Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Background

Diabetes mellitus remains a global health challenge, demanding innovative therapeutic strategies. Herbal remedies have garnered attention for their potential in diabetes management, and recent advancements in nanotechnology have enabled the development of herbal nanoformulations with enhanced efficacy and bioavailability.

Objective

This review aimed to comprehensively analyze the mechanisms, formulations, and clinical impact of herbal nanoformulations in managing diabetes mellitus.

Methods

A systematic literature search was conducted to identify relevant studies exploring the mechanisms of action, various formulations, and clinical outcomes of herbal nanoformulations in diabetes management.

Results

Herbal nanoformulations exert their anti-diabetic effects through multiple mechanisms, including enhanced bioavailability, improved tissue targeting, and potentiation of insulin signaling pathways. Various herbal ingredients, such as bitter melon, fenugreek, and Gymnema sylvestre, have been encapsulated into nanocarriers, like liposomes, polymeric nanoparticles, and solid lipid nanoparticles, to enhance their therapeutic potential. Clinical studies have demonstrated promising results, showing improvements in glycemic control, lipid profile, and antioxidant status with minimal adverse effects.

Conclusion

Herbal nanoformulations represent a promising avenue for the management of diabetes mellitus, offering improved therapeutic outcomes compared to conventional herbal preparations. Further research is warranted to optimize formulation strategies, elucidate long-term safety profiles, and explore the potential synergistic effects of herbal nanoformulations in combination therapies for diabetes management.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998288592240308073925
2024-03-18
2024-11-22
Loading full text...

Full text loading...

