Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

In humans, insulin resistance is a physiological response to infections developed to supply sufficient energy to the activated immune system. This metabolic adaptation facilitates the immune response but usually persists after the recovery period of the infection and predisposes the hosts to type 2 diabetes and vascular injury. In patients with diabetes, superimposed insulin resistance worsens metabolic control and promotes diabetic ketoacidosis. Pathogenic mechanisms underlying insulin resistance during microbial invasions remain to be fully defined. However, interferons cause insulin resistance in healthy subjects and other population groups, and their production is increased during infections, suggesting that this group of molecules may contribute to reduced insulin sensitivity. In agreement with this notion, gene expression profiles (transcriptomes) from patients with insulin resistance show a robust overexpression of interferon-stimulated genes (interferon signature). In addition, serum levels of interferon and surrogates for interferon activity are elevated in patients with insulin resistance. Circulating levels of interferon-γ-inducible protein-10, neopterin, and apolipoprotein L1 correlate with insulin resistance manifestations, such as hypertriglyceridemia, reduced HDL-c, visceral fat, and homeostasis model assessment-insulin resistance. Furthermore, interferon downregulation improves insulin resistance. Antimalarials such as hydroxychloroquine reduce interferon production and improve insulin resistance, reducing the risk for type 2 diabetes and cardiovascular disease. In addition, diverse clinical conditions that feature interferon upregulation are associated with insulin resistance, suggesting that interferon may be a common factor promoting this adaptive response. Among these conditions are systemic lupus erythematosus, sarcoidosis, and infections with severe acute respiratory syndrome-coronavirus-2, human immunodeficiency virus, hepatitis C virus, and Mycobacterium tuberculosis.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998294022240309105112
2024-03-18
2024-11-22
Loading full text...

Full text loading...

References

  1. ShambaughG.E.III BeiselW.R. Insulin response during tularemia in man.Diabetes196716636937610.2337/diab.16.6.369 6025263
    [Google Scholar]
  2. DrobnyE.C. AbramsonE.C. BaumannG. Insulin receptors in acute infection: A study of factors conferring insulin resistance.J. Clin. Endocrinol. Metab.198458471071610.1210/jcem‑58‑4‑710 6365946
    [Google Scholar]
  3. Yki-JärvinenH. SammalkorpiK. KoivistoV.A. NikkiläE.A. Severity, duration, and mechanisms of insulin resistance during acute infections.J. Clin. Endocrinol. Metab.198969231732310.1210/jcem‑69‑2‑317 2666428
    [Google Scholar]
  4. VirkamäkiA. PuhakainenI. KoivistoV.A. MarkkolaV.H. JärvinenY.H. Mechanisms of hepatic and peripheral insulin resistance during acute infections in humans.J. Clin. Endocrinol. Metab.1992743673679 1740504
    [Google Scholar]
  5. VozarovaB. WeyerC. LindsayR.S. PratleyR.E. BogardusC. TataranniP.A. High white blood cell count is associated with a worsening of insulin sensitivity and predicts the development of type 2 diabetes.Diabetes200251245546110.2337/diabetes.51.2.455 11812755
    [Google Scholar]
  6. RheeJ.J. ZhengY. LiuS. Glycemic control and infections among us hemodialysis patients with diabetes mellitus.Kidney Int. Rep.2020571014102510.1016/j.ekir.2020.04.020 32647759
    [Google Scholar]
  7. BerghC. FallK. UdumyanR. SjöqvistH. FröbertO. MontgomeryS. Severe infections and subsequent delayed cardiovascular disease.Eur. J. Prev. Cardiol.201724181958196610.1177/2047487317724009 28764553
    [Google Scholar]
  8. ElkindM.S.V. RamakrishnanP. MoonY.P. Infectious burden and risk of stroke: The northern Manhattan study.Arch. Neurol.2010671333810.1001/archneurol.2009.271 19901154
    [Google Scholar]
  9. KiechlS. EggerG. MayrM. Chronic infections and the risk of carotid atherosclerosis: Prospective results from a large population study.Circulation200110381064107010.1161/01.CIR.103.8.1064 11222467
    [Google Scholar]
  10. HagiwaraN. ToyodaK. InoueT. Lack of association between infectious burden and carotid atherosclerosis in Japanese patients.J. Stroke Cerebrovasc. Dis.200716414515210.1016/j.jstrokecerebrovasdis.2007.02.001 17689410
    [Google Scholar]
  11. SaberiA. AkhondzadehS. KazemiS. KazemiS. Infectious agents and stroke: A systematic review.Basic Clin. Neurosci.202112442744010.32598/bcn.2021.1324.2 35154584
    [Google Scholar]
  12. KeikhaM. KarbalaeiM. Potential association between bacterial infections and ischemic stroke based on fifty case-control studies: A systematic review and meta-analysis.New Microbes New Infect.20224710098010.1016/j.nmni.2022.100980 35592534
    [Google Scholar]
  13. AlshammariS. AlMasoudiA.S. AlBuhayriA.H. Effect of COVID-19 on glycemic control, insulin resistance, and pH in elderly patients with type 2 diabetes.Cureus2023152e3539010.7759/cureus.35390 36846644
    [Google Scholar]
  14. BanerjeeM. PalR. DuttaS. Risk of incident diabetes post-COVID-19: A systematic review and meta-analysis.Prim. Care Diabetes202216459159310.1016/j.pcd.2022.05.009 35654679
    [Google Scholar]
  15. HardingJ.L. OviedoS.A. AliM.K. The bidirectional association between diabetes and long-COVID-19 – A systematic review.Diabetes Res. Clin. Pract.202319511020210.1016/j.diabres.2022.110202 36496030
    [Google Scholar]
  16. KhuntiK. Del PratoS. MathieuC. KahnS.E. GabbayR.A. BuseJ.B. COVID-19, hyperglycemia, and new-onset diabetes.Diabetes Care202144122645265510.2337/dc21‑1318 34625431
    [Google Scholar]
  17. KoivistoV.A. PelkonenR. CantellK. Effect of interferon on glucose tolerance and insulin sensitivity.Diabetes198938564164710.2337/diab.38.5.641 2653935
    [Google Scholar]
  18. ShibaT. HigashiN. NishimuraY. Hyperglycaemia due to insulin resistance caused by interferon-γ.Diabet. Med.199815543543610.1002/(SICI)1096‑9136(199805)15:5<435::AID‑DIA566>3.0.CO;2‑N 9609368
    [Google Scholar]
  19. AnJ. WoodwardJ.J. SasakiT. MinieM. ElkonK.B. Cutting edge: Antimalarial drugs inhibit IFN-β production through blockade of cyclic GMP-AMP synthase-DNA interaction.J. Immunol.201519494089409310.4049/jimmunol.1402793 25821216
    [Google Scholar]
  20. ZhangK. WangS. GouH. ZhangJ. LiC. Crosstalk between autophagy and the cgas–sting signaling pathway in type i interferon production.Front. Cell Dev. Biol.2021974848510.3389/fcell.2021.748485 34926445
    [Google Scholar]
  21. JiX. CheungR. CooperS. LiQ. GreenbergH.B. HeX.S. Interferon alfa regulated gene expression in patients initiating interferon treatment for chronic hepatitis C.Hepatology200337361062110.1053/jhep.2003.50105 12601359
    [Google Scholar]
  22. O’BrienT.R. PfeifferR.M. PaquinA. Comparison of functional variants in IFNL4 and IFNL3 for association with HCV clearance.J. Hepatol.20156351103111010.1016/j.jhep.2015.06.035 26186989
    [Google Scholar]
  23. OkabayashiT. KojimaT. MasakiT. Type-III interferon, not type-I, is the predominant interferon induced by respiratory viruses in nasal epithelial cells.Virus Res.20111601-236036610.1016/j.virusres.2011.07.011 21816185
    [Google Scholar]
  24. LinT.Y. ChiuC.J. KuanC.H. IL-29 promoted obesity-induced inflammation and insulin resistance.Cell. Mol. Immunol.202017436937910.1038/s41423‑019‑0262‑9 31363171
    [Google Scholar]
