Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Diabetic retinopathy (DR) is a microvascular disease affecting the eyes of diabetic patients, and is the most prevalent complication of diabetes mellitus. Vision improvement is not possible in the majority of DR patients. Several studies have indicated that microvascular changes, inflammation, oxidative stress, and retinal neurodegeneration are involved in the pathogenesis of DR. Therefore, there is an urgent need for the development of new and effective treatment for DR. Understanding the molecular mechanisms involved in the pathogenesis of disease will pave a way for better treatment and management of DR. This article has emphasized the molecular pathogenesis and treatment of DR.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998259940231105200251
2024-01-22
2025-04-15
Loading full text...

Full text loading...

References

  1. Retinopathy - Causes, Symptoms, Treatment, Diagnosis. 0000.Available from: https://medbroadcast.com/condition/getcondition/retinopathy
  2. Retinopathy Guide: Causes, Symptoms and Treatment Options. 0000.Available from: https://myvision.org/retinopathy/
  3. BrownA.C. NwanyanwuK. Retinopathy of Prematurity.Treasure Island, FLStatPearls Publishing2022
    [Google Scholar]
  4. ShuklaU.V. TripathyK. Diabetic Retinopathy.Treasure Island, FLStatPearls2023
    [Google Scholar]
  5. LisaJ. Retinopathy of Prematurity.In: Retina.5th ed. W.B. Saunders201310.1016/B978‑1‑4557‑0737‑9.00114‑4
    [Google Scholar]
  6. MollieG.W. WilliamF.M. PatriciaA. Mago-ShahD.D. ElizabethB. The care of the premature infant, reference module.In: Biomedical Sciences.Elsevier202110.1016/B978‑0‑12‑818872‑9.00037‑6
    [Google Scholar]
  7. WongT.Y. McIntoshR. Hypertensive retinopathy signs as risk indicators of cardiovascular morbidity and mortality.Br. Med. Bull.200573-741577010.1093/bmb/ldh050 16148191
    [Google Scholar]
  8. SemeraroF. MorescalchiF. RussoA. Central serous chorioretinopathy: pathogenesis and management.Clin. Ophthalmol.2019132341235210.2147/OPTH.S220845 31819359
    [Google Scholar]
  9. IaconoP. TotoL. CostanzoE. VaranoM. ParravanoM.C. Pharmacotherapy of central serous chorioretinopathy: A review of the current treatments.Curr. Pharm. Des.201924414864487310.2174/1381612825666190123165914 30674250
    [Google Scholar]
  10. LewisA.S. Macular degeneration, glaucoma, and diabetic retinopathy: A continuing education program.MONTANASTATE UNIVERSITY- BOZEMAN Bozeman Montana1999
    [Google Scholar]
  11. KumarK.P.S. BhowmikD. HarishG. DuraivelS. KumarP. Diabetic retinopathy- symptoms, causes, risk factors and treatment.Pharm. J.201881
    [Google Scholar]
  12. AlamU. AsgharO. AzmiS. MalikR.A. General aspects of diabetes mellitus.Handb. Clin. Neurol.201412621122210.1016/B978‑0‑444‑53480‑4.00015‑1 25410224
    [Google Scholar]
  13. WatkinsP.J. ABC of diabetes: Retinopathy.BMJ2003326739592492610.1136/bmj.326.7395.924 12714476
    [Google Scholar]
  14. SoumyaD. SrilathaB. Late-stage complications of diabetes and insulin resistance.J. Diabetes Metab.2011291000167
    [Google Scholar]
  15. HarunN.H. YusofY. HassanF. EmbongZ. Classification of fundus images for diabetic retinopathy using artificial neural network.2019IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)49850110.1109/JEEIT.2019.8717479
    [Google Scholar]
  16. PriyaP.V. SrinivasaraoA. SharmaJ.V. Diabetic retinopathy-can lead to complete blindness.Int J Sci Invent Today201324254265