References

  1. DiSantoR.M. SubramanianV. GuZ. Recent advances in nanotechnology for diabetes treatment.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20157454856410.1002/wnan.1329 25641955
    [Google Scholar]
  2. MarellaS. TollamaduguN.V.K.V.P. Nanotechnological approaches for the development of herbal drugs in treatment of diabetes mellitus – A critical review.IET Nanobiotechnol.201812554955610.1049/iet‑nbt.2017.0242 30095411
    [Google Scholar]
  3. RuanS. GuoX. RenY. CaoG. XingH. ZhangX. Nanomedicines based on trace elements for intervention of diabetes mellitus.Biomed. Pharmacother.202316811568410.1016/j.biopha.2023.115684 37820567
    [Google Scholar]
  4. BonifácioB.V. SilvaP.B. RamosM.A. NegriK.M. BauabT.M. ChorilliM. Nanotechnology-based drug delivery systems and herbal medicines: A review.Int. J. Nanomedicine20149115 24363556
    [Google Scholar]
  5. AnsariS.H. SameemM. IslamF. Influence of nanotechnology on herbal drugs: A Review.J. Adv. Pharm. Technol. Res.20123314214610.4103/2231‑4040.101006 23057000
    [Google Scholar]
  6. TenchovR. BirdR. CurtzeA.E. ZhouQ. Lipid nanoparticles—from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement.ACS Nano20211511169821701510.1021/acsnano.1c04996 34181394
    [Google Scholar]
  7. Babu SharmaR. Nanoemulgel: A novel approach for topical delivery system: Updated review.Int J Drug Dev Res2023151988
    [Google Scholar]
  8. Davatgaran TaghipourY. HajialyaniM. NaseriR. Nanoformulations of natural products for management of metabolic syndrome.Int. J. Nanomedicine2019145303532110.2147/IJN.S213831 31406461
    [Google Scholar]
  9. RahmanMM DharPS Sumaia , et al. Exploring the plant-derived bioactive substances as antidiabetic agent: An extensive review.Biomed. Pharmacother.202215211321710.1016/j.biopha.2022.113217 35679719
    [Google Scholar]
  10. FarihiA. BouhrimM. ChigrF. Exploring medicinal herbs’ therapeutic potential and molecular docking analysis for compounds as potential inhibitors of human acetylcholinesterase in alzheimer’s disease treatment.Medicina20235910181210.3390/medicina59101812 37893530
    [Google Scholar]
  11. KrzyszczykP AcevedoA DavidoffEJ TimminsLM Marrero-BerriosI PatelM The growing role of precision and personalized medicine for cancer treatment Technology (Singap World Sci)201863-47910010.1142/S2339547818300020
    [Google Scholar]
  12. ZhaoQ. LuanX. ZhengM. Synergistic mechanisms of constituents in herbal extracts during intestinal absorption: Focus on natural occurring nanoparticles.Pharmaceutics202012212810.3390/pharmaceutics12020128 32028739
    [Google Scholar]
  13. Singh BhadoriyaS. MangalA. MadoriyaN. DixitP. Bioavailability and bioactivity enhancement of herbal drugs by “Nanotechnology”: A review.J Curr Pharm Res20118817
    [Google Scholar]
  14. KhogtaS. PatelJ. BarveK. LondheV. Herbal nano-formulations for topical delivery.J. Herb. Med.20201420
    [Google Scholar]
  15. GuoM. QinS. WangS. Herbal medicine nanocrystals: A potential novel therapeutic strategy.Molecules20232817637010.3390/molecules28176370 37687199
    [Google Scholar]
  16. KesarwaniK. GuptaR. MukerjeeA. Bioavailability enhancers of herbal origin: An overview.Asian Pac. J. Trop. Biomed.20133425326610.1016/S2221‑1691(13)60060‑X 23620848
    [Google Scholar]
  17. BaskarV. i SM, A S, Sruthi, Ali J, K ST. Historic review on modern herbal nanogel formulation and delivery methods.Int. J. Pharm. Pharm. Sci.20181010110.22159/ijpps.2018v10i10.23071
    [Google Scholar]
  18. SubramanianD.A. LangerR. TraversoG. Mucus interaction to improve gastrointestinal retention and pharmacokinetics of orally administered nano-drug delivery systems.J. Nanobiotechnology20222036210.1186/s12951‑022‑01539‑x
    [Google Scholar]
  19. DateA.A. HanesJ. EnsignL.M. Nanoparticles for oral delivery: Design, evaluation and state-of-the-art.J. Control. Release201624050452610.1016/j.jconrel.2016.06.016 27292178