  25. CorssmitE.P. HeijligenbergR. EndertE. AckermansM.T. SauerweinH.P. RomijnJ.A. Endocrine and metabolic effects of interferon-alpha in humans.J. Clin. Endocrinol. Metab.199681932653269 8784081
    [Google Scholar]
  26. ChenM. ZhuB. ChenD. COVID-19 may increase the risk of insulin resistance in adult patients without diabetes: A 6-month prospective study.Endocr. Pract.202127883484110.1016/j.eprac.2021.04.004 33887468
    [Google Scholar]
  27. CampbellS. MclarenE.H. DaneshB.J. Drug points: Rapidly reversible increase in insulin requirement with interferon.BMJ199631370499210.1136/bmj.313.7049.92a 8688762
    [Google Scholar]
  28. ImanoE. KandaT. IshigamiY. Interferon induces insulin resistance in patients with chronic active hepatitis C.J. Hepatol.199828218919310.1016/0168‑8278(88)80004‑7 9514530
    [Google Scholar]
  29. ChatterjeeS. Massive increase of insulin resistance in a patient with chronic hepatitis C after treatment with interferon.J. Assoc. Physicians India200452514 15645973
    [Google Scholar]
  30. DanielA.L. HoulihanJ.L. BlumJ.S. WalshJ.P. Type B insulin resistance developing during interferon-alpha therapy.Endocr. Pract.200915215315710.4158/EP.15.2.153 19289328
    [Google Scholar]
  31. PopescuC. PopescuG.A. AramaV. Type 1 diabetes mellitus with dual autoimmune mechanism related to pegylated interferon and ribavirin treatment for chronic HCV hepatitis.J. Gastrointestin. Liver Dis.2013221101104 23539399
    [Google Scholar]
  32. KalafatiM. KutmonM. EveloC.T. An interferon-related signature characterizes the whole blood transcriptome profile of insulin-resistant individuals—the CODAM study.Genes Nutr.20211612210.1186/s12263‑021‑00702‑7 34886800
    [Google Scholar]
  33. GhoshA.R. BhattacharyaR. BhattacharyaS. Adipose recruitment and activation of plasmacytoid dendritic cells fuel metaflammation.Diabetes201665113440345210.2337/db16‑0331 27561727
    [Google Scholar]
  34. BradleyD. SmithA.J. BlaszczakA. Interferon gamma mediates the reduction of adipose tissue regulatory T cells in human obesity.Nat. Commun.2022131560610.1038/s41467‑022‑33067‑5 36153324
    [Google Scholar]
  35. StentzF.B. KitabchiA.E. Transcriptome and proteome expressions involved in insulin resistance in muscle and activated T-lymphocytes of patients with type 2 diabetes.Genomics Proteomics Bioinformatics200753-421623510.1016/S1672‑0229(08)60009‑1 18267303
    [Google Scholar]
  36. WuC. XuG. TsaiS.Y.A. FreedW.J. LeeC.T. Transcriptional profiles of type 2 diabetes in human skeletal muscle reveal insulin resistance, metabolic defects, apoptosis, and molecular signatures of immune activation in response to infections.Biochem. Biophys. Res. Commun.2017482228228810.1016/j.bbrc.2016.11.055 27847319
    [Google Scholar]
  37. WuC. ChenX. ShuJ. LeeC.T. Whole-genome expression analyses of type 2 diabetes in human skin reveal altered immune function and burden of infection.Oncotarget2017821346013460910.18632/oncotarget.16118 28427244
    [Google Scholar]
  38. LeeY.H. NairS. RousseauE. Microarray profiling of isolated abdominal subcutaneous adipocytes from obese vs non-obese Pima Indians: Increased expression of inflammation-related genes.Diabetologia20054891776178310.1007/s00125‑005‑1867‑3 16059715
    [Google Scholar]
  39. ElliottR.M. de RoosB. DuthieS.J. Transcriptome analysis of peripheral blood mononuclear cells in human subjects following a 36 hrs fast provides evidence of effects on genes regulating inflammation, apoptosis and energy metabolism.Genes Nutr.20149643210.1007/s12263‑014‑0432‑4 25260660
    [Google Scholar]
  40. Abdel-MoneimA. SemmlerM. Abdel-ReheimE.S. ZanatyM.I. AddaleelW. Association of glycemic status and interferon-γ production with leukocytes and platelet indices alterations in type2 diabetes.Diabetes Metab. Syndr.20191331963196910.1016/j.dsx.2019.04.046 31235122
    [Google Scholar]
  41. SurendarJ. MohanV. RaoM.M. BabuS. AravindhanV. Increased levels of both Th1 and Th2 cytokines in subjects with metabolic syndrome (CURES-103).Diabetes Technol. Ther.201113447748210.1089/dia.2010.0178 21355722
    [Google Scholar]
  42. SchmidtF.M. WeschenfelderJ. SanderC. Inflammatory cytokines in general and central obesity and modulating effects of physical activity.PLoS One2015103e012197110.1371/journal.pone.0121971 25781614
    [Google Scholar]
  43. QuatraroA. ConsoliG. MagnoM. Hydroxychloroquine in decompensated, treatment-refractory noninsulin-dependent diabetes mellitus. A new job for an old drug?Ann. Intern. Med.1990112967868110.7326/0003‑4819‑112‑9‑678 2110430
    [Google Scholar]
  44. GersteinH.C. ThorpeK.E. Wayne TaylorD. Brian HaynesR. The effectiveness of hydroxychloroquine in patients with type 2 diabetes mellitus who are refractory to sulfonylureas—a randomized trial.Diabetes Res. Clin. Pract.200255320921910.1016/S0168‑8227(01)00325‑4 11850097
    [Google Scholar]
  45. PareekA. ChandurkarN. ThomasN. Efficacy and safety of hydroxychloroquine in the treatment of type 2 diabetes mellitus: A double blind, randomized comparison with pioglitazone.Curr. Med. Res. Opin.20143071257126610.1185/03007995.2014.909393 24669876
    [Google Scholar]
  46. GuptaA. Real-world clinical effectiveness and tolerability of hydroxychloroquine 400 Mg in uncontrolled type 2 diabetes subjects who are not willing to initiate insulin therapy (HYQ-real-world study).Curr. Diabetes Rev.201915651051910.2174/1573399815666190425182008 31713476
    [Google Scholar]
  47. ChakravartiH.N. NagA. Efficacy and safety of hydroxychloroquine as add-on therapy in uncontrolled type 2 diabetes patients who were using two oral antidiabetic drugs.J. Endocrinol. Invest.202144348149210.1007/s40618‑020‑01330‑5 32594451
    [Google Scholar]
  48. RajputR. UpadhyayP. RajputS. SainiS. KharabS. Effect of hydroxychloroquine on beta cell function, insulin resistance, and inflammatory markers in type 2 diabetes patients uncontrolled on glimepiride and metformin therapy.Int. J. Diabetes Dev. Ctries.202343695596010.1007/s13410‑023‑01173‑9 36777472
    [Google Scholar]
  49. McGillicuddyF.C. ChiquoineE.H. HinkleC.C. Interferon gamma attenuates insulin signaling, lipid storage, and differentiation in human adipocytes via activation of the JAK/STAT pathway.J. Biol. Chem.200928446319363194410.1074/jbc.M109.061655 19776010
    [Google Scholar]
  50. ChunJ. ZhangJ.Y. WilkinsM.S. Recruitment of APOL1 kidney disease risk variants to lipid droplets attenuates cell toxicity.Proc. Natl. Acad. Sci.201911693712372110.1073/pnas.1820414116 30733285
    [Google Scholar]
  51. ChunJ. RiellaC.V. ChungH. DGAT2 inhibition potentiates lipid droplet formation to reduce cytotoxicity in apol1 kidney risk variants.J. Am. Soc. Nephrol.202233588990710.1681/ASN.2021050723 35232775
    [Google Scholar]
  52. TangX. UhlS. ZhangT. SARS-CoV-2 infection induces beta cell transdifferentiation.Cell Metab.202133815771591.e710.1016/j.cmet.2021.05.015 34081913
    [Google Scholar]
  53. FaltynekC.R. McCandlessS. BaglioniC. Treatment of lymphoblastoid cells with interferon decreases insulin binding.J. Cell. Physiol.1984121243744110.1002/jcp.1041210224 6092395
    [Google Scholar]
  54. PfefferL.M. DonnerD.B. TammI. Interferon-alpha down-regulates insulin receptors in lymphoblastoid (Daudi) cells. Relationship to inhibition of cell proliferation.J. Biol. Chem.198726283665367010.1016/S0021‑9258(18)61405‑X 3546315
    [Google Scholar]