    [Google Scholar]
  17. WatN. WongR.L.M. WongI.Y.H. Associations between diabetic retinopathy and systemic risk factors.Hong Kong Med. J.201622658959910.12809/hkmj164869 27779095
    [Google Scholar]
  18. CapitãoM. SoaresR. Angiogenesis and inflammation crosstalk in diabetic retinopathy.J. Cell. Biochem.2016117112443245310.1002/jcb.25575 27128219
    [Google Scholar]
  19. BrownleeM. The pathobiology of diabetic complications: A unifying mechanism.Diabetes200554616151625
    [Google Scholar]
  20. BekT. Diameter changes of retinal vessels in diabetic retinopathy.Curr. Diab. Rep.201717108210.1007/s11892‑017‑0909‑9 28791532
    [Google Scholar]
  21. NaruseK. NakamuraJ. HamadaY. Aldose reductase inhibition prevents glucose-induced apoptosis in cultured bovine retinal microvascular pericytes.Exp. Eye Res.200071330931510.1006/exer.2000.0882 10973739
    [Google Scholar]
  22. RomeoG. LiuW.H. AsnaghiV. KernT.S. LorenziM. Activation of nuclear factor-kappaB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes.Diabetes20025172241224810.2337/diabetes.51.7.2241 12086956
    [Google Scholar]
  23. EjazS. ChekarovaI. EjazA. SohailA. LimC.W. Importance of pericytes and mechanisms of pericyte loss during diabetes retinopathy.Diabetes Obes. Metab.20081015363 17941874
    [Google Scholar]
  24. BeltramoE. PortaM. Pericyte loss in diabetic retinopathy: Mechanisms and consequences.Curr. Med. Chem.201320263218322510.2174/09298673113209990022 23745544
    [Google Scholar]
  25. HuangH. HeJ. JohnsonD.K. Deletion of placental growth factor prevents diabetic retinopathy and is associated with Akt activation and HIF1α-VEGF pathway inhibition.Diabetes201564120021210.2337/db14‑0016 25187372
    [Google Scholar]
  26. LupoG. MottaC. GiurdanellaG. Role of phospholipases A2 in diabetic retinopathy: in vitro and in vivo studies.Biochem. Pharmacol.201386111603161310.1016/j.bcp.2013.09.008 24076420
    [Google Scholar]
  27. AntonettiD.A. BarberA.J. HollingerL.A. WolpertE.B. GardnerT.W. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors.J. Biol. Chem.199927433234632346710.1074/jbc.274.33.23463 10438525
    [Google Scholar]
  28. PatelJ.I. HykinP.G. GregorZ.J. BoultonM. CreeI.A. Angiopoietin concentrations in diabetic retinopathy.Br. J. Ophthalmol.200589448048310.1136/bjo.2004.049940 15774928
    [Google Scholar]
  29. RangasamyS. SrinivasanR. MaestasJ. McGuireP.G. DasA. A potential role for angiopoietin 2 in the regulation of the blood-retinal barrier in diabetic retinopathy.Invest. Ophthalmol. Vis. Sci.20115263784379110.1167/iovs.10‑6386 21310918
    [Google Scholar]
  30. MiyamotoK. KhosrofS. BursellS.E. Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition.Proc. Natl. Acad. Sci.19999619108361084110.1073/pnas.96.19.10836 10485912
    [Google Scholar]
  31. YuukiT. KandaT. KimuraY. Inflammatory cytokines in vitreous fluid and serum of patients with diabetic vitreoretinopathy.J. Diabetes Complications200115525725910.1016/S1056‑8727(01)00155‑6 11522500
    [Google Scholar]
  32. SchröderS. PalinskiW. Schmid-SchönbeinG.W. Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy.Am. J. Pathol.1991139181100 1713023
    [Google Scholar]
  33. MiyamotoK. HiroshibaN. TsujikawaA. OguraY. In vivo demonstration of increased leukocyte entrapment in retinal microcirculation of diabetic rats.Invest. Ophthalmol. Vis. Sci.1998391121902194 9761301
    [Google Scholar]