    [Google Scholar]
  20. VeselovV.V. NosyrevA.E. JicsinszkyL. AlyautdinR.N. CravottoG. Targeted delivery methods for anticancer drugs.Cancers202214362210.3390/cancers14030622 35158888
    [Google Scholar]
  21. IbrahimM. Garcia-ContrerasL. Mechanisms of absorption and elimination of drugs administered by inhalation.Ther. Deliv.2013481027104510.4155/tde.13.67 23919477
    [Google Scholar]
  22. RayP. HaideriN. HaqueI. MohammedO. ChakrabortyS. BanerjeeS. The impact of nanoparticles on the immune system: A gray zone of nanomedicine.J Immunological Sci202151193110.29245/2578‑3009/2021/1.1206
    [Google Scholar]
  23. WangL. HuC. ShaoL. The antimicrobial activity of nanoparticles: present situation and prospects for the future.Int. J. Nanomedicine2017121227124910.2147/IJN.S121956 28243086
    [Google Scholar]
  24. ForresterS.J. KikuchiD.S. HernandesM.S. XuQ. GriendlingK.K. Reactive oxygen species in metabolic and inflammatory signaling.Circ. Res.20181226877902
    [Google Scholar]
  25. MoradiS.Z. MomtazS. BayramiZ. FarzaeiM.H. AbdollahiM. Nanoformulations of herbal extracts in treatment of neurodegenerative disorders.Front. Bioeng. Biotechnol.2020823810.3389/fbioe.2020.00238
    [Google Scholar]
  26. MallakpourS. HussainC.M. Handbook of Consumer Nanoproducts.SpringerLink202210.1007/978‑981‑16‑8698‑6
    [Google Scholar]
  27. MajumderJ. TaratulaO. MinkoT. Nanocarrier-based systems for targeted and site specific therapeutic delivery.Adv. Drug Deliv. Rev.2019144577710.1016/j.addr.2019.07.010 31400350
    [Google Scholar]
  28. PatraJ.K. DasG. FracetoL.F. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  29. YuB. TaiH.C. XueW. LeeL.J. LeeR.J. Receptor-targeted nanocarriers for therapeutic delivery to cancer.Mol. Membr. Biol.201027728629810.3109/09687688.2010.521200 21028937
    [Google Scholar]
  30. HanH.S. KooS.Y. ChoiK.Y. Emerging nanoformulation strategies for phytocompounds and applications from drug delivery to phototherapy to imaging.Bioact. Mater.20221418220510.1016/j.bioactmat.2021.11.027 35310344
    [Google Scholar]
  31. NagO.K. DelehantyJ.B. Active cellular and subcellular targeting of nanoparticles for drug delivery.Pharmaceutics2019111054310.3390/pharmaceutics11100543 31635367
    [Google Scholar]
  32. WangX. QiuY. WangM. Endocytosis and organelle targeting of nanomedicines in cancer therapy.Int. J. Nanomedicine2020159447946710.2147/IJN.S274289 33268987
    [Google Scholar]
  33. YameenB. ChoiW.I. VilosC. SwamiA. ShiJ. FarokhzadO.C. Insight into nanoparticle cellular uptake and intracellular targeting.J. Control. Release201419048549910.1016/j.jconrel.2014.06.038 24984011
    [Google Scholar]
  34. SwansonJ.A. YoshidaS. Macropinocytosis.In: Encyclopedia of Cell Biology.Elsevier Inc.2016758765
    [Google Scholar]
  35. LombardoD. KiselevM.A. CaccamoM.T. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine.J. Nanomater.2019201912126
    [Google Scholar]
  36. ThakurL. GhodasraU. PatelN. DabhiM. Novel approaches for stability improvement in natural medicines.Pharmacogn. Rev.201159485410.4103/0973‑7847.79099 22096318
    [Google Scholar]
  37. ChauF.T. FungK.P. KoonC.M. LauK.M. WeiS.Y. LeungP.C. Bioactive components in herbal medicine experimental approaches.Herbal Medicine: Biomolecular and Clinical Aspects.2nd ed BenzieI.F.F. Wachtel-GalorS. Boca Raton, FLCRC Press/Taylor & Francis2011Chapter 20.
    [Google Scholar]
  38. Oluyemisi FolashadeK. Henry OmoregieE. Peter OchoguA. Standardization of herbal medicines - A review.Int. J. Biodivers. Conserv.201243101112
    [Google Scholar]
  39. HuX. ChenX. ZhangL. A combined bottom–up/top–down approach to prepare a sterile injectable nanosuspension.Int. J. Pharm.20144721-213013910.1016/j.ijpharm.2014.06.018 24929013
    [Google Scholar]
  40. ChanH.K. KwokP.C.L. Production methods for nanodrug particles using the bottom-up approach.Adv. Drug Deliv. Rev.201163640641610.1016/j.addr.2011.03.011 21457742
