j.pharmthera.2020.10750332061923
    [Google Scholar]
  54. KlemannC. WagnerL. StephanM. von HörstenS. Cut to the chase: A review of CD26/dipeptidyl peptidase-4's (DPP4) entanglement in the immune system.Clin. Exp. Immunol.2016185112110.1111/cei.1278126919392
    [Google Scholar]
  55. RohmannN. SchlichtK. GeislerC. HollsteinT. KnappeC. KrauseL. HagenS. BeckmannA. SeoudyA.K. Wietzke-BraunP. HartmannK. SchulteD. TürkK. BeckmannJ. von SchönfelsW. HägeleF.A. Bosy-WestphalA. FrankeA. SchreiberS. LaudesM. Circulating sDPP-4 is increased in obesity and insulin resistance but is not related to systemic metabolic inflammation.J. Clin. Endocrinol. Metab.20211062e592e60110.1210/clinem/dgaa75833084870
    [Google Scholar]
  56. DornhorstA. Insulinotropic meglitinide analogues.Lancet200135892941709171610.1016/S0140‑6736(01)06715‑011728565
    [Google Scholar]
  57. LandgrafR. Meglitinide analogues in the treatment of type 2 diabetes mellitus.Drugs Aging200017541142510.2165/00002512‑200017050‑0000711190420
    [Google Scholar]
  58. Riser TaylorS. HarrisK.B. The clinical efficacy and safety of sodium glucose cotransporter-2 inhibitors in adults with type 2 diabetes mellitus.Pharmacotherapy201333998499910.1002/phar.130323744749
    [Google Scholar]
  59. KandiV. VadakedathS. Clinical trials and clinical research: a comprehensive review.Cureus2023152e3507710.7759/cureus.3507736938261
    [Google Scholar]
  60. JessenL. D’AlessioD. The incretins and beta-cell health: contrasting glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 as a path to understand islet function in diabetes.Gastroenterology200913761891189410.1053/j.gastro.2009.10.01319879210
    [Google Scholar]
  61. HughesC.M. Rozenblatt-RosenO. MilneT.A. CopelandT.D. LevineS.S. LeeJ.C. HayesD.N. ShanmugamK.S. BhattacharjeeA. BiondiC.A. KayG.F. HaywardN.K. HessJ.L. MeyersonM. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus.Mol. Cell200413458759710.1016/S1097‑2765(04)00081‑414992727
    [Google Scholar]
  62. YokoyamaA. WangZ. WysockaJ. SanyalM. AufieroD.J. KitabayashiI. HerrW. ClearyM.L. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression.Mol. Cell. Biol.200424135639564910.1128/MCB.24.13.5639‑5649.200415199122
    [Google Scholar]
  63. ZhangH. LiW. WangQ. WangX. LiF. ZhangC. WuL. LongH. LiuY. LiX. LuoM. LiG. NingG. Glucose-mediated repression of menin promotes pancreatic β-cell proliferation.Endocrinology2012153260261110.1210/en.2011‑146022166975
    [Google Scholar]
  64. KarnikS.K. HughesC.M. GuX. Rozenblatt-RosenO. McLeanG.W. XiongY. MeyersonM. KimS.K. Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27 Kip1 and p18 INK4c .Proc. Natl. Acad. Sci. USA200510241146591466410.1073/pnas.050348410216195383
    [Google Scholar]
  65. MilneT.A. HughesC.M. LloydR. YangZ. Rozenblatt-RosenO. DouY. SchneppR.W. KrankelC. LiVolsiV.A. GibbsD. HuaX. RoederR.G. MeyersonM. HessJ.L. Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors.Proc. Natl. Acad. Sci.2005102374975410.1073/pnas.040883610215640349
    [Google Scholar]
  66. SchneppR.W. ChenY.X. WangH. CashT. SilvaA. DiehlJ.A. BrownE. HuaX. Mutation of tumor suppressor gene Men1 acutely enhances proliferation of pancreatic islet cells.Cancer Res.200666115707571510.1158/0008‑5472.CAN‑05‑451816740708
    [Google Scholar]
  67. SomanathP. MouryaS. LiW. ArcherT.C. LawB. LuD. RughwaniT. KumarL. KinoshitaT. BalakrishnanM. ButlerT. 113-LB: Oral menin inhibitor, BMF-219, displays a significant and durable reduction in HbA1c in a type 2 diabetes mellitus rat model.Diabetes202271Suppl. 1113-LB10.2337/db22‑113‑LB
    [Google Scholar]
  68. BloomgardenZ.T. The potential of β‐cell growth promotion, continued.J. Diabetes202315536636710.1111/1753‑0407.1339637102341