  34. JoussenA.M. PoulakiV. MitsiadesN. Suppression of Fas‐FasL‐induced endothelial cell apoptosis prevents diabetic blood‐retinal barrier breakdown in a model of streptozotocin‐induced diabetes.FASEB J.2003171767810.1096/fj.02‑0157fje 12475915
    [Google Scholar]
  35. BarouchF.C. MiyamotoK. AllportJ.R. Integrin-mediated neutrophil adhesion and retinal leukostasis in diabetes.Invest. Ophthalmol. Vis. Sci.200041511531158 10752954
    [Google Scholar]
  36. ChibberR. Ben-MahmudB.M. CoppiniD. ChristE. KohnerE.M. Activity of the glycosylating enzyme, core 2 GlcNAc (beta1,6) transferase, is higher in polymorphonuclear leukocytes from diabetic patients compared with age-matched control subjects: Relevance to capillary occlusion in diabetic retinopathy.Diabetes200049101724173010.2337/diabetes.49.10.1724 11016457
    [Google Scholar]
  37. KaszaM. MelegJ. VárdaiJ. Plasma E-selectin levels can play a role in the development of diabetic retinopathy.Graefes Arch. Clin. Exp. Ophthalmol.20172551253010.1007/s00417‑016‑3411‑1 27377657
    [Google Scholar]
  38. LimbG.A. Hickman-CaseyJ. HollifieldR.D. ChignellA.H. Vascular adhesion molecules in vitreous from eyes with proliferative diabetic retinopathy.Invest. Ophthalmol. Vis. Sci.1999401024532457 10476819
    [Google Scholar]
  39. SuzukiY. NakazawaM. SuzukiK. YamazakiH. MiyagawaY. Expression profiles of cytokines and chemokines in vitreous fluid in diabetic retinopathy and central retinal vein occlusion.Jpn. J. Ophthalmol.201155325626310.1007/s10384‑011‑0004‑8 21538000
    [Google Scholar]
  40. Koleva-GeorgievaD.N. SivkovaN.P. TerzievaD. Serum inflammatory cytokines IL-1β, IL-6, TNF-α and VEGF have influence on the development of diabetic retinopathy.Folia Med. (Plovdiv)2011532445010.2478/v10153‑010‑0036‑8 21797106
    [Google Scholar]
  41. BossJ.D. SinghP.K. PandyaH.K. Assessment of neurotrophins and inflammatory mediators in vitreous of patients with diabetic retinopathy.Invest. Ophthalmol. Vis. Sci.201758125594560310.1167/iovs.17‑21973 29084332
    [Google Scholar]
  42. AbcouwerS.F. Müller cell–microglia cross talk drives neuroinflammation in diabetic retinopathy.Diabetes201766226126310.2337/dbi16‑0047 28108606
    [Google Scholar]
  43. SorrentinoF.S. AllkabesM. SalsiniG. BonifazziC. PerriP. The importance of glial cells in the homeostasis of the retinal microenvironment and their pivotal role in the course of diabetic retinopathy.Life Sci.2016162545910.1016/j.lfs.2016.08.001 27497914
    [Google Scholar]
  44. BarberA.J. LiethE. KhinS.A. AntonettiD.A. BuchananA.G. GardnerT.W. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin.J. Clin. Invest.1998102478379110.1172/JCI2425 9710447
    [Google Scholar]
  45. KowluruR.A. KoppoluP. Diabetes-induced activation of caspase-3 in retina: effect of antioxidant therapy.Free Radic. Res.200236999399910.1080/1071576021000006572 12448825
    [Google Scholar]
  46. PodestàF. RomeoG. LiuW.H. Bax is increased in the retina of diabetic subjects and is associated with pericyte apoptosis in vivo and in vitro.Am. J. Pathol.200015631025103210.1016/S0002‑9440(10)64970‑X 10702418
    [Google Scholar]
  47. El-AsrarA.M.A. DralandsL. MissottenL. Al-JadaanI.A. GeboesK. Expression of apoptosis markers in the retinas of human subjects with diabetes.Invest. Ophthalmol. Vis. Sci.20044582760276610.1167/iovs.03‑1392 15277502
    [Google Scholar]
  48. TienT. ZhangJ. MutoT. KimD. SarthyV.P. RoyS. High glucose induces mitochondrial dysfunction in retinal müller cells: Implications for diabetic retinopathy.Invest. Ophthalmol. Vis. Sci.20175872915292110.1167/iovs.16‑21355 28586916