    [Google Scholar]
  41. JadhavK. DhamechaD. BhattacharyaD. PatilM. Green and ecofriendly synthesis of silver nanoparticles: Characterization, biocompatibility studies and gel formulation for treatment of infections in burns.J. Photochem. Photobiol. B201615510911510.1016/j.jphotobiol.2016.01.002 26774382
    [Google Scholar]
  42. JamkhandeP.G. GhuleN.W. BamerA.H. KalaskarM.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications.J. Drug Deliv. Sci. Technol.20195310117410.1016/j.jddst.2019.101174
    [Google Scholar]
  43. FangY. WangH. YuH. Plasmonic imaging of electrochemical reactions of single nanoparticles.Acc. Chem. Res.201649112614262410.1021/acs.accounts.6b00348 27662069
    [Google Scholar]
  44. SubramaniK. Kolathupalayam ShanmugamB. RangarajS. PalanisamyM. PeriasamyP. VenkatachalamR. Screening the UV‐blocking and antimicrobial properties of herbal nanoparticles prepared from Aloe vera leaves for textile applications.IET Nanobiotechnol.201812445946510.1049/iet‑nbt.2017.0097 29768230
    [Google Scholar]
  45. IslamR. SunL. ZhangL. Biomedical applications of chinese herb-synthesized silver nanoparticles by phytonanotechnology.Nanomaterials20211110275710.3390/nano11102757 34685197
    [Google Scholar]
  46. NdolomingoM.J. BingwaN. MeijboomR. Review of supported metal nanoparticles: Synthesis methodologies, advantages and application as catalysts.J. Mater. Sci.202055156195624110.1007/s10853‑020‑04415‑x
    [Google Scholar]
  47. AnselmoA.C. MitragotriS. Nanoparticles in the clinic.Bioeng. Transl. Med.201611102910.1002/btm2.10003 29313004
    [Google Scholar]
  48. ChenM. WangS. TanM. WangY. Applications of nanoparticles in herbal medicine: Zedoary turmeric oil and its active compound β-elemene.Am. J. Chin. Med.20113961093110210.1142/S0192415X11009421 22083983
    [Google Scholar]
  49. ChauhanRP GuptaC PrakashD ChauhanRP Methodological advancements in green nanotechnology and their applications in biological synthesis of herbal nanoparticles.Int J Bioassays20121610
    [Google Scholar]
  50. ForierK. RaemdonckK. De SmedtS.C. DemeesterJ. CoenyeT. BraeckmansK. Lipid and polymer nanoparticles for drug delivery to bacterial biofilms.J. Control. Release201419060762310.1016/j.jconrel.2014.03.055 24794896
    [Google Scholar]
  51. SoppimathK.S. AminabhaviT.M. KulkarniA.R. RudzinskiW.E. Biodegradable polymeric nanoparticles as drug delivery devices.J. Control. Release2001701–212010.1016/S0168‑3659(00)00339‑4
    [Google Scholar]
  52. NikezićA.V.V. BondžićA.M. VasićV.M. Drug delivery systems based on nanoparticles and related nanostructures.Eur. J. Pharm. Sci.202015110541210.1016/j.ejps.2020.105412 32505796
    [Google Scholar]
  53. NaahidiS. JafariM. EdalatF. RaymondK. KhademhosseiniA. ChenP. Biocompatibility of engineered nanoparticles for drug delivery.J. Control. Release2013166218219410.1016/j.jconrel.2012.12.013 23262199
    [Google Scholar]
  54. PateiroM. GómezB. MunekataP.E.S. Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products.Molecules2021266154710.3390/molecules26061547 33799855
    [Google Scholar]
  55. ZabotG.L. Schaefer RodriguesF. Polano OdyL. Encapsulation of bioactive compounds for food and agricultural applications.Polymers20221419419410.3390/polym14194194 36236142
    [Google Scholar]
  56. García-PinelB. Porras-AlcaláC. Ortega-RodríguezA. Lipid-based nanoparticles: Application and recent advances in cancer treatment.Nanomaterials20199463810.3390/nano9040638 31010180
    [Google Scholar]
  57. KyriakoudiA. SpanidiE. MourtzinosI. GardikisK. Innovative delivery systems loaded with plant bioactive ingredients: Formulation approaches and applications.Plants2021106123810.3390/plants10061238 34207139
    [Google Scholar]
  58. PandeyR. BhairamM. Colloidal and vesicular delivery system for herbal bioactive constituents.Daru2021292415438
    [Google Scholar]