    [Google Scholar]
  69. ZhangW. WelihindaA. MechanicJ. DingH. ZhuL. LuY. DengZ. ShengZ. LvB. ChenY. RobergeJ.Y. SeedB. WangY.X. EGT1442, a potent and selective SGLT2 inhibitor, attenuates blood glucose and HbA1c levels in db/db mice and prolongs the survival of stroke-prone rats.Pharmacol. Res.201163428429310.1016/j.phrs.2011.01.00121215314
    [Google Scholar]
  70. AzzamO. CarnagarinR. Lugo-GavidiaL.M. NoldeJ. MatthewsV.B. SchlaichM.P. Bexagliflozin for type 2 diabetes: An overview of the data.Expert Opin. Pharmacother.202122162095210310.1080/14656566.2021.195991534292100
    [Google Scholar]
  71. CowieM.R. FisherM. SGLT2 inhibitors: Mechanisms of cardiovascular benefit beyond glycaemic control.Nat. Rev. Cardiol.2020171276177210.1038/s41569‑020‑0406‑832665641
    [Google Scholar]
  72. AllegrettiA.S. ZhangW. ZhouW. ThurberT.K. RigbyS.P. Bowman-StroudC. TrescoliC. SerusclatP. FreemanM.W. HalvorsenY.D.C. Safety and effectiveness of bexagliflozin in patients with type 2 diabetes mellitus and stage 3a/3b CKD.Am. J. Kidney Dis.201974332833710.1053/j.ajkd.2019.03.41731101403
    [Google Scholar]
  73. Sciwind Biosciences Announces Initiation of Dosing in Phase 1 Clinical Trial Evaluating XW014, an oral small molecule GLP-1Sciwind Biosciences press release P.2022
    [Google Scholar]
  74. RowlandsJ. HengJ. NewsholmeP. CarlessiR. Pleiotropic Effects of GLP-1 and analogs on cell signaling, metabolism, and function.Front. Endocrinol.2018967210.3389/fendo.2018.0067230532733
    [Google Scholar]
  75. WangJ.Y. WangQ.W. YangX.Y. YangW. LiD.R. JinJ.Y. ZhangH.C. ZhangX.F. GLP−1 receptor agonists for the treatment of obesity: Role as a promising approach.Front. Endocrinol.202314108579910.3389/fendo.2023.108579936843578
    [Google Scholar]
  76. HinnenD. Glucagon-Like Peptide 1 Receptor Agonists for Type 2 Diabetes.Diabetes Spectr.201730320221010.2337/ds16‑002628848315
    [Google Scholar]
  77. NevolaR. EpifaniR. ImbrianiS. TortorellaG. ApreaC. GalieroR. RinaldiL. MarfellaR. SassoF.C. GLP-1 receptor agonists in non-alcoholic fatty liver disease: Current evidence and future perspectives.Int. J. Mol. Sci.2023242170310.3390/ijms2402170336675217
    [Google Scholar]
  78. D&D Pharmatech Announces Rapid, Clinically Significant Reductions in Liver Fat Achieved in Four Weeks Treating NAFLD Patients with DD01, a Novel Long-Acting GLP-1/Glucagon Receptor Agonist.D&D Pharmatech press release B.2023
    [Google Scholar]
  79. GuanH.P. XiongY. Learn from failures and stay hopeful to GPR40, a GPCR target with robust efficacy, for therapy of metabolic disorders.Front. Pharmacol.202213104382810.3389/fphar.2022.104382836386134
    [Google Scholar]
  80. YoonJ.M. KimD. LeeD.G. anK.M. LeeM.J. HongC.H. HongD. KwakH-J. JeI-G. SongH-J. 118-LB: Preclinical development of IDG-16177 as a potent GPR40 agonist for treatment of type 2 diabetes.Diabetes202069Suppl. 1118-LB10.2337/db20‑118‑LB
    [Google Scholar]
  81. AgrawalN. DasaradhiP.V.N. MohmmedA. MalhotraP. BhatnagarR.K. MukherjeeS.K. RNA interference: Biology, mechanism, and applications.Microbiol. Mol. Biol. Rev.200367465768510.1128/MMBR.67.4.657‑685.200314665679
    [Google Scholar]
  82. ScreenerM. Submits CTA Application for Aln-Khk, an Investigational RNAi therapeutic for the Treatment of Type 2 DiabetesAlnylam Pharmaceuticals, Inc2022
    [Google Scholar]
  83. ChanL.S.A. WellsR.A. Cross-talk between PPARs and the Partners of RXR: A molecular perspective.PPAR Res.200920091910.1155/2009/92530920052392
    [Google Scholar]
  84. LefereS. PuengelT. HundertmarkJ. PennersC. FrankA.K. GuillotA. de MuynckK. HeymannF. AdarbesV. DefrêneE. EstivaletC. GeertsA. DevisscherL. WettsteinG. TackeF. Differential effects of selective and pan-PPAR agonists on experimental steatohepatitis and hepatic macrophages☆.J. Hepatol.202073475777010.1016/j.jhep.2020.04.02532360434