    [Google Scholar]
  49. SasakiM. OzawaY. KuriharaT. Neurodegenerative influence of oxidative stress in the retina of a murine model of diabetes.Diabetologia201053597197910.1007/s00125‑009‑1655‑6 20162412
    [Google Scholar]
  50. SohnE.H. van DijkH.W. JiaoC. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus.Proc. Natl. Acad. Sci.201611319E2655E266410.1073/pnas.1522014113 27114552
    [Google Scholar]
  51. van DijkH.W. KokP.H.B. GarvinM. Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy.Invest. Ophthalmol. Vis. Sci.20095073404340910.1167/iovs.08‑3143 19151397
    [Google Scholar]
  52. TracyT.S. Bilberry. In: Herbal Products.Toxicology and Clinical Pharmacology2007259268
    [Google Scholar]
  53. BansalM. SinghN. PalS. DevI. AnsariK.M. Chemopreventive role of dietary phytochemicals in colorectal cancer.Adv. Mol. Toxicol.2018126912110.1016/B978‑0‑444‑64199‑1.00004‑X
    [Google Scholar]
  54. SuryanarayanaP. SaraswatM. MrudulaT. KrishnaT.P. KrishnaswamyK. ReddyG.B. Curcumin and turmeric delay streptozotocin-induced diabetic cataract in rats.Invest. Ophthalmol. Vis. Sci.20054662092209910.1167/iovs.04‑1304 15914628
    [Google Scholar]
  55. XuZ. SunT. LiW. SunX. Inhibiting effects of dietary polyphenols on chronic eye diseases.J. Funct. Foods20173918619710.1016/j.jff.2017.10.031
    [Google Scholar]
  56. IkonneE.U. IkpeazuV.O. UgboguE.A. The potential health benefits of dietary natural plant products in age related eye diseases.Heliyon202067e0440810.1016/j.heliyon.2020.e04408 32685729
    [Google Scholar]
  57. Rice-evansC.A. MillerN.J. BolwellP.G. BramleyP.M. PridhamJ.B. The relative antioxidant activities of plant-derived polyphenolic flavonoids.Free Radic. Res.199522437538310.3109/10715769509145649 7633567
    [Google Scholar]
  58. GanR.Y. LiH.B. SuiZ.Q. CorkeH. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review.Crit. Rev. Food Sci. Nutr.201858692494110.1080/10408398.2016.1231168 27645804
    [Google Scholar]
  59. KeylorM.H. MatsuuraB.S. StephensonC.R.J. Chemistry and biology of resveratrol-derived natural products.Chem. Rev.2015115178976902710.1021/cr500689b 25835567
    [Google Scholar]
  60. GambiniJ. InglésM. OlasoG. Properties of resveratrol: in vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans.Oxid. Med. Cell. Longev.20152015837042
    [Google Scholar]
  61. KimY.H. KimY.S. RohG.S. ChoiW.S. ChoG.J. Resveratrol blocks diabetes-induced early vascular lesions and vascular endothelial growth factor induction in mouse retinas.Acta Ophthalmol.2012901e31e3710.1111/j.1755‑3768.2011.02243.x 21914146
    [Google Scholar]
  62. YarA.S. MenevseS. DoganI. Investigation of ocular neovascularization-related genes and oxidative stress in diabetic rat eye tissues after resveratrol treatment.J. Med. Food201215439139810.1089/jmf.2011.0135 22191573
    [Google Scholar]
  63. YangP.M. WuZ.Z. ZhangY.Q. WungB.S. Lycopene inhibits ICAM-1 expression and NF-κB activation by Nrf2-regulated cell redox state in human retinal pigment epithelial cells.Life Sci.20161559410110.1016/j.lfs.2016.05.006 27155396
    [Google Scholar]
  64. KronschlägerM. LöfgrenS. YuZ. TalebizadehN. VarmaS.D. SöderbergP. Caffeine eye drops protect against UV-B cataract.Exp. Eye Res.2013113263110.1016/j.exer.2013.04.015 23644096
    [Google Scholar]