  55. FranceschiniL. RealdonS. MarcolongoM. MirandolaS. BortolettoG. AlbertiA. Reciprocal interference between insulin and interferon-alpha signaling in hepatic cells: A vicious circle of clinical significance?Hepatology201154248449410.1002/hep.24394 21538438
    [Google Scholar]
  56. WentworthJ.M. ZhangJ-G. Bandala-SanchezE. Interferon-gamma released from omental adipose tissue of insulin-resistant humans alters adipocyte phenotype and impairs response to insulin and adiponectin release.Int. J. Obes.201741121782178910.1038/ijo.2017.180 28769120
    [Google Scholar]
  57. PacificoL. RenzoD.L. AnaniaC. Increased T-helper interferon-γ-secreting cells in obese children.Eur. J. Endocrinol.2006154569169710.1530/eje.1.02138 16645016
    [Google Scholar]
  58. KintscherU. HartgeM. HessK. T-lymphocyte infiltration in visceral adipose tissue: A primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance.Arterioscler. Thromb. Vasc. Biol.20082871304131010.1161/ATVBAHA.108.165100 18420999
    [Google Scholar]
  59. MontefuscoL. Ben NasrM. D’AddioF. Acute and long-term disruption of glycometabolic control after SARS-CoV-2 infection.Nat. Metab.20213677478510.1038/s42255‑021‑00407‑6 34035524
    [Google Scholar]
  60. GrunfeldC. KotlerD.P. ShigenagaJ.K. Circulating interferon-α levels and hypertriglyceridemia in the acquired immunodeficiency syndrome.Am. J. Med.199190215416210.1016/0002‑9343(91)80154‑E 1996584
    [Google Scholar]
  61. ChristeffN. MelchiorJ.C. De TruchisP. PerronneC. GougeonM.L. Increased serum interferon alpha in HIV–1 associated lipodystrophy syndrome.Eur. J. Clin. Invest.2002321435010.1046/j.0014‑2972.2001.00940.x 11851726
    [Google Scholar]
  62. FaberD.R. van der GraafY. WesterinkJ. KanhaiD.A. MonajemiH. VisserenF.L.J. Hepatocyte growth factor and interferon‐γ inducible protein‐10 are related to visceral adiposity.Eur. J. Clin. Invest.201343436937810.1111/eci.12054 23398210
    [Google Scholar]
  63. ChangC.C. WuC.L. SuW.W. Interferon gamma-induced protein 10 is associated with insulin resistance and incident diabetes in patients with nonalcoholic fatty liver disease.Sci. Rep.2015511009610.1038/srep10096 25961500
    [Google Scholar]
  64. SajadiS.M. KhoramdelazadH. HassanshahiG. Plasma levels of CXCL1 (GRO-alpha) and CXCL10 (IP-10) are elevated in type 2 diabetic patients: Evidence for the involvement of inflammation and angiogenesis/angiostasis in this disease state.Clin. Lab.2013591-2133137 23505918
    [Google Scholar]
  65. HerderC. BaumertJ. ThorandB. Chemokines as risk factors for type 2 diabetes: Results from the MONICA/KORA Augsburg study, 1984–2002.Diabetologia200649592192910.1007/s00125‑006‑0190‑y 16532324
    [Google Scholar]
  66. CrisanD. GrigorescuM.D. RaduC. SuciuA. GrigorescuM. Interferon-γ-inducible protein-10 in chronic hepatitis C: Correlations with insulin resistance, histological features & sustained virological response.Indian J. Med. Res.20171454543550 28862188
    [Google Scholar]
  67. HuberC. BatchelorJ.R. FuchsD. Immune response-associated production of neopterin. Release from macrophages primarily under control of interferon-gamma.J. Exp. Med.1984160131031610.1084/jem.160.1.310 6429267
    [Google Scholar]
  68. OxenkrugG. TuckerK.L. RequintinaP. SummergradP. Neopterin, a marker of interferon-gamma-inducible inflammation, correlates with pyridoxal-5′-phosphate, waist circumference, HDL-cholesterol, insulin resistance and mortality risk in adult boston community dwellers of puerto rican origin.Am. J. Neuroprot. Neuroregen.201131485210.1166/ajnn.2011.1024 22308202
    [Google Scholar]
  69. RayK.K. MorrowD.A. SabatineM.S. Long-term prognostic value of neopterin: A novel marker of monocyte activation in patients with acute coronary syndrome.Circulation2007115243071307810.1161/CIRCULATIONAHA.106.666511 17548728
    [Google Scholar]
  70. PedersenE.R. MidttunØ. UelandP.M. Systemic markers of interferon-γ-mediated immune activation and long-term prognosis in patients with stable coronary artery disease.Arterioscler. Thromb. Vasc. Biol.201131369870410.1161/ATVBAHA.110.219329 21183733
    [Google Scholar]
  71. AnP. SezginE. KirkG.D. APOL1 variant alleles associate with reduced risk for opportunistic infections in HIV infection.Commun. Biol.20214128410.1038/s42003‑021‑01812‑z 33674766
    [Google Scholar]
  72. VandorpeD.H. HeneghanJ.F. WaitzmanJ.S. Apolipoprotein L1 (APOL1) cation current in HEK-293 cells and in human podocytes.Pflugers Arch.2023475332334110.1007/s00424‑022‑02767‑8 36449077
    [Google Scholar]
  73. DavisS.E. KhatuaA.K. PopikW. Nucleosomal dsDNA stimulates APOL1 expression in human cultured podocytes by activating the cGAS/IFI16-STING signaling pathway.Sci. Rep.2019911548510.1038/s41598‑019‑51998‑w 31664093
    [Google Scholar]
  74. ScalesS.J. GuptaN. De MazièreA.M. Apolipoprotein L1-specific antibodies detect endogenous apol1 inside the endoplasmic reticulum and on the plasma membrane of podocytes.J. Am. Soc. Nephrol.20203192044206410.1681/ASN.2019080829 32764142
    [Google Scholar]
  75. LiuE. RadmaneshB. ChungB.H. DonnanM.D. YiD. DadiA. Profiling APOL1 nephropathy risk variants in genome-edited kidney organoids with single-cell transcriptomics.Kidney36020201320321510.34067/KID.0000422019
    [Google Scholar]
  76. NicholsB. JogP. LeeJ.H. Innate immunity pathways regulate the nephropathy gene Apolipoprotein L1.Kidney Int.201587233234210.1038/ki.2014.270 25100047
    [Google Scholar]
  77. DuchateauP.N. MovsesyanI. YamashitaS. Plasma apolipoprotein L concentrations correlate with plasma triglycerides and cholesterol levels in normolipidemic, hyperlipidemic, and diabetic subjects.J. Lipid Res.20004181231123610.1016/S0022‑2275(20)33430‑1 10946010
    [Google Scholar]
  78. AlbertT.S.E. DuchateauP.N. DeebS.S. Apolipoprotein L-I is positively associated with hyperglycemia and plasma triglycerides in CAD patients with low HDL.J. Lipid Res.200546346947410.1194/jlr.M400304‑JLR200 15604524
    [Google Scholar]
  79. NishimuraK. MurakamiT. SakuraiT. Circulating apolipoprotein L1 is associated with insulin resistance-induced abnormal lipid metabolism.Sci. Rep.2019911486910.1038/s41598‑019‑51367‑7 31619724
    [Google Scholar]
  80. CroyalM. WargnyM. ChemelloK. Plasma apolipoprotein concentrations and incident diabetes in subjects with prediabetes.Cardiovasc. Diabetol.20222112110.1186/s12933‑022‑01452‑5 35130909
    [Google Scholar]
  81. OkamotoK. RauschJ.W. WakashinH. APOL1 risk allele RNA contributes to renal toxicity by activating protein kinase R.Commun. Biol.20181118810.1038/s42003‑018‑0188‑2 30417125
    [Google Scholar]
  82. DattaS. KatariaR. ZhangJ.Y. Kidney disease-associated APOL1 variants have dose-dependent, dominant toxic gain-of-function.J. Am. Soc. Nephrol.20203192083209610.1681/ASN.2020010079 32675303
    [Google Scholar]
  83. TallóczyZ. JiangW. VirginH.W.IV Regulation of starvation- and virus-induced autophagy by the eIF2α kinase signaling pathway.Proc. Natl. Acad. Sci.200299119019510.1073/pnas.012485299 11756670
    [Google Scholar]
  84. DaiY. LinG. ShiD. Hypoglycemia induced by hydroxychloroquine sulfate in a patient treated for connective tissue disease without diabetes mellitus.Clin. Ther.202042594094510.1016/j.clinthera.2020.03.011 32336573
    [Google Scholar]
  85. Imanova YaghjiN. KanE.K. AkcanS. ColakR. AtmacaA. Hydroxychloroquine sulfate related hypoglycemia in a non-diabetic COVİD-19 patient: A case report and literature review.Postgrad. Med.2021133554855110.1080/00325481.2021.1889820 33583332
    [Google Scholar]