    [Google Scholar]
  85. InzucchiS.E. BergenstalR.M. BuseJ.B. DiamantM. FerranniniE. NauckM. PetersA.L. TsapasA. WenderR. MatthewsD.R. Management of hyperglycaemia in type 2 diabetes, 2015: A patient-centred approach. update to a position statement of the american diabetes association and the european association for the study of diabetes.Diabetologia201558342944210.1007/s00125‑014‑3460‑025583541
    [Google Scholar]
  86. Al-MajedA. BakheitA.H.H. Abdel AzizH.A. AlharbiH. Al-JenoobiF.I. Pioglitazone.Profiles Drug Subst. Excip. Relat. Methodol.20164137943810.1016/bs.podrm.2015.11.00226940171
    [Google Scholar]
  87. JananiC. Ranjitha KumariB.D. PPAR gamma gene : A review.Diabetes Metab. Syndr.201591465010.1016/j.dsx.2014.09.01525450819
    [Google Scholar]
  88. RajagopalanS. DuttaP. HotaD. BhansaliA. SrinivasanA. ChakrabartiA. Effect of low dose pioglitazone on glycemic control and insulin resistance in Type 2 diabetes: A randomized, double blind, clinical trial.Diabetes Res. Clin. Pract.20151093e32e3510.1016/j.diabres.2015.05.03026254513
    [Google Scholar]
  89. OhtakeY. SatoT. KobayashiT. NishimotoM. TakaN. TakanoK. YamamotoK. OhmoriM. YamaguchiM. TakamiK. YeuS.Y. AhnK.H. MatsuokaH. MorikawaK. SuzukiM. HagitaH. OzawaK. YamaguchiK. KatoM. IkedaS. Discovery of tofogliflozin, a novel C-arylglucoside with an O-spiroketal ring system, as a highly selective sodium glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes.J. Med. Chem.201255177828784010.1021/jm300884k22889351
    [Google Scholar]
  90. SuzukiM. HondaK. FukazawaM. OzawaK. HagitaH. KawaiT. TakedaM. YataT. KawaiM. FukuzawaT. KobayashiT. SatoT. KawabeY. IkedaS. Tofogliflozin, a potent and highly specific sodium/glucose cotransporter 2 inhibitor, improves glycemic control in diabetic rats and mice.J. Pharmacol. Exp. Ther.2012341369270110.1124/jpet.112.19159322410641
    [Google Scholar]
  91. RosenwasserR.F. RosenwasserJ.N. SuttonD. ChoksiR. EpsteinB. Tofogliflozin: A highly selective SGLT2 inhibitor for the treatment of type 2 diabetes.Drugs Today2014501173974510.1358/dot.2014.50.11.223226725525634
    [Google Scholar]
  92. PooleR.M. ProsslerJ.E. Tofogliflozin: first global approval.Drugs201474893994410.1007/s40265‑014‑0229‑124848755
    [Google Scholar]
  93. DeFronzoR.A. DavidsonJ.A. Del PratoS. The role of the kidneys in glucose homeostasis: A new path towards normalizing glycaemia.Diabetes Obes. Metab.201214151410.1111/j.1463‑1326.2011.01511.x21955459
    [Google Scholar]
  94. IkedaS. TakanoY. CynshiO. TanakaR. ChristA.D. BoerlinV. BeyerU. BeckA. CiorciaroC. MeyerM. KadowakiT. A novel and selective sodium‐glucose cotransporter‐2 inhibitor, tofogliflozin, improves glycaemic control and lowers body weight in patients with type 2 diabetes mellitus.Diabetes Obes. Metab.2015171098499310.1111/dom.1253826179482
    [Google Scholar]
  95. KakuK. WatadaH. IwamotoY. UtsunomiyaK. TerauchiY. TobeK. TanizawaY. ArakiE. UedaM. SuganamiH. WatanabeD. Efficacy and safety of monotherapy with the novel sodium/glucose cotransporter-2 inhibitor tofogliflozin in Japanese patients with type 2 diabetes mellitus: A combined Phase 2 and 3 randomized, placebo-controlled, double-blind, parallel-group comparative study.Cardiovasc. Diabetol.20141316510.1186/1475‑2840‑13‑6524678906
    [Google Scholar]
  96. TanizawaY. KakuK. ArakiE. TobeK. TerauchiY. UtsunomiyaK. IwamotoY. WatadaH. OhtsukaW. WatanabeD. SuganamiH. Long-term safety and efficacy of tofogliflozin, a selective inhibitor of sodium-glucose cotransporter 2, as monotherapy or in combination with other oral antidiabetic agents in Japanese patients with type 2 diabetes mellitus: Multicenter, open-label, randomized controlled trials.Expert Opin. Pharmacother.201415674976610.1517/14656566.2014.88768024512053