  65. Kaczmarczyk-SedlakI. FolwarcznaJ. SedlakL. Effect of caffeine on biomarkers of oxidative stress in lenses of rats with streptozotocin-induced diabetes.Arch. Med. Sci.20191541073108010.5114/aoms.2019.85461 31360202
    [Google Scholar]
  66. VarmaS. Effect of coffee (caffeine) against human cataract blindness.Clin. Ophthalmol.20161021322010.2147/OPTH.S96394 26869755
    [Google Scholar]
  67. ZhangS. ZhouR. LiB. Caffeine preferentially protects against oxygen‐induced retinopathy.FASEB J.20173183334334810.1096/fj.201601285R 28420694
    [Google Scholar]
  68. ChuK.O. PangC.P. Herbal molecules in eye diseases.Taiwan J. Ophthalmol.20144310310910.1016/j.tjo.2014.03.005
    [Google Scholar]
  69. KowluruR.A. ZhongQ. SantosJ.M. ThandampallayamM. PuttD. GierhartD.L. Beneficial effects of the nutritional supplements on the development of diabetic retinopathy.Nutr. Metab.2014111810.1186/1743‑7075‑11‑8 24479616
    [Google Scholar]
  70. KowluruR.A. MenonB. GierhartD.L. Beneficial effect of zeaxanthin on retinal metabolic abnormalities in diabetic rats.Invest. Ophthalmol. Vis. Sci.20084941645165110.1167/iovs.07‑0764 18385086
    [Google Scholar]
  71. MuriachM. Bosch-MorellF. AlexanderG. Lutein effect on retina and hippocampus of diabetic mice.Free Radic. Biol. Med.200641697998410.1016/j.freeradbiomed.2006.06.023 16934681
    [Google Scholar]
  72. ZampattiS. RicciF. CusumanoA. MarsellaL.T. NovelliG. GiardinaE. Review of nutrient actions on age-related macular degeneration.Nutr. Res.20143429510510.1016/j.nutres.2013.10.011 24461310
    [Google Scholar]
  73. AndreattaW. El-SherbinyS. Evidence-based nutritional advice for patients affected by age-related macular degeneration.Ophthalmologica2014231418519010.1159/000357528 24821294
    [Google Scholar]
  74. ChiuC.J. TaylorA. Nutritional antioxidants and age-related cataract and maculopathy.Exp. Eye Res.200784222924510.1016/j.exer.2006.05.015 16879819
    [Google Scholar]
  75. TraberM.G. AtkinsonJ. Vitamin E, antioxidant and nothing more.Free Radic. Biol. Med.200743141510.1016/j.freeradbiomed.2007.03.024 17561088
    [Google Scholar]
  76. StrobelM. TinzJ. BiesalskiH.K. The importance of β-carotene as a source of vitamin A with special regard to pregnant and breastfeeding women.Eur. J. Nutr.200746S112010.1007/s00394‑007‑1001‑z 17665093
    [Google Scholar]
  77. MansourS.E. BrowningD.J. WongK. FlynnH.W.Jr BhavsarA.R. The evolving treatment of diabetic retinopathy.Clin. Ophthalmol.20201465367810.2147/OPTH.S236637 32184554
    [Google Scholar]
  78. CunninghamE.T.Jr AdamisA.P. AltaweelM. A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema.Ophthalmology2005112101747175710.1016/j.ophtha.2005.06.007 16154196
    [Google Scholar]
  79. Economic costs of diabetes in the U.S. in 2012.Diabetes Care20133641033104610.2337/dc12‑2625 23468086
    [Google Scholar]
  80. ElmanM.J. AielloL.P. BeckR.W. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema.Ophthalmology2010117610641077.e3510.1016/j.ophtha.2010.02.031 20427088
    [Google Scholar]
  81. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema.N. Engl. J. Med.20153721311931203
    [Google Scholar]
  82. WellsJ.A. GlassmanA.R. AyalaA.R. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema: Two-year results from a comparative effectiveness randomized clinical trial.Ophthalmology2016123613511359
    [Google Scholar]
  83. VirgiliG. ParravanoM. MenchiniF. EvansJ.R. Anti‐vascular endothelial growth factor for diabetic macular oedema.Cochrane Database Syst. Rev.2014201410CD00741910.1002/14651858.CD007419.pub4