  86. WondafrashD.Z. DesalegnT.Z. YimerE.M. TsigeA.G. AdamuB.A. ZewdieK.A. Potential effect of hydroxychloroquine in diabetes mellitus: A systematic review on preclinical and clinical trial studies.J. Diabetes Res.2020202011010.1155/2020/5214751 32190699
    [Google Scholar]
  87. MendíaS.L.E. MendíaS.M. GarcíaS.A. TorresL.E. Effect of hydroxychloroquine on glucose control in patients with and without diabetes: A systematic review and meta-analysis of randomized controlled clinical trials.Eur. J. Clin. Pharmacol.202177111705171210.1007/s00228‑021‑03144‑7 34013407
    [Google Scholar]
  88. DuttaD. JindalR. MehtaD. KumarM. SharmaM. Efficacy and safety of hydroxychloroquine for managing glycemia in type-2 diabetes: A systematic review and meta-analysis.J. Postgrad. Med.2022682859210.4103/jpgm.JPGM_301_21 35466661
    [Google Scholar]
  89. MendíaS.L.E. MendíaS.M. GarcíaS.A. TorresL.E. Effect of hydroxychloroquine on lipid levels: A systematic review and metaanalysis.Curr. Pharm. Des.202127404133413910.2174/1381612827666210625162612 34176459
    [Google Scholar]
  90. HaugaardJ.H. DreyerL. OttosenM.B. GislasonG. KofoedK. EgebergA. Use of hydroxychloroquine and risk of major adverse cardiovascular events in patients with lupus erythematosus: A Danish nationwide cohort study.J. Am. Acad. Dermatol.202184493093710.1016/j.jaad.2020.12.013 33321159
    [Google Scholar]
  91. Cordova SanchezA. KhokharF. OlonoffD.A. CarhartR.L. Hydroxychloroquine and cardiovascular events in patients with rheumatoid arthritis.Cardiovasc. Drugs Ther.202220221810.1007/s10557‑022‑07387‑z 36197529
    [Google Scholar]
  92. LiuD. LiX. ZhangY. Chloroquine and hydroxychloroquine are associated with reduced cardiovascular risk: A systematic review and meta-analysis.Drug Des. Devel. Ther.2018121685169510.2147/DDDT.S166893 29928112
    [Google Scholar]
  93. HanaiS. KobayashiY. IchijoM. ItoR. KobayashiK. NakagomiD. Antidiabetic effects of hydroxychloroquine in two Japanese patients with systemic lupus erythematosus.Diabetol. Int.202213244745110.1007/s13340‑021‑00544‑z 35463861
    [Google Scholar]
  94. ChenY.M. LinC.H. LanT.H. Hydroxychloroquine reduces risk of incident diabetes mellitus in lupus patients in a dose-dependent manner: A population-based cohort study.Rheumatology20155471244124910.1093/rheumatology/keu451 25587177
    [Google Scholar]
  95. SalmasiS. SayreE.C. ZubietaA.A.J. EsdaileJ.M. De VeraM.A. Adherence to antimalarial therapy and risk of type 2 diabetes mellitus among patients with systemic lupus erythematosus: A population‐based study.Arthritis Care Res.202173570270610.1002/acr.24147 31961497
    [Google Scholar]
  96. YazdanpanahM.H. MardaniM. OsatiS. EhrampoushE. DavoodiS.H. HomayounfarR. COVID-19 induces body composition and metabolic alterations.Cureus2023151e3419610.7759/cureus.34196 36843827
    [Google Scholar]
  97. Montes-IbarraM. OrssoC.E. Limon-MiroA.T. Prevalence and clinical implications of abnormal body composition phenotypes in patients with COVID-19: A systematic review.Am. J. Clin. Nutr.202311761288130510.1016/j.ajcnut.2023.04.003 37037395
    [Google Scholar]
  98. RatchfordS.M. StickfordJ.L. ProvinceV.M. Vascular alterations among young adults with SARS-CoV-2.Am. J. Physiol. Heart Circ. Physiol.20213201H404H41010.1152/ajpheart.00897.2020 33306450
    [Google Scholar]
  99. KeinerE.S. SlaughterJ.C. DatyeK.A. CherringtonA.D. MooreD.J. GregoryJ.M. COVID-19 exacerbates insulin resistance during diabetic ketoacidosis in pediatric patients with type 1 diabetes.Diabetes Care202245102406241110.2337/dc22‑0396 35944264
    [Google Scholar]
  100. Rezel-PottsE. DouiriA. SunX. ChowienczykP.J. ShahA.M. GullifordM.C. Cardiometabolic outcomes up to 12 months after COVID-19 infection. A matched cohort study in the UK.PLoS Med.2022197e100405210.1371/journal.pmed.1004052 35853019
    [Google Scholar]
  101. YangJ.K. ZhaoM.M. JinJ.M. New-onset COVID-19–related diabetes: An early indicator of multi-organ injury and mortally of SARS-CoV-2 infection.Curr. Med.202211610.1007/s44194‑022‑00006‑x 35673632
    [Google Scholar]
  102. ShresthaD.B. BudhathokiP. RautS. New-onset diabetes in COVID-19 and clinical outcomes: A systematic review and meta-analysis.World J. Virol.202110527528710.5501/wjv.v10.i5.275 34631477
    [Google Scholar]
  103. MüllerJ.A. GroßR. ConzelmannC. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas.Nat. Metab.20213214916510.1038/s42255‑021‑00347‑1 33536639
    [Google Scholar]
  104. KuchayM.S. ReddyP.K. GagnejaS. MathewA. MishraS.K. Short term follow-up of patients presenting with acute onset diabetes and diabetic ketoacidosis during an episode of COVID-19.Diabetes Metab. Syndr.20201462039204110.1016/j.dsx.2020.10.015 33113470
    [Google Scholar]
  105. SeveraM. DiottiR.A. EtnaM.P. Differential plasmacytoid dendritic cell phenotype and type I Interferon response in asymptomatic and severe COVID-19 infection.PLoS Pathog.2021179e100987810.1371/journal.ppat.1009878 34473805
    [Google Scholar]
  106. ZhangQ. BastardP. LiuZ. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19.Science20203706515eabd457010.1126/science.abd4570 32972995
    [Google Scholar]
  107. BastardP. RosenL.B. ZhangQ. Autoantibodies against type I IFNs in patients with life-threatening COVID-19.Science20203706515eabd458510.1126/science.abd4585 32972996
    [Google Scholar]
  108. ScordioM. FrascaF. SantinelliL. High frequency of neutralizing antibodies to type I interferon in HIV-1 patients hospitalized for COVID-19.Clin. Immunol.202224110906810.1016/j.clim.2022.109068 35764258
    [Google Scholar]
  109. RyooS. KohD.H. YuS.Y. Clinical efficacy and safety of interferon (Type I and Type III) therapy in patients with COVID-19: A systematic review and meta-analysis of randomized controlled trials.PLoS One2023183e027282610.1371/journal.pone.0272826 36989209
    [Google Scholar]
  110. WoerleH.J. MariuzP.R. MeyerC. Mechanisms for the deterioration in glucose tolerance associated with HIV protease inhibitor regimens.Diabetes200352491892510.2337/diabetes.52.4.918 12663461
    [Google Scholar]
  111. GeffnerM.E. PatelK. MillerT.L. Factors associated with insulin resistance among children and adolescents perinatally infected with HIV-1 in the pediatric HIV/AIDS cohort study.Horm. Res. Paediatr.201176638639110.1159/000332957 22042056
    [Google Scholar]
  112. BrattG. BrännströmJ. MissalidisC. NyströmT. Development of type 2 diabetes and insulin resistance in people with HIV infection: Prevalence, incidence and associated factors.PLoS One2021166e025407910.1371/journal.pone.0254079 34191847
    [Google Scholar]
  113. NdukaC.U. UthmanO.A. KimaniP.K. StrangesS. Body Fat Changes in People Living with HIV on Antiretroviral Therapy.AIDS Rev.2016184198211 27438580
    [Google Scholar]
  114. MucciniC. GalliL. PoliA. Changes in homeostatic model assessment for insulin resistance (HOMA-IR) index in treated HIV-1 Infected people on virological suppression who switched to a different antiretroviral regimen.J. Acquir. Immune Defic. Syndr.2021871e169e17310.1097/QAI.0000000000002632 33492020
    [Google Scholar]
  115. NkindaL. BuberwaE. MemiahP. Impaired fasting glucose levels among perinatally HIV-infected adolescents and youths in Dar es Salaam, Tanzania.Front. Endocrinol.202213104562810.3389/fendo.2022.1045628 36561566
    [Google Scholar]
  116. ByonanebyeD.M. PolizzottoM.N. Parkes-RatanshiR. MusaaziJ. PetoumenosK. CastelnuovoB. Prevalence and incidence of hypertension in a heavily treatment-experienced cohort of people living with HIV in Uganda.PLoS One2023182e028200110.1371/journal.pone.0282001 36800379