    [Google Scholar]
  97. TaoJ. SangD. ZhenL. ZhangX. LiY. WangG. ChenS. WuS. ZhangW. Elevated urine albumin-to-creatinine ratio increases the risk of new-onset heart failure in patients with type 2 diabetes.Cardiovasc. Diabetol.20232217010.1186/s12933‑023‑01796‑636966320
    [Google Scholar]
  98. WangJ. WangY. LiY. HuY. JinL. WangW. GaoZ. TangX. YanL. WanQ. LuoZ. QinG. ChenL. GuW. LyvZ. MuY. High normal urinary albumin–creatinine ratio is associated with hypertension, type 2 diabetes mellitus, HTN With T2DM, dyslipidemia, and cardiovascular diseases in the chinese population: A report from the reaction study.Front. Endocrinol.20221386456210.3389/fendo.2022.86456235669685
    [Google Scholar]
  99. MasaroneM. FedericoA. AbenavoliL. LoguercioC. PersicoM. Non alcoholic fatty liver: Epidemiology and natural history.Rev. Recent Clin. Trials20159312613310.2174/157488710966614121611114325514916
    [Google Scholar]
  100. LonardoA. BellentaniS. ArgoC.K. BallestriS. ByrneC.D. CaldwellS.H. Cortez-PintoH. GriecoA. MachadoM.V. MieleL. TargherG. Epidemiological modifiers of non-alcoholic fatty liver disease: Focus on high-risk groups.Dig. Liver Dis.20154712997100610.1016/j.dld.2015.08.00426454786
    [Google Scholar]
  101. YounossiZ.M. GolabiP. de AvilaL. PaikJ.M. SrishordM. FukuiN. QiuY. BurnsL. AfendyA. NaderF. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis.J. Hepatol.201971479380110.1016/j.jhep.2019.06.02131279902
    [Google Scholar]
  102. YounossiZ. TackeF. ArreseM. Chander SharmaB. MostafaI. BugianesiE. Wai-Sun WongV. YilmazY. GeorgeJ. FanJ. VosM.B. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis.Hepatology20196962672268210.1002/hep.3025130179269
    [Google Scholar]
  103. Calzadilla BertotL. AdamsL. The natural course of non-alcoholic fatty liver disease.Int. J. Mol. Sci.201617577410.3390/ijms1705077427213358
    [Google Scholar]
  104. Di BisceglieA.M. WattsG.F. LavinP. YuM. BaiR. LiuL. Pharmacokinetics and pharmacodynamics of HTD1801 (berberine ursodeoxycholate, BUDCA) in patients with hyperlipidemia.Lipids Health Dis.202019123910.1186/s12944‑020‑01406‑433183320
    [Google Scholar]
  105. HegadeV.S. SpeightR.A. EtheringtonR.E. JonesD.E.J. Novel bile acid therapeutics for the treatment of chronic liver diseases.Therap. Adv. Gastroenterol.20169337639110.1177/1756283X1663071227134666
    [Google Scholar]
  106. HarrisonS.A. GunnN. NeffG.W. KohliA. LiuL. FlyerA. GoldkindL. Di BisceglieA.M. A phase 2, proof of concept, randomised controlled trial of berberine ursodeoxycholate in patients with presumed non-alcoholic steatohepatitis and type 2 diabetes.Nat. Commun.2021121550310.1038/s41467‑021‑25701‑534535644
    [Google Scholar]
  107. FrancoisH. LecruL. The role of cannabinoid receptors in renal diseases.Curr. Med. Chem.201825779380110.2174/092986732466617091117002028901271
    [Google Scholar]
  108. TamJ. The emerging role of the endocannabinoid system in the pathogenesis and treatment of kidney diseases.J. Basic Clin. Physiol. Pharmacol.201627326727610.1515/jbcpp‑2015‑005526280171
    [Google Scholar]
  109. BaruttaF. CorbelliA. MastrocolaR. GambinoR. Di MarzoV. PinachS. RastaldiM.P. PerinP.C. GrudenG. Cannabinoid receptor 1 blockade ameliorates albuminuria in experimental diabetic nephropathy.Diabetes20105941046105410.2337/db09‑133620068137
    [Google Scholar]
  110. JaniakP. PoirierB. BidouardJ.P. CadrouveleC. PierreF. GouraudL. BarbosaI. DedioJ. MaffrandJ.P. Le FurG. O’ConnorS. HerbertJ.M. Blockade of cannabinoid CB1 receptors improves renal function, metabolic profile, and increased survival of obese Zucker rats.Kidney Int.200772111345135710.1038/sj.ki.500254017882151