  59. AjazuddinS.S. SarafS. Applications of novel drug delivery system for herbal formulations.Fitoterapia201081768068910.1016/j.fitote.2010.05.001 20471457
    [Google Scholar]
  60. BanasazS. MorozovaK. FerrentinoG. ScampicchioM. Encapsulation of lipid-soluble bioactives by nanoemulsions.Molecules20202517396610.3390/molecules25173966 32878137
    [Google Scholar]
  61. de Alcantara LemosJ. OliveiraA.E.M.F.M. AraujoR.S. TownsendD.M. FerreiraL.A.M. de BarrosA.L.B. Recent progress in micro and nano-encapsulation of bioactive derivatives of the Brazilian genus Pterodon.Biomed. Pharmacother.202114311213710.1016/j.biopha.2021.112137 34507118
    [Google Scholar]
  62. HuangB.R. KathiravanD. SaravananA. MaiP.H. Crystalline nanodiamond-induced formation of carbon nanotubes for stable hydrogen sensing.ACS Appl. Nano Mater.2021432840284810.1021/acsanm.0c03454
    [Google Scholar]
  63. RastogiA. ZivcakM. SytarO. Impact of metal and metal oxide nanoparticles on plant: A critical review.Front Chem.201757810.3389/fchem.2017.00078 29075626
    [Google Scholar]
  64. UrbaniakT. MusiałW. Influence of solvent evaporation technique parameters on diameter of submicron lamivudine-poly-ε-caprolactone conjugate particles.Nanomaterials201999124010.3390/nano9091240 31480469
    [Google Scholar]
  65. YadavandV.B. YadavA.V. Recrystallized agglomerates of indomethacin by emulsion solvent diffusion (esd) technique.Int. J. Pharma Bio Sci.20101
    [Google Scholar]
  66. KumarM. BishnoiR.S. ShuklaA.K. JainC.P. Techniques for formulation of nanoemulsion drug delivery system: A review.Prev. Nutr. Food Sci.201924322523410.3746/pnf.2019.24.3.225 31608247
    [Google Scholar]
  67. GadzińskiP. FroelichA. JadachB. Ionotropic gelation and chemical crosslinking as methods for fabrication of modified-release gellan gum-based drug delivery systems.Pharmaceutics202215110810.3390/pharmaceutics15010108 36678736
    [Google Scholar]
  68. GirotraP. SinghS.K. NagpalK. Supercritical fluid technology: A promising approach in pharmaceutical research.Pharm. Dev. Technol.2013181223810.3109/10837450.2012.726998 23036159
    [Google Scholar]
  69. PatelV. PandyaR. Spray drying : A review.Pharm. Rev.200975
    [Google Scholar]
  70. Anu BhushaniJ. AnandharamakrishnanC. Electrospinning and electrospraying techniques: Potential food based applications.Trends Food Sci. Technol.2014381213310.1016/j.tifs.2014.03.004
    [Google Scholar]
  71. LiptonJ. WengG.M. RӧhrJ.A. WangH. TaylorA.D. Layer-by-layer assembly of two-dimensional materials: Meticulous control on the nanoscale.Matter2020251148116510.1016/j.matt.2020.03.012
    [Google Scholar]
  72. EnoseA.A. DasanP.K. SivaramakrishnanH. ShahS.M. Formulation and characterization of solid dispersion prepared by hot melt mixing: A fast screening approach for polymer selection.J. Pharm.2014201411310.1155/2014/105382 26556187
    [Google Scholar]
  73. JalgaonkarK Kumar MahawarM BibweB NathP GirjalS. Nutraceuticals and functional foods2019
    [Google Scholar]
  74. OliveiraC. CoelhoC. TeixeiraJ.A. Ferreira-SantosP. BotelhoC.M. Nanocarriers as active ingredients enhancers in the cosmetic industry—the European and north America regulation challenges.Molecules2022275166910.3390/molecules27051669 35268769
    [Google Scholar]
  75. Mahdi JafariS. An overview of nanoencapsulation techniques and their classification. In: Nanoencapsulation Technologies for the Food and Nutraceutical Industries.Academic Press2017134
    [Google Scholar]
  76. AgrawalY.K. PatelV.R. Nanosuspension: An approach to enhance solubility of drugs.J. Adv. Pharm. Technol. Res.201122818710.4103/2231‑4040.82950 22171298
    [Google Scholar]
  77. PınarS.G. OktayA.N. KaraküçükA.E. ÇelebiN. Formulation strategies of nanosuspensions for various administration routes.Pharmaceutics2023155152010.3390/pharmaceutics15051520 37242763
    [Google Scholar]