    [Google Scholar]
  84. FerraraN. DamicoL. ShamsN. LowmanH. KimR. Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration.Retina200626885987010.1097/01.iae.0000242842.14624.e7 17031284
    [Google Scholar]
  85. LoweJ. AraujoJ. YangJ. Ranibizumab inhibits multiple forms of biologically active vascular endothelial growth factor in vitro and in vivo.Exp. Eye Res.200785442543010.1016/j.exer.2007.05.008 17714704
    [Google Scholar]
  86. PapadopoulosN. MartinJ. RuanQ. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab.Angiogenesis201215217118510.1007/s10456‑011‑9249‑6 22302382
    [Google Scholar]
  87. StewartM.W. A review of ranibizumab for the treatment of diabetic retinopathy.Ophthalmol. Ther.201761334710.1007/s40123‑017‑0083‑9 28324452
    [Google Scholar]
  88. KhanZ. KuriakoseR.K. KhanM. ChinE.K. AlmeidaD.R.P. Efficacy of the intravitreal sustained-release dexamethasone implant for diabetic macular edema refractory to anti-vascular endothelial growth factor therapy: Meta-analysis and clinical implications.Ophthalmic Surg. Lasers Imaging Retina201748216016610.3928/23258160‑20170130‑10 28195619
    [Google Scholar]
  89. PacellaF. RomanoM.R. TurchettiP. An eighteen-month follow-up study on the effects of Intravitreal Dexamethasone Implant in diabetic macular edema refractory to anti-VEGF therapy.Int. J. Ophthalmol.20169101427143210.18240/ijo.2016.10.10 27803859
    [Google Scholar]
  90. JonasJ.B. SöfkerA. Intraocular injection of crystalline cortisone as adjunctive treatment of diabetic macular edema.Am. J. Ophthalmol.2001132342542710.1016/S0002‑9394(01)01010‑8 11530068
    [Google Scholar]
  91. JonasJ.B. KreissigI. SöfkerA. DegenringR.F. Intravitreal injection of triamcinolone for diffuse diabetic macular edema.Arch. Ophthalmol.20031211576110.1001/archopht.121.1.57 12523885
    [Google Scholar]
  92. ChaseH.P. GargS.K. HarrisS. HoopsS. JacksonW.E. HolmesD.L. Angiotensin-converting enzyme inhibitor treatment for young normotensive diabetic subjects: a two-year trial.Ann. Ophthalmol.1993258284289 8239321
    [Google Scholar]
  93. ChaturvediN. SjolieA.K. StephensonJ.M. Effect of lisinopril on progression of retinopathy in normotensive people with type 1 diabetes.Lancet19983519095283110.1016/S0140‑6736(97)06209‑0 9433426
    [Google Scholar]
  94. VirkS.A. DonaghueK.C. WongT.Y. CraigM.E. Interventions for diabetic retinopathy in type 1 diabetes: Systematic review and meta-analysis.Am. J. Ophthalmol.2015160510551064.e410.1016/j.ajo.2015.07.024 26210869
    [Google Scholar]
  95. ChaturvediN. PortaM. KleinR. Effect of candesartan on prevention (DIRECT-Prevent 1) and progression (DIRECT-Protect 1) of retinopathy in type 1 diabetes: Randomised, placebo-controlled trials.Lancet200837296471394140210.1016/S0140‑6736(08)61412‑9 18823656
    [Google Scholar]
  96. The Early Treatment Diabetic Retinopathy Study Research Group. Photocoagulation for diabetic macular edema: Early Treatment Diabetic Retinopathy Study report no. 4.Int. Ophthalmol. Clin.198727426527210.1097/00004397‑198702740‑00006 3692708
    [Google Scholar]
  97. KumarK.S. BhowmikD. HarishG. DuraivelS. KumarB.P. Diabetic retinopathy-symptoms, causes, risk factors and treatment.Pharma Innov.201218
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998259940231105200251
Loading
/content/journals/cdr/10.2174/0115733998259940231105200251
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test