    [Google Scholar]
  111. PacherP. BátkaiS. KunosG. The endocannabinoid system as an emerging target of pharmacotherapy.Pharmacol. Rev.200658338946210.1124/pr.58.3.216968947
    [Google Scholar]
  112. JourdanT. GodlewskiG. KunosG. Endocannabinoid regulation of β ‐cell functions: implications for glycaemic control and diabetes.Diabetes Obes. Metab.201618654955710.1111/dom.1264626880114
    [Google Scholar]
  113. Osei-HyiamanD. LiuJ. ZhouL. GodlewskiG. Harvey-WhiteJ. JeongW. BátkaiS. MarsicanoG. LutzB. BuettnerC. KunosG. Hepatic CB1 receptor is required for development of diet-induced steatosis, dyslipidemia, and insulin and leptin resistance in mice.J. Clin. Invest.200811893160316910.1172/JCI3482718677409
    [Google Scholar]
  114. LiuJ. ZhouL. XiongK. GodlewskiG. MukhopadhyayB. TamJ. YinS. GaoP. ShanX. PickelJ. BatallerR. O’hareJ. SchererT. BuettnerC. KunosG. Hepatic cannabinoid receptor-1 mediates diet-induced insulin resistance via inhibition of insulin signaling and clearance in mice.Gastroenterology2012142512181228.e110.1053/j.gastro.2012.01.03222307032
    [Google Scholar]
  115. CinarR. GodlewskiG. LiuJ. TamJ. JourdanT. MukhopadhyayB. Harvey-WhiteJ. KunosG. Hepatic cannabinoid-1 receptors mediate diet-induced insulin resistance by increasing de novo synthesis of long-chain ceramides.Hepatology201459114315310.1002/hep.2660623832510
    [Google Scholar]
  116. JacquotL. PointeauO. Roger-VilleboeufC. Passilly-DegraceP. BelkaidR. RegazzoniI. LeemputJ. BuchC. DemizieuxL. VergèsB. DegraceP. CraterG. JourdanT. Therapeutic potential of a novel peripherally restricted CB1R inverse agonist on the progression of diabetic nephropathy.Front. Neurol.20233113841610.3389/fneph.2023.113841637675364
    [Google Scholar]
  117. MatschinskyF.M. WilsonD.F. The central role of glucokinase in glucose homeostasis: A perspective 50 years after demonstrating the presence of the enzyme in islets of langerhans.Front. Physiol.20191014810.3389/fphys.2019.0014830949058
    [Google Scholar]
  118. PfefferkornJ.A. Guzman-PerezA. OatesP.J. LitchfieldJ. AspnesG. BasakA. BenbowJ. BerlinerM.A. BianJ. ChoiC. Freeman-CookK. CorbettJ.W. DidiukM. DunetzJ.R. FilipskiK.J. HungerfordW.M. JonesC.S. KarkiK. LingA. LiJ-C. PatelL. PerreaultC. RisleyH. SaenzJ. SongW. TuM. AielloR. AtkinsonK. BarucciN. BeebeD. BourassaP. BourbounaisF. BrodeurA.M. BurbeyR. ChenJ. D’AquilaT. DerksenD.R. Haddish-BerhaneN. HuangC. LandroJ. Lee LapworthA. MacDougallM. PerregauxD. PettersenJ. RobertsonA. TanB. TreadwayJ.L. LiuS. QiuX. KnafelsJ. AmmiratiM. SongX. DaSilva-JardineP. LirasS. SweetL. RolphT.P. Designing glucokinase activators with reduced hypoglycemia risk: discovery of N,N-dimethyl-5-(2-methyl-6-((5-methylpyrazin-2-yl)-carbamoyl)benzofuran-4-yloxy)pyrimidine-2-carboxamide as a clinical candidate for the treatment of type 2 diabetes mellitus.Med.Chem.Comm.20112982883910.1039/c1md00116g
    [Google Scholar]
  119. BorzilleriK.A. PfefferkornJ.A. Guzman-PerezA. LiuS. QiuX. ChrunykB.A. SongX. TuM. FilipskiK.J. AielloR. DerksenD.R. BourbonaisF.J. LandroJ. BourassaP. D’AquilaT. BakerL. BarrucciN. LitchfieldJ. AtkinsonK. RolphT.P. WithkaJ.M. Optimizing glucokinase activator binding kinetics to lower in vivo hypoglycemia risk.Med.Chem.Comm.20145680280710.1039/C4MD00027G
    [Google Scholar]
  120. ZhengS. ShaoF. DingY. FuZ. FuQ. DingS. XieL. ChenJ. ZhouS. ZhangH. ZhouH. ChenY. SunC. ZhuJ. ZhengX. YangT. Safety, pharmacokinetics, and pharmacodynamics of globalagliatin, a glucokinase activator, in chinese patients with type 2 diabetes mellitus: A randomized, phase ib, 28-day ascending dose study.Clin. Drug Investig.202040121155116610.1007/s40261‑020‑00971‑x33125674