    [Google Scholar]
  117. PhuphuakratA. NimitphongH. ReutrakulS. SungkanuparphS. Prediabetes among HIV-infected individuals receiving antiretroviral therapy: Prevalence, diagnostic tests, and associated factors.AIDS Res. Ther.20201712510.1186/s12981‑020‑00284‑1 32448349
    [Google Scholar]
  118. HertzJ.T. PrattipatiS. KwekaG.L. Prevalence and predictors of uncontrolled hypertension, diabetes, and obesity among adults with HIV in northern Tanzania.Glob. Public Health202217123747375910.1080/17441692.2022.2049344 35282776
    [Google Scholar]
  119. GirmaD. DejeneH. GeletaL.A. Metabolic syndrome among people living with HIV in Ethiopia: A systematic review and meta-analysis.Diabetol. Metab. Syndr.20231516110.1186/s13098‑023‑01034‑9 36978109
    [Google Scholar]
  120. PeerN. NguyenK.A. HillJ. Prevalence and influences of diabetes and prediabetes among adults living with HIV in Africa: A systematic review and meta‐analysis.J. Int. AIDS Soc.2023263e2605910.1002/jia2.26059 36924213
    [Google Scholar]
  121. NimitphongH. JiriyasinS. KasemasawachanonP. SungkanuparphS. Metformin for preventing progression from prediabetes to diabetes mellitus in people living with human immunodeficiency virus.Cureus2022144e2454010.7759/cureus.24540 35651475
    [Google Scholar]
  122. SarfoF.S. NormanB. NicholsM. Prevalence and incidence of pre‐diabetes and diabetes mellitus among people living with HIV in Ghana: Evidence from the EVERLAST Study.HIV Med.202122423124310.1111/hiv.13007 33174302
    [Google Scholar]
  123. ShahA.S.V. StelzleD. LeeK.K. Global burden of atherosclerotic cardiovascular disease in people living with HIV.Circulation2018138111100111210.1161/CIRCULATIONAHA.117.033369 29967196
    [Google Scholar]
  124. MellinJ. Le PrevostM. KennyJ. Arterial stiffness in a cohort of young people living with perinatal HIV and HIV negative young people in England.Front. Cardiovasc. Med.2022982156810.3389/fcvm.2022.821568 35299977
    [Google Scholar]
  125. ImohL.C. AniC.C. IyuaK.O. Subclinical atherosclerosis and associated risk factors among hiv-infected adults in Jos, North Central Nigeria: A cross-sectional study.Pan Afr. Med. J.20203738810.11604/pamj.2020.37.388.21073 33796201
    [Google Scholar]
  126. LeeS. ChungY.S. YoonC.H. Interferon-inducible protein 10 (IP-10) is associated with viremia of early HIV-1 infection in Korean patients.J. Med. Virol.201587578278910.1002/jmv.24026 25678246
    [Google Scholar]
  127. ValdiviaA. LyJ. GonzalezL. Restoring cytokine balance in HIV-positive individuals with low CD4 T cell counts.AIDS Res. Hum. Retroviruses201733990591810.1089/aid.2016.0303 28398068
    [Google Scholar]
  128. ParkS.K. ChoY.K. ParkJ.H. Change of insulin sensitivity in hepatitis C patients with normal insulin sensitivity; A 5‐year prospective follow‐up study variation of insulin sensitivity in HCV patients.Intern. Med. J.201040750351110.1111/j.1445‑5994.2009.02042.x 19712201
    [Google Scholar]
  129. TsaiM.C. KaoK.L. HuangH.C. Incidence of type 2 diabetes in patients with chronic hepatitis c receiving interferon-based therapy.Diabetes Care2020436e63e6410.2337/dc19‑1704 32209648
    [Google Scholar]
  130. WhiteD.L. RatziuV. El-SeragH.B. Hepatitis C infection and risk of diabetes: A systematic review and meta-analysis.J. Hepatol.200849583184410.1016/j.jhep.2008.08.006 18814931
    [Google Scholar]
  131. RajewskiP. Zarębska-MichalukD. JanczewskaE. Hepatitis C infection as a risk factor for hypertension and cardiovascular diseases: An EpiTer multicenter study.J. Clin. Med.20221117519310.3390/jcm11175193 36079122
    [Google Scholar]
  132. MadaP.K. MalusM.E. ParvathaneniA. Impact of treatment with direct acting antiviral drugs on glycemic control in patients with hepatitis C and diabetes mellitus.Int. J. Hepatol.202020201610.1155/2020/6438753 32395351
    [Google Scholar]
  133. HuJ.H. ChangM.L. LiuN.J. YehC.T. HuangT.J. Effect of HCV treatment response on insulin resistance: A systematic review and meta analysis.Exp. Ther. Med.20191853568357810.3892/etm.2019.7995 31602234
    [Google Scholar]
  134. BacinschiX. Mercan-StanciuA. TomaL. Glycemic control in patients undergoing treatment with paritaprevir/ombitasvir/ritonavir and dasabuvir for chronic hepatitis C infection. In Vivo 20223631438144310.21873/invivo.12849 35478152
    [Google Scholar]
  135. CacoubP. NahonP. LayeseR. Prognostic value of viral eradication for major adverse cardiovascular events in hepatitis C cirrhotic patients.Am. Heart J.201819841710.1016/j.ahj.2017.10.024 29653647
    [Google Scholar]
  136. AghemoA. PratiG.M. RumiM.G. Sustained virological response prevents the development of insulin resistance in patients with chronic hepatitis C.Hepatology20125651681168710.1002/hep.25867 22619107
    [Google Scholar]
  137. ValentiL. PelusiS. AghemoA. Dysmetabolism, diabetes and clinical outcomes in patients cured of chronic hepatitis C: A real‐life cohort study.Hepatol. Commun.20226486787710.1002/hep4.1851 34811949
    [Google Scholar]
  138. EslamM. AparceroR. KawaguchiT. Meta‐analysis: Insulin resistance and sustained virological response in hepatitis C.Aliment. Pharmacol. Ther.201134329730510.1111/j.1365‑2036.2011.04716.x 21623851
    [Google Scholar]
  139. DeltenreP. LouvetA. LemoineM. Impact of insulin resistance on sustained response in HCV patients treated with pegylated interferon and ribavirin: A meta-analysis.J. Hepatol.20115561187119410.1016/j.jhep.2011.03.010 21703195
    [Google Scholar]
  140. BrownellJ. WagonerJ. LovelaceE.S. Independent, parallel pathways to CXCL10 induction in HCV-infected hepatocytes.J. Hepatol.201359470170810.1016/j.jhep.2013.06.001 23770038
    [Google Scholar]
  141. ChenY. XuH.X. WangL.J. LiuX.X. MahatoR.I. ZhaoY.R. Meta‐analysis: IL 28 B polymorphisms predict sustained viral response in HCV patients treated with pegylated interferon‐α and ribavirin.Aliment. Pharmacol. Ther.20123629110310.1111/j.1365‑2036.2012.05131.x 22591106
    [Google Scholar]
  142. YangW.B. WangH.L. MaoJ.T. The correlation between CT features and insulin resistance levels in patients with T2DM complicated with primary pulmonary tuberculosis.J. Cell. Physiol.2020235129370937710.1002/jcp.29741 32346889
    [Google Scholar]
  143. ShvetsO.M. ShevchenkoO.S. TodorikoL.D. Carbohydrate and lipid metabolic profiles of tuberculosis patients with bilateral pulmonary lesions and mycobacteria excretion.Wiad. Lek.20207371373137610.36740/WLek202007113 32759423
    [Google Scholar]
  144. ChenY. PengA. ChenY. Association of TyG index with CT features in patients with tuberculosis and diabetes mellitus.Infect. Drug Resist.20221511112510.2147/IDR.S347089 35068934
    [Google Scholar]
  145. MenonS. RossiR. DusabimanaA. ZdraveskaN. BhattacharyyaS. FrancisJ. The epidemiology of tuberculosis-associated hyperglycemia in individuals newly screened for type 2 diabetes mellitus: Systematic review and meta-analysis.BMC Infect. Dis.202020193710.1186/s12879‑020‑05512‑7 33297969
    [Google Scholar]
  146. LeeS.W. ParkY. KimS. ChungE.K. KangY.A. Comorbidities of nontuberculous mycobacteria infection in Korean adults: results from the National Health Insurance Service–National Sample Cohort (NHIS–NSC) database.BMC Pulm. Med.202222128310.1186/s12890‑022‑02075‑y 35870927
    [Google Scholar]