  78. MaY. CongZ. GaoP. WangY. Nanosuspensions technology as a master key for nature products drug delivery and In vivo fate.Eur. J. Pharm. Sci.202318510642510.1016/j.ejps.2023.106425 36934992
    [Google Scholar]
  79. GhasemianE. RezaeianB. AlaeiS. VatanaraA. RamezaniV. Optimization of cefixime nanosuspension to improve drug dissolution.Pharm. Sci.201521313614410.15171/PS.2015.28
    [Google Scholar]
  80. PatelH.M. PatelB.B. ShahC.N. Nanosuspension: A novel approch to enhance solubility of poorly water soluble drugs-A review.Int J Adv Pharm20165219
    [Google Scholar]
  81. Kwansiri UraiwanC.S. The entrapment of vitamin E in nanostructured lipid carriers of rambutan seed fat for cosmeceutical uses.Key Eng. Mater.2016675–6767780
    [Google Scholar]
  82. Di MarzioL. VenturaC.A. CoscoD. Nanotherapeutics for anti-inflammatory delivery.J. Drug Deliv. Sci. Technol.20163217419110.1016/j.jddst.2015.10.011
    [Google Scholar]
  83. Dilip GhoshP.K. Natural Medicines_ Clinical Efficacy.Safety and Quality - Google Books2020
    [Google Scholar]
  84. ZhangJ. HuK. DiL. Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health.Adv. Drug Deliv. Rev.202117811396410.1016/j.addr.2021.113964 34499982
    [Google Scholar]
  85. WickramasingheA.S.D. KalansuriyaP. AttanayakeA.P. Nanoformulation of plant-based natural products for type 2 diabetes mellitus: From formulation design to therapeutic applications.Curr. Ther. Res. Clin. Exp.20229610067210.1016/j.curtheres.2022.100672 35586563
    [Google Scholar]
  86. DasA. SaikiaR. PathakK. GogoiU. PathakM.P. Anti-diabetic nano-formulation from herbal source. In: Nano Medicine and Nano Safety.Recent Trends and Clinical Evidences2020618410.1007/978‑981‑15‑6255‑6_4
    [Google Scholar]
  87. JavedM.N. DahiyaE.S. IbrahimA.M. AlamMdS. KhanFA. PottooFH. Recent advancement in clinical application of nanotechnological approached targeted delivery of herbal drugs. Nanophytomedicine202015117210.1007/978‑981‑15‑4909‑0_9
    [Google Scholar]
  88. BadgujarS.Y. DixitJ.V. GiriP. Reduction in HbA1c through lifestyle modification in newly diagnosed type 2 diabetes mellitus patient: A great feat.J. Family Med. Prim. Care20221163312331710.4103/jfmpc.jfmpc_1677_21 36119208
    [Google Scholar]
  89. DewanjeeS. ChakrabortyP. MukherjeeB. De FeoV. Plant-based antidiabetic nanoformulations: The emerging paradigm for effective therapy.Int. J. Mol. Sci.2020216221710.3390/ijms21062217 32210082
    [Google Scholar]
  90. HuF. SunD.S. WangK.L. ShangD.Y. Nanomedicine of plant origin for the treatment of metabolic disorders.Front. Bioeng. Biotechnol.2022981191710.3389/fbioe.2021.811917 35223819
    [Google Scholar]
  91. VlassA.M.H.T. Can herbal medicines improve cellular immunity patterns in endometriosis?Med. Aromat. Plants20144210.4172/2167‑0412.1000184
    [Google Scholar]
  92. PotdarP.D. ChaudhariM.B. Cellular, molecular and therapeutic advances in type 2 diabetes mellitus. In: Diabetes management.2016603044
    [Google Scholar]
  93. RaiV.K. MishraN. AgrawalA.K. JainS. YadavN.P. Novel drug delivery system: An immense hope for diabetics.Drug Deliv.20162372371239010.3109/10717544.2014.991001 25544604
    [Google Scholar]
  94. VermaS. GuptaM. PopliH. AggarwalG. Diabetes mellitus treatment using herbal drugs.Int. J. Phytomed.2018101110.5138/09750185.2181
    [Google Scholar]
  95. IslamF. KhadijaJ.F. IslamM.R. Investigating polyphenol nanoformulations for therapeutic targets against diabetes mellitus.Evid. Based Complement. Alternat. Med.2022202211610.1155/2022/5649156 35832521
    [Google Scholar]
  96. KasoleR. MartinH.D. KimiyweJ. Traditional medicine and its role in the management of diabetes mellitus: “Patients” and herbalists’ perspectives.Evid. Based Complement. Alternat. Med.201920192835691
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998288592240308073925
Loading
/content/journals/cdr/10.2174/0115733998288592240308073925
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test