    [Google Scholar]
  121. DenneyW.S. DenhamD.S. RiggsM.R. AminN.B. Glycemic effect and safety of a systemic, partial glucokinase activator, PF‐04937319, in patients with type 2 diabetes mellitus inadequately controlled on metformin a randomized, crossover, active‐controlled study.Clin. Pharmacol. Drug Dev.20165651752710.1002/cpdd.26127870481
    [Google Scholar]
  122. KalraS. DasA.K. SahayR.K. BaruahM.P. TiwaskarM. DasS. ChatterjeeS. SabooB. BantwalG. BhattacharyaS. PriyaG. ChawlaM. BrarK. RazaS.A. AamirA.H. ShresthaD. SomasundaramN. KatulandaP. AfsanaF. SelimS. NaseriM.W. LatheefA. SumanatillekeM. Consensus recommendations on GLP-1 RA use in the management of type 2 diabetes mellitus: South asian task force.Diabetes Ther.20191051645171710.1007/s13300‑019‑0669‑431359367
    [Google Scholar]
  123. CerneaS. RazI. Therapy in the early stage: Incretins.Diabetes Care201134Suppl 2Suppl. 2S264S27110.2337/dc11‑s22321525466
    [Google Scholar]
  124. AronoffS.L. BerkowitzK. ShreinerB. WantL. Glucose metabolism and regulation: beyond insulin and glucagon.Diabetes Spectr.200417318319010.2337/diaspect.17.3.183
    [Google Scholar]
  125. WyshamC.H. MacConellL. HardyE. Efficacy and safety of multiple doses of exenatide once-monthly suspension in patients with type 2 diabetes: A Phase II randomized clinical trial.Diabetes Care201639101768177610.2337/dc16‑023827436275
    [Google Scholar]
  126. BhavsarS. MudaliarS. CherringtonA. Evolution of exenatide as a diabetes therapeutic.Curr. Diabetes Rev.20139216119310.2174/157339981130902000723256660
    [Google Scholar]
  127. GutzwillerJ.P. DreweJ. GökeB. SchmidtH. RohrerB. LareidaJ. BeglingerC. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2.Am. J. Physiol. Regul. Integr. Comp. Physiol.19992765R1541R154410.1152/ajpregu.1999.276.5.R154110233049
    [Google Scholar]
  128. DeYoungM.B. MacConellL. SarinV. TrautmannM. HerbertP. Encapsulation of exenatide in poly-(D,L-lactide-co-glycolide) microspheres produced an investigational long-acting once-weekly formulation for type 2 diabetes.Diabetes Technol. Ther.201113111145115410.1089/dia.2011.005021751887
    [Google Scholar]
  129. KnopF.K. BrøndenA. VilsbøllT. Exenatide: pharmacokinetics, clinical use, and future directions.Expert Opin. Pharmacother.201718655557110.1080/14656566.2017.128246328085521
    [Google Scholar]
  130. AssociationA.D. 9. Pharmacologic approaches to glycemic treatment: Standards of medical care in diabetes—2019.Diabetes Care201942Suppl. 1S90S10210.2337/dc19‑S00930559235
    [Google Scholar]
  131. TobinG.S. CavaghanM.K. HoogwerfB.J. McGillJ.B. Addition of exenatide twice daily to basal insulin for the treatment of type 2 diabetes: Clinical studies and practical approaches to therapy.Int. J. Clin. Pract.201266121147115710.1111/ijcp.1203223061886
    [Google Scholar]
  132. BuseJ.B. HenryR.R. HanJ. KimD.D. FinemanM.S. BaronA.D. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes.Diabetes Care200427112628263510.2337/diacare.27.11.262815504997
    [Google Scholar]
  133. DeFronzoR.A. RatnerR.E. HanJ. KimD.D. FinemanM.S. BaronA.D. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes.Diabetes Care20052851092110010.2337/diacare.28.5.109215855572
    [Google Scholar]
  134. KangJ.S. DeLucaP.P. LeeK.C. Emerging PEGylated drugs.Expert Opin. Emerg. Drugs200914236338010.1517/1472821090290784719453284
    [Google Scholar]
  135. CuiH. ZhaoC.Y. LvY. WeiM.J. ZhuY. LiY. XiaY.H. LiuY. TianJ.H. ZhangP. Safety, tolerability and pharmacokinetics of single dose polyethylene glycolated exenatide injection (PB-119) in healthy volunteers.Eur. J. Drug Metab. Pharmacokinet.202045336136910.1007/s13318‑020‑00605‑932006325