  147. BalukuJ.B. RonaldO. BagashaP. OkelloE. BongominF. Prevalence of cardiovascular risk factors in active tuberculosis in Africa: A systematic review and meta-analysis.Sci. Rep.20221211635410.1038/s41598‑022‑20833‑0 36175540
    [Google Scholar]
  148. SheulyA.H. ArefinS.M.Z.H. BaruaL. ZamanM.S. ChowdhuryH.A. Prevalence of type 2 diabetes and pre‐diabetes among pulmonary and extrapulmonary tuberculosis patients of Bangladesh: A cross‐sectional study.Endocrinol. Diabetes Metab.202253e0033410.1002/edm2.334 35261187
    [Google Scholar]
  149. JørgensenA. LorentssonH.J.N. Grundtvig HuberF. Graff JensenS. Bjorn-MortensenK. RavnP. Dysglycaemia among tuberculosis patients without known diabetes in a low-endemic setting.ERJ Open Res.202282006290202110.1183/23120541.00629‑2021 35415185
    [Google Scholar]
  150. GülbaşZ. ErdoğanY. BalciS. Impaired glucose tolerance in pulmonary tuberculosis.Eur. J. Respir. Dis.1987715345347 3443157
    [Google Scholar]
  151. PhilipsL. VisserJ. NelD. BlaauwR. The association between tuberculosis and the development of insulin resistance in adults with pulmonary tuberculosis in the Western sub-district of the Cape Metropole region, South Africa: A combined cross-sectional, cohort study.BMC Infect. Dis.201717157010.1186/s12879‑017‑2657‑5 28810840
    [Google Scholar]
  152. MageeM.J. TrostS.L. SalindriA.D. AmereG. DayC.L. GandhiN.R. Adults with mycobacterium tuberculosis infection and pre-diabetes have increased levels of quantiFERON interferon-gamma responses.Tuberculosis202012210193510.1016/j.tube.2020.101935 32501260
    [Google Scholar]
  153. DjaharuddinI. AmirM. QanithaA. Exploring the link between cardiovascular risk factors and manifestations in latent tuberculosis infection: A comprehensive literature review.Egypt. Heart J.20237514310.1186/s43044‑023‑00370‑5 37249745
    [Google Scholar]
  154. PearsonF. HuangfuP. McNallyR. PearceM. UnwinN. CritchleyJ.A. Tuberculosis and diabetes: Bidirectional association in a UK primary care data set.J. Epidemiol. Community Health201973214214710.1136/jech‑2018‑211231 30377249
    [Google Scholar]
  155. MageeM.J. KhakhariaA. GandhiN.R. Increased risk of incident diabetes among individuals with latent tuberculosis infection.Diabetes Care202245488088710.2337/dc21‑1687 35168250
    [Google Scholar]
  156. OmarN. WongJ. ThuK. AlikhanM.F. ChawL. Prevalence and associated factors of diabetes mellitus among tuberculosis patients in Brunei Darussalam: A 6-year retrospective cohort study.Int. J. Infect. Dis.202110526727310.1016/j.ijid.2021.02.064 33610780
    [Google Scholar]
  157. RajaaS. KrishnamoorthyY. KnudsenS. Prevalence and factors associated with diabetes mellitus among tuberculosis patients in South India—a cross-sectional analytical study.BMJ Open20211110e05054210.1136/bmjopen‑2021‑050542 34686553
    [Google Scholar]
  158. BuasroungP. PetnakT. LiwtanakitpipatP. KiertiburanakulS. Prevalence of diabetes mellitus in patients with tuberculosis: A prospective cohort study.Int. J. Infect. Dis.202211637437910.1016/j.ijid.2022.01.047 35093530
    [Google Scholar]
  159. JereneD. MuletaC. AhmedA. High rates of undiagnosed diabetes mellitus among patients with active tuberculosis in Addis Ababa, Ethiopia.J. Clin. Tuberc. Other Mycobact. Dis.20222710030610.1016/j.jctube.2022.100306 35284658
    [Google Scholar]
  160. HullalliR Gudadinni , Motappa R. Prevalence of diabetes mellitus among newly detected sputum positive pulmonary tuberculosis patients and associated risk factors: A cross-sectional study. Curr Diabetes Rev20232023 37138479
    [Google Scholar]
  161. JeongD. MokJ. JeonD. Prevalence and associated factors of diabetes mellitus among patients with tuberculosis in South Korea from 2011 to 2018: a nationwide cohort study.BMJ Open2023133e06964210.1136/bmjopen‑2022‑069642 36889835
    [Google Scholar]
  162. ChungW-S. LinC-L. HungC-T. Tuberculosis increases the subsequent risk of acute coronary syndrome: A nationwide population-based cohort study.Int. J. Tuberc. Lung Dis.2014181798310.5588/ijtld.13.0288 24365557
    [Google Scholar]
  163. HuamanM.A. De CeccoC.N. BittencourtM.S. Latent tuberculosis infection and subclinical coronary atherosclerosis in peru and uganda.Clin. Infect. Dis.2021739e3384e339010.1093/cid/ciaa1934 33388766
    [Google Scholar]
  164. SumbalA. SheikhS.M. IkramA. AmirA. SumbalR. SaeedA.R. Latent Tuberculosis Infection (LTBI) as a predictor of coronary artery disease: A systematic review and meta-analysis.Heliyon202394e1536510.1016/j.heliyon.2023.e15365 37089330
    [Google Scholar]
  165. KhoufiE.A.A. Association between latent tuberculosis and ischemic heart disease: A hospital-based cross-sectional study from Saudi Arabia.Pan Afr. Med. J.202138362 34367441
    [Google Scholar]
  166. TanejaV. KalraP. GoelM. Impact and prognosis of the expression of IFN-α among tuberculosis patients.PLoS One2020157e023548810.1371/journal.pone.0235488 32667932
    [Google Scholar]
  167. BerryM.P.R. GrahamC.M. McNabF.W. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis.Nature2010466730997397710.1038/nature09247 20725040
    [Google Scholar]
  168. SabbataniS. ManfrediR. MarinacciG. PavoniM. CristoniL. ChiodoF. Reactivation of severe, acute pulmonary tuberculosis during treatment with pegylated interferon-alpha and ribavirin for chronic HCV hepatitis.Scand. J. Infect. Dis.200638320520810.1080/00365540500263268 16500782
    [Google Scholar]
  169. MatsuokaS. FujikawaH. HasegawaH. OchiaiT. WatanabeY. MoriyamaM. Onset of tuberculosis from a pulmonary latent tuberculosis infection during antiviral triple therapy for chronic hepatitis C.Intern. Med.201655152011201710.2169/internalmedicine.55.6448 27477407
    [Google Scholar]
  170. de Oliveira UeharaS.N. EmoriC.T. PerezR.M. High incidence of tuberculosis in patients treated for hepatitis C chronic infection.Braz. J. Infect. Dis.201620220520910.1016/j.bjid.2015.12.003 26867472
    [Google Scholar]
  171. BaliashviliD. BlumbergH.M. BenkeserD. Association of treated and untreated chronic hepatitis C with the incidence of active tuberculosis disease: A population-based cohort study.Clin. Infect. Dis.202376224525110.1093/cid/ciac786 36134743
    [Google Scholar]
  172. JouanguyE. AltareF. LamhamediS. Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guérin infection.N. Engl. J. Med.1996335261956196210.1056/NEJM199612263352604 8960475
    [Google Scholar]
  173. NewportM.J. HuxleyC.M. HustonS. A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection.N. Engl. J. Med.1996335261941194910.1056/NEJM199612263352602 8960473
    [Google Scholar]
  174. OnoR. TsumuraM. ShimaS. Novel STAT1 variants in japanese patients with isolated mendelian susceptibility to mycobacterial diseases.J. Clin. Immunol.202343246647810.1007/s10875‑022‑01396‑1 36336768
    [Google Scholar]
  175. KampmannB. HemingwayC. StephensA. Acquired predisposition to mycobacterial disease due to autoantibodies to IFN-γ.J. Clin. Invest.200511592480248810.1172/JCI19316 16127458
    [Google Scholar]
  176. HöflichC. SabatR. RosseauS. Naturally occurring anti–IFN-γ autoantibody and severe infections with Mycobacterium cheloneae and Burkholderia cocovenenans.Blood2004103267367510.1182/blood‑2003‑04‑1065 12947000
    [Google Scholar]
  177. MochizukaY. KonoM. HiramaR. Endobronchial lesions from disseminated Mycobacterium avium infection in a patient with anti-interferon-gamma autoantibodies.Intern. Med.202160203267327210.2169/internalmedicine.6693‑20 33896863
    [Google Scholar]