    [Google Scholar]
  136. Sciwind Biosciences Announces Positive Topline Results from 20-week Phase 2 Clinical Trial of XW003 (Ecnoglutide), a novel long-lasting GLP-1 analogue, in Adult Patients with Type 2 Diabetes in ChinaHangzhou Sciwind Biosciences Co. L.2022
    [Google Scholar]
  137. MiaoZ. NucciG. AminN. SharmaR. MascittiV. TugnaitM. VazA.D. CallegariE. KalgutkarA.S. Pharmacokinetics, metabolism, and excretion of the antidiabetic agent ertugliflozin (PF-04971729) in healthy male subjects.Drug Metab. Dispos.201341244545610.1124/dmd.112.04955123169609
    [Google Scholar]
  138. KalgutkarA.S. TugnaitM. ZhuT. KimotoE. MiaoZ. MascittiV. YangX. TanB. WalskyR.L. ChupkaJ. FengB. RobinsonR.P. Preclinical species and human disposition of PF-04971729, a selective inhibitor of the sodium-dependent glucose cotransporter 2 and clinical candidate for the treatment of type 2 diabetes mellitus.Drug Metab. Dispos.20113991609161910.1124/dmd.111.04067521690265
    [Google Scholar]
  139. Abdul-GhaniM.A. DeFronzoR.A. Inhibition of renal glucose reabsorption: A novel strategy for achieving glucose control in type 2 diabetes mellitus.Endocr. Pract.200814678279010.4158/EP.14.6.78218996802
    [Google Scholar]
  140. CoskunT. SloopK.W. LoghinC. Alsina-FernandezJ. UrvaS. BokvistK.B. CuiX. BriereD.A. CabreraO. RoellW.C. KuchibhotlaU. MoyersJ.S. BensonC.T. GimenoR.E. D’AlessioD.A. HauptA. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: From discovery to clinical proof of concept.Mol. Metab.20181831410.1016/j.molmet.2018.09.00930473097
    [Google Scholar]
  141. FríasJ.P. Tirzepatide: A glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) dual agonist in development for the treatment of type 2 diabetes.Expert Rev. Endocrinol. Metab.202015637939410.1080/17446651.2020.183075933030356
    [Google Scholar]
  142. MinT. BainS.C. The role of tirzepatide, dual GIP and GLP-1 receptor agonist, in the management of type 2 diabetes: The SURPASS clinical trials.Diabetes Ther.202112114315710.1007/s13300‑020‑00981‑033325008
    [Google Scholar]
  143. MengW. EllsworthB.A. NirschlA.A. McCannP.J. PatelM. GirotraR.N. WuG. SherP.M. MorrisonE.P. BillerS.A. ZahlerR. DeshpandeP.P. PullockaranA. HaganD.L. MorganN. TaylorJ.R. ObermeierM.T. HumphreysW.G. KhannaA. DiscenzaL. RobertsonJ.G. WangA. HanS. WetterauJ.R. JanovitzE.B. FlintO.P. WhaleyJ.M. WashburnW.N. Discovery of dapagliflozin: A potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes.J. Med. Chem.20085151145114910.1021/jm701272q18260618
    [Google Scholar]
  144. KomoroskiB. VachharajaniN. FengY. LiL. KornhauserD. PfisterM. Dapagliflozin, a novel, selective SGLT2 inhibitor, improved glycemic control over 2 weeks in patients with type 2 diabetes mellitus.Clin. Pharmacol. Ther.200985551351910.1038/clpt.2008.25019129749
    [Google Scholar]
  145. BaileyC.J. GrossJ.L. PietersA. BastienA. ListJ.F. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: A randomised, double-blind, placebo-controlled trial.Lancet201037597332223223310.1016/S0140‑6736(10)60407‑220609968
    [Google Scholar]
  146. MathieuC. RanettiA.E. LiD. EkholmE. CookW. HirshbergB. ChenH. HansenL. IqbalN. Randomized, double-blind, phase 3 trial of triple therapy with dapagliflozin add-on to saxagliptin plus metformin in type 2 diabetes.Diabetes Care201538112009201710.2337/dc15‑077926246458
    [Google Scholar]
  147. LuJ. FuL. LiY. GengJ. QinL. LiP. ZhengH. SunZ. LiY. ZhangL. SunY. ChenD. QinG. LuW. GuoY. ZhangY. LiuH. ZhangT. ZouJ. Henagliflozin monotherapy in patients with type 2 diabetes inadequately controlled on diet and exercise: A randomized, double‐blind, placebo‐controlled, phase 3 trial.Diabetes Obes. Metab.20212351111112010.1111/dom.1431433417292
    [Google Scholar]
  148. WengJ. ZengL. ZhangY. QuS. WangX. LiP. FuL. MaB. YeS. SunJ. LuW. LiuZ. ChenD. ChengZ. LiuH. ZhangT. ZouJ. Henagliflozin as add‐on therapy to metformin in patients with type 2 diabetes inadequately controlled with metformin: A multicentre, randomized, double‐blind, placebo‐controlled, phase 3 trial.Diabetes Obes. Metab.20212381754176410.1111/dom.1438933769656
    [Google Scholar]
  149. HeiseT. Seewaldt-BeckerE. MachaS. HantelS. PinnettiS. SemanL. WoerleH.J. Safety, tolerability, pharmacokinetics and pharmacodynamics following 4 weeks’ treatment with empagliflozin once daily in patients with type 2 diabetes.Diabetes Obes. Metab.201315761362110.1111/dom.1207323356556
    [Google Scholar]
  150. WannerC. InzucchiS.E. LachinJ.M. FitchettD. von EynattenM. MattheusM. JohansenO.E. WoerleH.J. BroedlU.C. ZinmanB. Empagliflozin and progression of kidney disease in type 2 diabetes.N. Engl. J. Med.2016375432333410.1056/NEJMoa151592027299675
    [Google Scholar]
  151. ŠkrtićM. YangG.K. PerkinsB.A. SoleymanlouN. LytvynY. von EynattenM. WoerleH.J. JohansenO.E. BroedlU.C. HachT. SilvermanM. CherneyD.Z.I. Characterisation of glomerular haemodynamic responses to SGLT2 inhibition in patients with type 1 diabetes and renal hyperfiltration.Diabetologia201457122599260210.1007/s00125‑014‑3396‑425280671
    [Google Scholar]
  152. CherneyD.Z.I. PerkinsB.A. SoleymanlouN. MaioneM. LaiV. LeeA. FaganN.M. WoerleH.J. JohansenO.E. BroedlU.C. von EynattenM. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus.Circulation2014129558759710.1161/CIRCULATIONAHA.113.00508124334175
    [Google Scholar]
  153. ŠkrtićM. CherneyD.Z.I. Sodium–glucose cotransporter-2 inhibition and the potential for renal protection in diabetic nephropathy.Curr. Opin. Nephrol. Hypertens.20152419610310.1097/MNH.000000000000008425470017
    [Google Scholar]
  154. KapoorD. AldredH. ClarkS. ChannerK.S. JonesT.H. Clinical and biochemical assessment of hypogonadism in men with type 2 diabetes: correlations with bioavailable testosterone and visceral adiposity.Diabetes Care200730491191710.2337/dc06‑142617392552
    [Google Scholar]
  155. RhodenE.L. RibeiroE.P. TelokenC. SoutoC.A.V. Diabetes mellitus is associated with subnormal serum levels of free testosterone in men.BJU Int.200596686787010.1111/j.1464‑410X.2005.05728.x16153219
    [Google Scholar]
  156. GrossmannM. ThomasM.C. PanagiotopoulosS. SharpeK. MacIsaacR.J. ClarkeS. ZajacJ.D. JerumsG. Low testosterone levels are common and associated with insulin resistance in men with diabetes.J. Clin. Endocrinol. Metab.20089351834184010.1210/jc.2007‑217718319314
    [Google Scholar]
  157. CoronaG. MannucciE. PetroneL. RiccaV. BalerciaG. MansaniR. ChiariniV. GiommiR. FortiG. MaggiM. Association of hypogonadism and type II diabetes in men attending an outpatient erectile dysfunction clinic.Int. J. Impot. Res.200618219019710.1038/sj.ijir.390139116136189
    [Google Scholar]
  158. HackettG.I. Erectile dysfunction, diabetes and cardiovascular risk.British Journal of Diabetes2016162525710.15277/bjd.2016.076
    [Google Scholar]
  159. Barrett-ConnorE. von MühlenD.G. Kritz-SilversteinD. Bioavailable testosterone and depressed mood in older men: the Rancho Bernardo Study.J. Clin. Endocrinol. Metab.199984257357710.1210/jcem.84.2.549510022418
    [Google Scholar]
  160. Echouffo-TcheuguiJ.B. Dagogo-JackS. Preventing diabetes mellitus in developing countries.Nat. Rev. Endocrinol.20128955756210.1038/nrendo.2012.4622488646
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998294919240506044544
Loading
/content/journals/cdr/10.2174/0115733998294919240506044544
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test