  178. HirayamaK. KandaN. SuzukiT. Disseminated mycolicibacter arupensis and mycobacterium avium co-infection in a patient with anti-interferon-γ neutralizing autoantibody-associated immunodeficiency syndrome.J. Infect. Chemother.20222891336133910.1016/j.jiac.2022.05.018 35691862
    [Google Scholar]
  179. QiuY. FangG. YeF. Pathogen spectrum and immunotherapy in patients with anti-IFN-γ autoantibodies: A multicenter retrospective study and systematic review.Front. Immunol.202213105167310.3389/fimmu.2022.1051673 36569827
    [Google Scholar]
  180. KoizumiY. SakagamiT. NishiyamaN. Rituximab restores IFN-γ-STAT1 function and ameliorates disseminated mycobacterium avium infection in a patient with anti-interferon-γ autoantibody.J. Clin. Immunol.201737764464910.1007/s10875‑017‑0425‑3 28779413
    [Google Scholar]
  181. RoerdenM. DöffingerR. Barcenas-MoralesG. ForchhammerS. DöbeleS. BergC.P. Simultaneous disseminated infections with intracellular pathogens: An intriguing case report of adult-onset immunodeficiency with anti-interferon-gamma autoantibodies.BMC Infect. Dis.202020182810.1186/s12879‑020‑05553‑y 33176707
    [Google Scholar]
  182. Yıldız GülhanP. Güleç BalbayE. ErçelikM. YıldızŞ. YılmazM.A. Is sarcoidosis related to metabolic syndrome and insulin resistance?Aging Male2020231535810.1080/13685538.2019.1631272 31250684
    [Google Scholar]
  183. IşıkA.C. KavasM. BoǧaS. KaragözA. KocabayG. SenN. Are inflammatory and malnutrition markers associated with metabolic syndrome in patients with sarcoidosis?Rev. Assoc. Med. Bras.202167121779
    [Google Scholar]
  184. KindmanL.A. GilbertH.S. AlmenoffJ.S. GinsbergH. FagerstromR. TeirsteinA.S. High density lipoprotein cholesterol is reduced in patients with sarcoidosis.Am. J. Med.198986437637810.1016/0002‑9343(89)90332‑X 2929624
    [Google Scholar]
  185. SalazarA. MañaJ. PintoX. Low levels of high density lipoprotein cholesterol in patients with active sarcoidosis.Atherosclerosis1998136113313710.1016/S0021‑9150(97)00198‑6 9580477
    [Google Scholar]
  186. MahmoudA.R. DahyA. DibasM. AbbasA.S. GhozyS. El-QushayriA.E. Association between sarcoidosis and cardiovascular comorbidity: A systematic review and meta-analysis.Heart Lung202049551251710.1016/j.hrtlng.2020.03.013 32234258
    [Google Scholar]
  187. SelendiliO. GünayE. KaçarE. Atherogenic indices can predict atherosclerosis in patients with sarcoidosis.Sarcoidosis Vasc. Diffuse Lung Dis.2022384e2021041 35115748
    [Google Scholar]
  188. BenmeloukaA.Y. AbdelaalA. MohamedA.S.E. Association between sarcoidosis and diabetes mellitus: A systematic review and meta-analysis.Expert Rev. Respir. Med.202115121589159510.1080/17476348.2021.1932471 34018900
    [Google Scholar]
  189. EntropJ.P. KullbergS. GrunewaldJ. EklundA. BrismarK. ArkemaE.V. Type 2 diabetes risk in sarcoidosis patients untreated and treated with corticosteroids.ERJ Open Res.202172000280202110.1183/23120541.00028‑2021 34046487
    [Google Scholar]
  190. ChoiJ.Y. LeeJ.H. SeoJ.M. Incidence and death rate of sarcoidosis in Korea in association with metabolic diseases.J. Dermatol.202249548849510.1111/1346‑8138.16303 35040161
    [Google Scholar]
  191. GonenT. Katz-TalmorD. AmitalH. ComaneshterD. CohenA.D. TiosanoS. The association between sarcoidosis and ischemic heart disease—A healthcare analysis of a large israeli population.J. Clin. Med.20211021506710.3390/jcm10215067 34768590
    [Google Scholar]
  192. YongW.C. SanguankeoA. UpalaS. Association between sarcoidosis, pulse wave velocity, and other measures of subclinical atherosclerosis: A systematic review and meta-analysis.Clin. Rheumatol.201837102825283210.1007/s10067‑017‑3926‑9 29177575
    [Google Scholar]
  193. YilmazY. KulS. KavasM. Is there an association between sarcoidosis and atherosclerosis?Int. J. Cardiovasc. Imaging202137255956710.1007/s10554‑020‑02041‑x 32989613
    [Google Scholar]
  194. RizziL. CoppolaC. CoccoV. SabbàC. SuppressaP. Cardiovascular risk in rare diseases: A prognostic stratification model in a cohort of sarcoidosis patients.Intern. Emerg. Med.20231851437144410.1007/s11739‑023‑03314‑8 37219757
    [Google Scholar]
  195. BloomC.I. GrahamC.M. BerryM.P.R. Transcriptional blood signatures distinguish pulmonary tuberculosis, pulmonary sarcoidosis, pneumonias and lung cancers.PLoS One201388e7063010.1371/journal.pone.0070630 23940611
    [Google Scholar]
  196. KatoA. IshiharaM. MizukiN. Interferon-induced sarcoidosis with uveitis as the initial symptom: A case report and review of the literature.J. Med. Case Rep.202115156810.1186/s13256‑021‑03181‑x 34836557
    [Google Scholar]
  197. SawahataM. FujikiY. NakanoN. Propionibacterium acnes-Associated sarcoidosis possibly initially triggered by interferon-alpha therapy.Intern. Med.202160577778110.2169/internalmedicine.5281‑20 32999227
    [Google Scholar]
  198. SuR. NguyenM.L.T. AgarwalM.R. Interferon-inducible chemokines reflect severity and progression in sarcoidosis.Respir. Res.201314112110.1186/1465‑9921‑14‑121 24199653
    [Google Scholar]
  199. ÇakanM. KeskindemirciG. AydoğmuşÇ. Coexistence of early onset sarcoidosis and partial interferon-γ receptor 1 deficiency.Turk. J. Pediatr.201658554554910.24953/turkjped.2016.05.015 28621099
    [Google Scholar]
  200. RossidesM. KullbergS. EklundA. Risk of first and recurrent serious infection in sarcoidosis: A Swedish register-based cohort study.Eur. Respir. J.2020563200076710.1183/13993003.00767‑2020 32366492
    [Google Scholar]
  201. OkazakiF. WakiguchiH. KorenagaY. A novel mutation in early‐onset sarcoidosis/Blau syndrome: An association with Propionibacterium acnes.Pediatr. Rheumatol. Online J.20211911810.1186/s12969‑021‑00505‑5 33602264
    [Google Scholar]
  202. YamamotoT. MiuraK. EishiY. Detection of Propionibacterium acnes in cutaneous lichenoid sarcoidosis in a patient with Blau syndrome.Int. J. Dermatol.2023626e353e35510.1111/ijd.16583 36633165
    [Google Scholar]
  203. ZhangS. WangG. WangJ. Type B insulin resistance syndrome induced by systemic lupus erythematosus and successfully treated with intravenous immunoglobulin: case report and systematic review.Clin. Rheumatol.201332218118810.1007/s10067‑012‑2098‑x 23053690
    [Google Scholar]
  204. PayaresP.J.C. RiberoD. RodríguezL. Late systemic lupus erythematosus-associated insulin resistance syndrome: A rare cause of de novo diabetes mellitus.Case Rep. Med.2022202211210.1155/2022/4655804 36275943
    [Google Scholar]
  205. MiyakeC.N.H. GualanoB. DantasW.S. Increased insulin resistance and glucagon levels in mild/inactive systemic lupus erythematosus patients despite normal glucose tolerance.Arthritis Care Res.201870111412410.1002/acr.23237 28320046
    [Google Scholar]
  206. HasniS. Temesgen-OyelakinY. DavisM. Peroxisome proliferator activated receptor-γ agonist pioglitazone improves vascular and metabolic dysfunction in systemic lupus erythematosus.Ann. Rheum. Dis.202281111576158410.1136/ard‑2022‑222658 35914929
    [Google Scholar]
  207. KuoC.Y. TsaiT.Y. HuangY.C. Insulin resistance and serum levels of adipokines in patients with systemic lupus erythematosus: A systematic review and meta-analysis.Lupus20202991078108410.1177/0961203320935185 32605528
    [Google Scholar]
  208. TarçınG. KarakaşH. ŞahinS. Insulin resistance in children with juvenile systemic lupus erythematosus and ınvestigation of the possibly responsible factors.Clin. Rheumatol.202241379580110.1007/s10067‑021‑05952‑9 34617197
    [Google Scholar]
  209. SunC. QinW. ZhangY.H. Prevalence and risk of metabolic syndrome in patients with systemic lupus erythematosus: A meta‐analysis.Int. J. Rheum. Dis.201720891792810.1111/1756‑185X.13153 28851080
    [Google Scholar]
  210. DiószegiÁ. LőrinczH. KaáliE. Role of altered metabolism of triglyceride-rich lipoprotein particles in the development of vascular dysfunction in systemic lupus erythematosus.Biomolecules202313340110.3390/biom13030401 36979336
    [Google Scholar]
  211. Mendoza-PintoC. García-CarrascoM. MartínezM.S. Insulin resistance metabolomic profile in non-diabetic women with systemic lupus erythematosus.Gac. Med. Mex.20211576594598 35108250
    [Google Scholar]
  212. LuX. WangY. ZhangJ. Patients with systemic lupus erythematosus face a high risk of cardiovascular disease: A systematic review and Meta-analysis.Int. Immunopharmacol.20219410746610.1016/j.intimp.2021.107466 33636561
    [Google Scholar]
  213. BelloN. MeyersK.J. WorkmanJ. HartleyL. McMahonM. Cardiovascular events and risk in patients with systemic lupus erythematosus: Systematic literature review and meta-analysis.Lupus202332332534110.1177/09612033221147471 36547368
    [Google Scholar]
  214. LinY.J. ChienC.C. HoC.H. ChenH.A. ChenC.Y. Increased risk of type 2 diabetes in patients with systemic lupus erythematosus: A nationwide cohort study in Taiwan.Medicine202210151e3252010.1097/MD.0000000000032520 36595866
    [Google Scholar]
  215. GernaatS.A.M. SimardJ.F. WikströmA.K. SvenungssonE. ArkemaE.V. Gestational diabetes mellitus risk in pregnant women with systemic lupus erythematosus.J. Rheumatol.202249546546910.3899/jrheum.210087 34853085
    [Google Scholar]
  216. GustafssonJ.T. LindbergH.M. GunnarssonI. Excess atherosclerosis in systemic lupus erythematosus,—A matter of renal involvement: Case control study of 281 SLE patients and 281 individually matched population controls.PLoS One2017124e017457210.1371/journal.pone.0174572 28414714
    [Google Scholar]
  217. BarbhaiyaM. FeldmanC.H. ChenS.K. Comparative risks of cardiovascular disease in patients with systemic lupus erythematosus, diabetes mellitus, and in general medicaid recipients.Arthritis Care Res.202072101431143910.1002/acr.24328 32475049
    [Google Scholar]
  218. YazdanyJ. PooleyN. LanghamJ. Systemic lupus erythematosus; stroke and myocardial infarction risk: A systematic review and meta-analysis.RMD Open202062e00124710.1136/rmdopen‑2020‑001247 32900883
    [Google Scholar]
  219. MokC.C. PoonW.L. LaiJ.P.S. Metabolic syndrome, endothelial injury, and subclinical atherosclerosis in patients with systemic lupus erythematosus.Scand. J. Rheumatol.2010391424910.3109/03009740903046668 20132070
    [Google Scholar]
  220. GegenavaT. GegenavaM. Steup-BeekmanG.M. Left ventricular systolic function in patients with systemic lupus erythematosus and its association with cardiovascular events.J. Am. Soc. Echocardiogr.20203391116112210.1016/j.echo.2020.04.018 32622589
    [Google Scholar]
  221. ZhangH. YangC. GaoF. HuS. MaH. Evaluation of left ventricular systolic function in patients with systemic lupus erythematosus using ultrasonic layer-specific strain technology and its association with cardiovascular events: A long-term follow-up study.Cardiovasc. Ultrasound20222012510.1186/s12947‑022‑00295‑0 36207759
    [Google Scholar]
  222. OkeV. GunnarssonI. DorschnerJ. High levels of circulating interferons type I, type II and type III associate with distinct clinical features of active systemic lupus erythematosus.Arthritis Res. Ther.201921110710.1186/s13075‑019‑1878‑y 31036046
    [Google Scholar]
  223. MiyachiK. IwamotoT. KojimaS. Relationship of systemic type I interferon activity with clinical phenotypes, disease activity, and damage accrual in systemic lupus erythematosus in treatment-naive patients: a retrospective longitudinal analysis.Arthritis Res. Ther.20232512610.1186/s13075‑023‑03010‑0 36803843
    [Google Scholar]
  224. ShirahamaY. HashimotoA. OnoN. Relationships between Type 1 interferon signatures and clinical features of the new-onset lupus patients in Japan.Mod. Rheumatol.2023road01510.1093/mr/road015 36695430
    [Google Scholar]
  225. ZahnS. RehkämperC. KümmererB.M. Evidence for a pathophysiological role of keratinocyte-derived type III interferon (IFNλ) in cutaneous lupus erythematosus.J. Invest. Dermatol.2011131113314010.1038/jid.2010.244 20720564
    [Google Scholar]
  226. ShenM. DuanC. XieC. Identification of key interferon-stimulated genes for indicating the condition of patients with systemic lupus erythematosus.Front. Immunol.20221396239310.3389/fimmu.2022.962393 35967341
    [Google Scholar]
  227. TanakaY. TummalaR. Anifrolumab, a monoclonal antibody to the type I interferon receptor subunit 1, for the treatment of systemic lupus erythematosus: An overview from clinical trials.Mod. Rheumatol.202131111210.1080/14397595.2020.1812201 32814461
    [Google Scholar]
  228. SiddiqiK.Z. ZinglersenA.H. IversenK.K. RasmussenN.S. NielsenC.T. JacobsenS. A cluster of type II interferon-regulated genes associates with disease activity in patients with systemic lupus erythematosus.J. Autoimmun.202213210286910.1016/j.jaut.2022.102869 35933792
    [Google Scholar]
  229. WangY.F. WeiW. TangtanatakulP. Identification of shared and Asian‐Specific loci for systemic lupus erythematosus and evidence for roles of type III interferon signaling and lysosomal function in the disease: A multi‐ancestral genome‐wide association study.Arthritis Rheumatol.202274584084810.1002/art.42021 34783190
    [Google Scholar]
  230. AndanyA.M.M. MonteroD.A. ContrerasA.L. FernándezF.C. FreireC.N. LucánG.M. Body fat distribution contributes to defining the relationship between insulin resistance and obesity in human diseases.Curr. Diabetes Rev.2023 37587805
    [Google Scholar]
  231. Martínez-ColónG.J. RatnasiriK. ChenH. SARS-CoV-2 infection drives an inflammatory response in human adipose tissue through infection of adipocytes and macrophages.Sci. Transl. Med.202214674eabm915110.1126/scitranslmed.abm9151 36137009
    [Google Scholar]
  232. BasoloA. PomaA.M. BonuccelliD. Adipose tissue in COVID-19: Detection of SARS-CoV-2 in adipocytes and activation of the interferon-alpha response.J. Endocrinol. Invest.20224551021102910.1007/s40618‑022‑01742‑5 35169984
    [Google Scholar]
  233. BarnaB.P. CulverD.A. AbrahamS. Depressed peroxisome proliferator-activated receptor gamma (PPargamma) is indicative of severe pulmonary sarcoidosis: possible involvement of interferon gamma (IFN-gamma).Sarcoidosis Vasc. Diffuse Lung Dis.200623293100 17937104
    [Google Scholar]
  234. NadkarniG.N. GalarneauG. EllisS.B. Apolipoprotein L1 variants and blood pressure traits in African Americans.J. Am. Coll. Cardiol.201769121564157410.1016/j.jacc.2017.01.040 28335839
    [Google Scholar]
  235. HoyW.E. HughsonM.D. KoppJ.B. MottS.A. BertramJ.F. WinklerC.A. APOL1 risk alleles are associated with exaggerated age-related changes in glomerular number and volume in african-american adults.J. Am. Soc. Nephrol.201526123179318910.1681/ASN.2014080768 26038529
    [Google Scholar]
  236. YangL. HanY. Nilsson-PayantB.E. A human pluripotent stem cell-based platform to study SARS-CoV-2 tropism and model virus infection in human cells and organoids.Cell Stem Cell2020271125136.e710.1016/j.stem.2020.06.015 32579880
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998294022240309105112
Loading
/content/journals/cdr/10.2174/0115733998294022240309105112
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test